Bio-inspired Approach to Time
Synchronization in Multi-Agent System

Iva Bojic and Mario Kusek

University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3,
HR-10000, Zagreb, Croatia {iva.bojic, mario.kusek}@fer.hr

Summary. Multi-Agent Systems (MASs) are very dynamic since agents are en-
tering and leaving system frequently. In those systems self-organization with-
out centralized control is crucial for efficient system operations, such as time
synchronization. To accomplish self-organized time synchronization in MAS,
bio-inspired approach observed in flashing fireflies, is used. Fireflies are known
to emit flashes at regular intervals when isolated, while in the group their
pulses converge upon the same rhythm until they synchronize. This paper
investigates the influence of topology and metric on the synchronization.

1 Introduction

In distributed systems, such as Multi-Agent Systems (MASs), a time synchro-
nization is a prerequisite for many processes: maintaining the consistency of
distributed data, checking the authenticity of a request sent to the server,
eliminating the processing duplicate updates, etc.

Time synchronization can be achieved using different approaches. The
bio-inspired approach that will be presented in this paper is based on a phe-
nomenon of self-organized fireflies flashing. Firefly-based time synchronization
is inspired by nature where male fireflies gather on trees and start emitting
flashes regularly. Over time synchronization emerges from a random situation,
making it seem as though the whole tree is flashing in perfect synchrony.

Self-organization, a process in which patterns at the global level of a system
emerge solely from numerous interactions among lower-level components in
the system [5], can be widely used in MAS [13]. The important properties of
self-organization, which are of the vital importance in MASs, are robustness,
scalability and adaptability to new situations (e.g. agents mobility).

The rest of the paper is organized as follows. Section 2 presents firefly
model for time synchronization. Section 3 gives a short introduction in a field
of related work, while Section 4 explains our approach. Furthermore, Section
4 presents simulation results. And finally, Section 6 concludes the paper.

2 Iva Bojic and Mario Kusek
2 Firefly synchronization model

Fireflies synchronization in MAS is modeled using the theory of coupled oscil-
lators and can be described with a following set: F'Syras = {A, Z, P, T, M}.
Set A = {a, | » € N*} denotes a set of agents such that | A| (i.e. cardinal-
ity of a set A) is equal to the number of agents in MAS. Set Z = {z, | 1 €
N*; z, € [0,1]} denotes a set of voltage-like state variables z,. Furthermore, set
P={(x,,y,) |+ € NT;z,,y, € QT } denotes a set of coordinates for each agent
a,. Finally, set T = {fully-meshed, line, mesh, ring, star} denotes different
topologies, while set M = {Chebyshev, Euclidean, Mahalanobis, Manhattan}
denotes a set of different metrics used for distance calculation.

A theoretical framework for the convergence to synchrony was given by
Mirollo and Strogatz (M&S) in 1990 [10] where an oscillator represents agent’s
internal clock dictating when to flash:

|4

Z; = fz (Zz) + Z €y gz](au a]) d (t - t;) 3 (1)

1=1

where z, denotes first derivation of z, over a time of duration At, f, (z,) de-
scribes the dynamics of the a,-th oscillator, €,, is the small coupling constant,
9y(a,, a;) is the coupling function between oscillators a, and a,, ¢ is Dirac
delta function and ¢} is the firing time of the a,-th oscillator.

When z, reaches the upper boundary (e.g. value is equal to 1), the a,-th
oscillator ”fires” and then z, jumps back to the lower boundary (e.g. value
is equal to 0). State variable z, does not only depend on its previous state,
but also is adjusted upon reception of a pulse from other oscillators, making
it possible that over time, pulses from different oscillators are transmitted
simultaneously. Namely, z, increments z, by an amount given by €,; g,,(a,, a,):

2z =1= 2y = % T €y gzy(aw a]) if ztey gzg(aza a]) < 1)
2z, — 0 otherwise

If the oscillators evolve according to identical uncoupled dynamics, we say

fi(z)=f(2) >0, Vz€[0,1]. (3)
Moreover, equation (1) can be then rewritten as

||

g=f(2)+ Y ey glan, a) 6t —t)), 2 €[0,1]. (4)
71=1

The coupling function g(a,, a,) between agents a, and a, is defined as:

1 if agent a, is a neighbor of agent a,
glaw, a;) = {O otherwise ' (5)

