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0 Preliminaries

We first recall some basic formulas for cyclic quadrilater-
alsABCD with sides and diagonals of lengths a = |AB|,
b = |BC|, c = |CD|, d = |DA| and e = |AC|,
f = |BD| whose vertices lie on a circle of radius R.
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•Ptolemy’s conditions (convex case):

ef = ac + bd (0.1)

•Dual Ptolemy’s conditions:

(ab + cd)e = (ad + bc)f (0.1’)

•Diagonal equation:

(ab + cd)e2 = (ac + bd)(ad + bc) (0.2)

•Area equation (Brahmagupta’s formula):

16S2 = 2(a2b2+a2c2+a2d2+b2c2+b2d2+c2d2)−a4−b4−c4−d4+8abcd
(0.3)

which, in a more popular form reads as

16S2 = (−a+b+c+d)(a−b+c+d)(a+b−c+d)(a+b+c−d)
(0.3’)
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•Circumradius equation:

R2 =
(ab + cd)(ac + bd)(ad + bc)

(−a + b + c + d)(a− b + c + d)(a + b− c + d)(a + b + c− d)
(0.4)

•Area times circumradius equation:
let Z = 4SR, then

Z2 = (ab + cd)(ac + bd)(ad + bc) (0.5)

which in a case of a triangle (d = 0) reduces to the
well known relation

4SR = abc. (0.5’)

The following lemma will be crucial in all our subsequent
calculations concerning elimination of diagonals in cyclic
polygons.
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Key Lemma: (Intermediate Brahmagupta’s formula)
In any cyclic quadrilateral we have

8Sda = 2bcd + (b2 + c2 + d2 − a2)a (0.6)

where da denotes the distance from the center of the
circumcircle to the side of length a.

Proof of the Key Lemma. By noticing that d2a =
R2 − (a/2)2 and using both Brahmagupta’s formulas
(0.3) and (0.4) we easily check the corresponding identity

64S2d2a = (2bcd + (b2 + c2 + d2 − a2)a)2.

In the case of a nonconvex quadrilaterals we can for-
mally obtain all the relations by simply allowing side
lengths to be negative (e.g. by replacing a with −a).
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Corollary 0.1 From Lemma we get a new Brahmagupta
formula

16SSa = a2(b2 + c2 + d2 − a2) + 2abcd

where Sa denotes the area of a characteristic triangle
△OAB determined by the side AB (of length a) and
circumcenter O of a cyclic quadrilateral ABCD.
Note that by adding all four such formulas we get

the original Brahmagupta’s formula.
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For general quadrilaterals in a plane we have:

•Bretschneider’s formula (1842) or Staudt’s
formula (1842):

16S2 = 4e2f2 − (a2 − b2 + c2 − d2)2. (0.7)

For cyclic quadrilaterals, in view of (0.1), it gives an-
other form of (0.3):

16S2 = 4(ac + bd)2 − (a2 − b2 + c2 − d2)2. (0.3”)

The formula (0.7) is the simplest formula for the area
of the quadrilaterals in terms of its sides and diagonals.
But there are infinitely many other ways to do so, since
these 6 quantities satisfy Euler’s four point relation

e2f 2(a2 + b2 + c2 + d2 − e2 − f 2) =
= e2(a2 − b2)(d2 − c2) + f 2(a2 − d2)(b2 − c2)+
+ (a2 − b2 + c2 − d2)(a2c2 − b2d2)

(0.8)
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This is only a quadratic equation with respect to a
square of each parameter.
The Euler’s four point relation follows from the Cayley–

Menger determinant for the volume V of a tetrahedron
with edges of lengths a, b, c, d, e, f if we set V = 0.

Remark 0.2 In a solution of a problem by J.W.L.Glaisher:
With four given straight lines to form a quadrilateral
inscribable in a circle, A.Cayley (in 1874.) observed
the following identity, equivalent to (0.8):[

(a2 + b2 + c2 + d2 − e2 − f 2)(ef + ac+ bd)− 2(ad+ bc)(ab+ cd)
]
(ef − ac− bd) =

= [(ab+ cd)e− (bc+ ad)f ]2

(0.8’)

which directly shows that Ptolemy’s relation (0.1) im-
plies the dual Ptolemy’s relation (0.1’).
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1 Cyclic hexagons

In this section we study geometry of cyclic hexagons
ABCDEF with sides of length a = |AB|, b = |BC|,
c = |CD|, d = |DE|, e = |EF |, f = |FA| with vertices
A,B,C,D,E, F lying on a circle of radius R.
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•Main diagonal equation