Bio-inspired Approach to Time Synchronization in Multi-Agent System 3

In order to calculate function g(a,, a,) we have to find whether agent a, is
a neighbor of agent a,. This calculation can be done using coordinates (z,, y,)
and (z,, y,) from set P, type of topology from set T" and type of metric from
set M. Moreover, the small coupling constant ¢,,, calculated as:

€y = dmem(a,,ay) (6)

denotes the importance of the influence that agent a, has on agent a,. This
small coupling constant is equal to the distance between agents a, and a, in
chosen metric m € M. Since, types of topologies and metrics are important
for the synchronization process, the rest of this section firstly describes sev-
eral most common network topologies and algorithms used for defining such
topologies, and then introduces used metrics.

2.1 Network topologies

Network topologies used for calculating neighborhood between agents are
fully-meshed, line, mesh, ring and star topologies.

Fully-meshed topology

Fully-meshed topology is a topology where every agent is connected with every
other agent in the system. Algorithm for getting fully-meshed topology from
set of agents A is described in Algorithm 1.

Algorithm 1 Algorithm for calculating fully-meshed topology

1. foreach agent a, € A

2. foreach agent a, € A such that (a, # a,)

3. gla,a] =1 %% 1 denotes that agents are connected
4. end foreach

5. end foreach

Line topology

Line topology is a topology where the first and the last agent have only one
neighbor, unlike others that have two neighbors. The disadvantage of line
topology is — if a failure of agent or connection between two agents occurs,
two unconnected groups of agents will be formed.

Algorithm for defining a line topology from set of agents has two parts and
is shown in Algorithm 2. First part of algorithm finds the first agent (firstA-
gent) in the line. Distance in steps 3. and 17. is calculated used Equations (7)
— (10) from Section 2.2. The second part of algorithm determines connectivity
between agents.

4 Iva Bojic and Mario Kusek

Algorithm 2 Algorithm for calculating line topology
%% first part

1. foreach agent a, € A

2. foreach agent a, € A such that (a, # a,)
3. fullDistance [a,] += dm e m(a.,a;)

4. end foreach

5. end foreach

6. foreach distance 7 in fullDistance

7. if (mazDistance < fullDistance[t])

8. firstAgent = a,

9. mazDistance = fullDistance[i]

10. end if

11. end foreach
%% second part

12. freeAgents < A\ {firstAgent}
13. currentAgent = firstAgent

14. lineAgents.add(currentAgent)

15. while (| freeAgents| > 0)

16. foreach agent a, € freeAgents

17. tmpDistance = dm e m(a,, current Agent)
18. if (minDistance > tmpDistance)

19. firstAgent = a,

20. minDistance = tmpDistance

21. end if

22. end foreach

23. currentAgent = firstAgent

24. lineAgents.add(currentAgent)

25. remove currentAgent from freeAgents

26. end while

27. foreach agent a, in lineAgents

28. gla,amp1] =1 %% 1 denotes that agents are connected
29. end foreach

Mesh topology

Mesh topology is a topology where every agent has one or several agents for
its neighbor(s) denoted with numberForMesh value. Unlike other mentioned
overlay topologies, a mesh topology represents a directed graph in which each
edge is given an independent orientation at each end. Algorithm for getting
mesh topology is shown in Algorithm 3.

For example mesh(8) is topology where every agent has three neighbors
(see Figure 1) and where a connection (thick line) between two nodes without
an arrow is bidirected and a connection (dotted line) with an arrow on the
end is directed. Therefore, neighbors of a; are as, ag and ag, but a; is not a
neighbor of az. Neighbors of as are as, a4 and as.

Bio-inspired Approach to Time Synchronization in Multi-Agent System 5

Algorithm 3 Algorithm for calculating mesh topology

1. foreach agent a, € A

2. foreach agent a, € A such that (a, # a,)

3 distance [a;] = { dm e m(a., a,), a; }

4. end foreach

5. distance.sort()

6 counter = numberForMesh

7. while (counter > 0)

8 a, = distance [numberForMesh - counter] {1}
9. gla,a)] =1 %% 1 denotes that agents are connected
10. counter - -

11. end while

12. end foreach

Ring topology

Ring topology is very similar to line topology. Only difference is that the first
and the last agent are connected with additionally connection (see Figure 1).
Algorithm for defining a ring topology has all steps from previous algorithm
for defining line topology plus one additional step. After the algorithm for line
finishes, this algorithm connects the first and the last agent in the line.

Star topology

Star topology is a topology with one central agent that has | A| —1 neighbors,
while other agents have only one neighbor: this central one. Algorithm for
defining a star topology from a set of agents has three parts (see Algorithm
4). First of all a centralAgent in the system has to be determined, then second
part is to determinate closest agent to the centralAgent. Finally, in the third
part of algorithm centralAgent is being connected with all other agents.

Algorithm 4 Algorithm for calculating star topology
%% first part

—_

easternmost = westernmost = xg
southernmost = northernmost = yo
foreach agent a, € A
if (xz, > easternmost) then easternmost < x,
if (z, < westernmost) then westernmost < z,
if (y, > southernmost) then southernmost < y,
if (y, < nmorthernmost) then northernmost < vy,
end foreach
centralPointX = (westernmost - easternmost) / 2
centralPointY = (southernmost - northernmost) / 2

L XD LN

—_

6 Iva Bojic and Mario Kusek

%% second part
11. foreach agent a, € A such that (a, # central Agent)

12. tmpDistance = dm e m(a., central Agent)
13. if (minDistance > tmpDistance)

14. centralAgent = a,

15. minDistance = tmpDistance

16. end if

17. end foreach
%% third part

18. foreach agent a, € A such that (a, # central Agent)
19. g [a., central Agent] = 1 %% 1 denotes that agents are connected
20. end foreach

2.2 Metrics

In this paper metrics are calculated using equations for calculation of Cheby-
shev, Euclidead, Mahalanobis and Manhattan distances. Metrics are used for
the two separate purposes:

e to calculate a real distance between two agents in the network used in
algorithms for topology calculation and

e to determinate the influence that one agent has on the other agents used
for €,, calculations.

Chebyshev distance

The Chebyshev distance is defined on a vector space where distance between
two agents is the greatest of their differences along any coordinate dimension.
Mathematical expression for Chebyshev metric is:

ey = de(a,, ay) = max (| z, — 2, |,[v, =y, |) (7)

Euclidean distance

The Euclidean distance between two agents a, and a, is the length of the
line segment connecting them. In mathematical expression Euclidean distance
looks like:

€1y = de(ar, a;) = \/(fz —2)% + (g — y,)? (8)

Bio-inspired Approach to Time Synchronization in Multi-Agent System

& 8

as

- & ¢

az
fully-meshed topology as line topology
aq as

& &

6 ¢ 6

mesh(3) topology

& ¢

20

6 8
& &

as as

ring topology star topology

Fig. 1. Example for different topologies

8 Iva Bojic and Mario Kusek

Mahalanobis distance

The Mahalanobis distance is based on a correlation between agents by identi-
fying and analyzing different patterns. It is calculated with next mathematical
o expression:

07 03

Ty — Y, T, —
EZJ:dh(auaj):\/ 2y + = zyJ (9)

Manhattan distance

The Manhattan distance or taxicab geometry is based on calculating distance
between two agents as sum of absolute differences of their coordinates. Math-
ematical expression for Manhattan metric is:

€y = dnla,a;) =l v, — 2, |+ |y, —y, | (10)
(/F\\ /H\\\
aj /‘ (aj)
\V/ //
Qai \) \/ ai)
% N
Chebyshev distance Euclidean distance

~

)
&\ o ~ J_

. /\ // \\
~ A (a |
NS

—— N
— * \ J
—

Manhattan distance

Mahalanobis distance

Fig. 2. Example for different metrics

Bio-inspired Approach to Time Synchronization in Multi-Agent System 9

3 Related work

The M&S model [10] a theoretical framework for the convergence to synchrony
in fully-meshed networks. In 2004 Lucarelli and Wang (L&W) [8] showed
that the algorithms developed by M&S would converge for any connected
topology (i.e. fully-meshed assumption was released to a mesh). Hence, the
M&S and L&W models differ on the physical connectivity layer. The Mé&S
model considers that there exists physical connectivity among all agents in
the system, while the L&W model specifies the interconnection or topology
of the network with a graph in which edges join neighboring nodes.

In our work, we use the L&W model investigating how different overlay
network topologies and metrics affect percentage of successful synchroniza-
tion in MAS (i.e. which parameter has a greater impact on synchronization
success). The choice of overlay network topology determines the way agents
communicate (i.e. are connected), while usage of different metric denotes the
intensity of influence that connected agents have on each other. These two pa-
rameters have already been studied in related work, but to our knowledge, no
previous study has compared their mutually effect on synchronization process.