Let y = |AD| denote the length of a main diagonal of
the cyclic hexagon ABCDEF . Then we may think the
hexagon ABCDEF as made up of two quadrilaterals
with a common side AD, both having the same circum-
radius R. Thus using the formula (0.4) twice we get
equality

(R2 =)
(de + fy)(df + ey)(ef + dy)

(−d + e + f + y)(d− e + f + y)(d + e− f + y)(d + e + f − y)
=

=
(ab + cy)(ac + by)(bc + ay)

(−a + b + c + y)(a− b + c + y)(a + b− c + y)(a + b + c− y)
(1.9)

leading to a 7–th degree equation

(def − abc)y7 + · · · = 0
for the length of the main diagonal y.
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With substitutions

u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc
(1.10)

U = d2 + e2 + f2, V = d2e2 + d2f2 + e2f2, W = def
(1.10’)

we can express the area S′ (resp. S′′) of the quadrilateral
ABCD (resp. ADEF ) as follows

16S ′2 = 4v−u2+8wy+2uy2−y4, 16S ′′2 = 4V−U 2+8Wy+2Uy2−y4

(1.11)
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Then (1.9) becomes equivalent to

P
main diag.
6 ≡ −S ′′2 (wy3 + vy2 + uwy + w2

)
+

+ S ′2 (Wy3 + V y2 + UWy +W 2
)
= 0 (1.9’)

(i.e. (w −W )y7 + (v − V )y6 + · · · + (4v − u2)W 2 − (4V − U 2)w2 = 0)

(1.9”)

By letting f = 0 we obtain the diagonal equation for a
cyclic pentagon ABCDE:

P
diag.
5 ≡

abc y7 + (a2b2 + a2c2 + b2c2 − d2e2)y6 + · · · + a2b2c2(d2 − e2) = 0

(cf. Bowman 1950’s).
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• Small diagonal equation

Let x = |AC| denote the length of a ”small” diagonal in
the cyclic hexagon ABCDEF . By (0.2) we obtain the
equation

(ab + cy)x2 = (ac + by)(bc + ay)

by which we can eliminate y in our main diagonal equa-
tion (1.9”). This gives our small diagonal equation which
has degree 7 in x2:

P
small diag.
6 ≡

(abc− def)(abd− cef )(abe− cdf)(abf − cde)x14 + (. . .)x12 + · · ·+
+(a2 − b2)4(acd− bef )(ace− bdf )(acf − bde)(ade− bcf )
(adf − bce)(aef − bcd) = 0

(1.12)
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By letting f = 0 we obtain

P
small diag.
6

∣∣∣∣
f=0

= a3b3P
diag.
5

(
P
diag.
5

)∗
(1.12’)

where P
diag.
5 ≡ cde x7 + · · · = 0 and

(
P
diag.
5

)∗
is ob-

tained by changing sign of an odd number of side lengths
c, d, e.

•Area equation: Naive approach

A naive approach to get the area equation of cyclic hexagon
would be to write the area S of our hexagon as

S = S′ + S′′ (1.13)

where S′2 and S′′2 are given by Brahmagupta’s formula
(1.11).
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Then by rationalizing the equation (1.13) we obtain an
equation of degree 4 in y:

(S2 + S′2 − S′′2)2 − 4S2S′2 = 0 (1.14)

More explicitly, in terms of the squared area A = (4S)2

we have
Q ≡

(A + 4(v − V ) + U 2 − u2 + 8(w −W )y + 2(u− U)y2)2−
− 4A(4v − u2 + 8wy + 2uy2 − y4) = 0

(1.14’)

By computing the resultant of this equation and the
main diagonal equation (1.9’) w.r.t. y we obtain a degree
14 polynomial in A.

Resultant
(
Eq(1.14′), Pmain diag.

6 , y
)
= F1F2
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both of whose factors have degree 7 in A:

F1 = (w −W )2A7 + · · ·
F2 = A7 + (7u2 + 7U2 − 10uU − 24v − 24V )A6 + · · ·
The true equation (obtained first by Robbins in 1994. by
undetermined coefficients method) is given by F2 (it has
2042 monomials), and the extraneous factor F1 (which
has 8930 monomials) is 4 time bigger1.

•Area equation: new approach leading to an intrin-
sic proof.

The complications with the extraneous factor in the pre-
vious proof were probably caused by using squaring oper-
ation twice in order to get the equation (1.14) (or (1.14’)).
So we are searching a simpler equation relating the area

1The computation with MAPLE 9.5 on a PC with 2GHz and 2GB RAM took ≈ 300 hours (in year 2004). Nowadays with MAPLE 12 on a 64–bit
PC with 8GB it takes ≈ 3 hours.
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S and the main diagonal. After a long struggle we ob-
tained an extraordinary simple relationship given in the
following

Key Lemma. The area S of the cyclic hexagon
ABCDEF and areas S′ and S′′ of the cyclic quadrilat-
erals ABCD and ADEF obtained by subdivision with
the main diagonal of length y = |AD| satisfy the follow-
ing relations:

a) (y3 − (a2 + b2 + c2)y − 2abc)S′′ + (y3 − (d2 + e2 +
f2)y − 2def)S′ = 0

b) (y3− (a2+ b2+ c2)y− 2abc)S+((a2+ b2+ c2−d2−
e2 − f2)y + 2(abc− def))S′ = 0
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Proof. a) Let x = |AC|, y = |AD|, z = |DF |. Let
S′
1, S

′
2 S

′′
1 and S′′

2 be the areas of triangles ABC, ACD,
ADF and DEF respectively. Then, by (0.5’) we have
4S′

1R = abx, 4S′
2R = cxy, 4S′′

1R = fyz, 4S′′
2R = dez.

So we have 4S′R = (ab + cy)x, 4S′′R = (fy + de)z.
This implies

S′′

S′ =
fy + de

ab + cy
· z
x

The diagonal equation for the main diagonal y = |AD|
in the middle quadrilateralACDF : (cx+fz)y2 = (cf+
xz)(fx + cz) can be rewritten as

cx(y2 − f2 − z2) = fz(−y2 + c2 + x2)
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Now we have
S ′′

S ′ =
fy + de

ab + cy
·y

2 − f 2 − z2

x2 + c2 − y2
· c
f
=

c

f

(fy + de)(y2 − f 2)− (fy + de)z2

(ab + cy)(c2 − y2) + (ab + cy)x2

Finally we use the diagonal equations for small diagonals
x and z in respective quadrilaterals

(ab+cy)x2 = (ac+by)(bc+ay), (fy+de)z2 = (df+ey)(ef+dy)

and by simplifying we get

S′′

S′ =
y3 − (d2 + e2 + f2)y − 2def

2abc + (a2 + b2 + c2)y − y3

b) follows from a) by substituting S′′ = S − S′.

By writing the equation b) in Key Lemma with short-
hand notations (1.10) and (1.10’)

(y3 − uy − 2w)S + ((u− U)y + 2(w −W ))S′ = 0
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and multiplying it by 2S, 2S′ respectively and using the
relation

2SS′ = S2 + S′2 − S′′2

obtained from (1.13) by squaring, we obtain the following
KEY EQUATIONS:

Q1 := 2(y3 − uy − 2w)S2 + ((u− U)y + 2(w −W ))(S2 + S ′2 − S ′′2) = 0

Q2 := (y3 − uy − 2w)(S2 + S ′2 − S ′′2) + 2((u− U)y + 2(w −W ))S ′2 = 0

where S′2 and S′′2 are given by Brahmagupta’s formu-
las (1.11).

MAIN THEOREM. The resultant of the Key Equa-
tions with respect to y gives the minimal degree 7 equa-
tion for the squared area A = (4S)2 of cyclic hexagon.
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Proof. The minimal polynomial

α6 = Resultant(Q1, Q2, y)/C = A7+(7(u2+U 2)−10uU−24(v+V ))A6+· · ·

where C = 4
[
4(W − w)3 + (u− U)3(wU − uW )

]
.

Remark. Observe that 16Q1 = [2A+2(u−U)2]y3+· · ·
Similarly the polynomial Q in equation (1.14’) has the
form

Q =
[
4A + 2(u− U)2

]
y4 + · · ·

If we define
Q3 := Q− 2 · 16Q1

= 4(−uy2 − 6wy − 4v + u2)A + (4(v + w − V −W ) + U 2 − u2 + A)·
· (A + 4(v − V ) + U 2 − u2 + 8(w −W )y + 2(u− U)y2)

then we also get

α6 = Resultant(Q3, 16Q1, y)/(−8A2)
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2 Area equations of cyclic octagons (and heptagons)

We trisect cyclic octagon ABCDEFGH , by two di-
agonals AD and EH into three quadrilaterals ABCD,
ADEH and EFGH whose areas we denote by S1, S2
and S3 respectively. The area S of ABCDEFGH is
then equal to

S = S1 + S2 + S3 (2.15)
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By Key Lemma a) applied to hexagons ABCDEH
and ADEFGH we obtain the following equations:

(2jz + (i + z2)y − y3)S1 + (2w + uy − y3)S2 = 0
(2.16)

(2jy + (i + y2)z − z3)S3 + (2W + Uz − z3)S2 = 0
(2.17)

where we have used the following abbreviations:

y = |AD|, z = |EH|
u = a2 + b2 + c2, v = a2b2 + a2c2 + b2c2, w = abc

U = e2 + f2 + g2, V = e2f2 + e2g2 + f2g2, w = efg

i = d2 + h2, j = dh
(2.18)

23



Furthermore the Brahmagupta formulas for the 16 times
squared areas Ai = 16S2

i , i = 1, 2, 3 can be written now
as follows:

A1 = 4v − u2 + 8wy + 2uy2 − y4 (2.19)

A2 = 4(j + yz)2 − (y2 + z2 − i)2 (2.20)

A3 = 4V − U2 + 8Wz + 2Uz2 − z4 (2.21)

(For A1, A3 cf. (1.11), for A2 cf. (0.3”) from Preliminar-
ies!)
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By equating the circumradius formulas for cyclic quadri-
lateralsABCD andADEH (resp.ABCD andEFGH)
we obtain two equations:

EQ1 : (4v − u2 + 8wy + 2uy2 − y4)(jzy3 + (iz2 + j2)y2 + (i+ z2)jzy + (jz)2)−
− (4(j + yz)2 − (y2 + z2 − i)2)(wy3 + vy2 + uwy + w2) = 0 (2.22)

EQ2 : (4v − u2 + 8wy + 2uy2 − y4)(Wz3 + V z2 + UWz +W 2)−
− (4V − U 2 + 8Wz + 2Uz2 − z4)(wy3 + vy2 + uwy + w2) = 0 (2.23)

Our next aim is to get one more equation (as simple as
possible) relating the lengths y and z of diagonals and
the squared area A = 16S2 of our cyclic octagon. Here
is a result of a many years long search:
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Theorem 2.1 (Fundamental equation involving area
of cyclic octagons)
Let A = 16S2 be the squared area of any cyclic oc-
tagon. Then we have the following equation of degree
6 in y and z and linear in A:

EQ3 : αγ(A + η) + 2(α− β)(δ − γ)A2 = 0

(2.24)
where

α = 2jz + iy + yz2 − y3, β = 2w + uy − y3

γ = 2jy + iz + y2z − z3, δ = 2W + Uz − z3

η = u2 + U 2 − i2 − 4v − 4V + 4j2 − 8wj − 8Wz + 8jyz+
+ 2(i− u)y2 + 2(i− U)z2 + 2y2z2

Proof. We start by squaring the equation (2.15)

S2 = S2
1 + S2

2 + S2
3 + 2S1S2 + 2S1S3 + 2S2S3 (2.25)
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Solving (2.16) for S1 and (2.17) for S2 yields:

S1 = −β

α
S2, S3 = −δ

γ
S2 (2.26)

Then we substitute these only into the mixed terms of
(2.25). This gives:

S2 = S2
1 + S2

2 + S2
3 + 2(−β

α
+

βδ

αγ
− δ

γ
)S2

2

By multiplying the last equation by 16 and using that
Ai = 16S2

i , A = 16S2 we obtain

αγ(A− A1 + A2 − A3) + 2(α− β)(δ − γ)A2 = 0

and set
η = −A1 + A2 − A3

and the result follows by (2.19), (2.20) and (2.21).
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Remark 2.2By using Gröbner basis for {EQ1, EQ2, EQ3}
we get minimal equation α7 (α8) for squared area
(A = 16Area2) of cyclic heptagons (octagons) in
concrete instances very fast.

Remark 2.3Maley M.F., Robins D.P. and Roskies
J. [2005.] obtained explicit formulas for α7 and α8
in terms of elementary symmetric functions of sides
lengths squared.

α7 =
210155Res(F̃ , G̃, u3)

u42Res(F̃1, F̃2, u3)

We have recently expanded α7 which has 955641 terms
with up to 40-digits coefficients (approx. 5000 pages).
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Remark 2.4 For ζ7, the Z(= (4SR)2)-polynomial,
by a similar method, we obtained explicit formula
with 31590 terms with up to 11 digits coefficients.

Remark 2.5 For ρ7 = R2-equation of cyclic hep-
tagon, by a different technique, we obtained a 15 pages
output in a condensed (Pellian) form with up to 4 dig-
its coefficients in terms of new quantities (which are
certain linear combinations of elementary symmetric
functions of side lengths squared).
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