Usage of firefly synchronization can be found in various algorithms (e.g. ge-
ographic routing algorithms [11] and the Reachback Firefly Algorithm (RFA)
[15]), protocols (e.g. gossip protocols [16]) or data gathering mechanisms (e.g.
data gathering scheme in sensor networks [14]). All of the aforementioned ex-
amples of firefly synchronization assume partly connected networks and that
there is no difference between agents (i.e. €,, = ¢).

In every step of geographic routing [11], a node can communicate only with
its k-neighbors, referred to as the Connected k-Neighborhood (CKN) problem.
This k-connectivity is also used in [2], where for every node, k-neighbors are
selected randomly. In the RFA four different topologies have been investigated:
fully-meshed and mesh [15], chain [7] and ring [6]. In chain topology nodes are
ordered in a chain and can only communicate with their immediate neighbors,
while the ring topology was simulated using asynchronous communication
patterns, i.e. unidirectional communication links.

Although, in most of related work equal credibility is assumed for all agents
(i.e. the influence agents have on each other is always the same), there are
some projects where small coupling constant €,, is different for different agents.
In [12] authors propose that agent’s credibility depends on the degree-based
weighting. Being influenced by more agents means that agent is likely to be
more reliable. Furthermore, in [1] authors assumed that all the agents cou-
pling credibility stayed constant and were distributed in a close interval. They
proved the following theorem:

Theorem 1. Synchronization condition of two coupled oscillators Given two
oscillators a, and a, with their coupling strengths satisfying ,, # €,, they will
achieve synchronization.

10 Iva Bojic and Mario Kusek

In our previous work [3, 4] we calculated the small coupling constant ¢,,
using the Fuclidean metric. In this paper we extended the usage of Fuclidean
metric to the Chebyshev, Mahalanobis and Manhattan metrics. The following
example shows how these calculations can be made. Assume there are five
agents A = {a1, aa, a3, ag, a5} in MAS. Their coordinates are given by P =
{(2,3), (7,26), (27,18), (13,13), (20,5)}. Chosen topology is star (explain in
Section 2.1) and metric Fuclidean given by Equation (8) from Section 2.2.

YA

30

25

20

0 5 10 15 20 25 30

Xy

Fig. 3. Example for ¢,, value calculation

Red thick dashed line in Figure 3 presents communication channels be-
tween agents. For example, agents a; and a3z cannot communicate (i.e. they
are not directly connected), while agents a2 and a4 can (i.e. between them ex-
ists red line — communication channel). After we have determined whether the
small coupling constant ¢,, is different from zero (i.e. agents are directly con-
nected), we have to calculate real values for the constant. This can be achieved
by calculating the distance between connected agents using Equation (8) (see
the following table).

Table 1. Values for the small coupling constant e,,

al a2 as a4 as
ai 0 0 0 14.87 0
a 0 0 0 14.32 0
as 0 0 0 14.87 0
a4 14.87 14.32 14.87 0 10.63
as 0 0 0 10.63 0

Bio-inspired Approach to Time Synchronization in Multi-Agent System 11

4 Simulation of firefly synchronization in MAS

The simulation is run using the Multi-Agent Simulator of Neighborhoods
(MASON) — a single-process discrete-event simulation core and visualization
toolkit written in Java. In this paper, we will not explain how agents activity
is scheduled in the simulator, nor other details about the simulation process,
since it can be find in MASON’s documentation [9]. In simulation, the behav-
ior of each agent is governed by the following rules [5]:

e cach firefly has an intrinsic flashing frequency determined with threshold
parameter, and when left alone it will flash at periodic intervals;

e the flashes are timed by the progressive excitation within each firefly; the
excitation increases until it reaches a threshold, at which point a flash is
emitted and the excitation is reset to zero;

o if a firefly senses a certain amount of luminescence from its neighbors,
it will reset its excitation to zero in order to flash simultaneously with
those neighbors in the future; but, if the excitation is close enough to the
flashing threshold, the flash has already been started and will proceed as
planned even though the excitation is reset to zero; this is determined
with buffer parameter.

Simulation process of firefly synchronization can be divided into two be-
haviors — passive and active one (see Algorithms 5 and 6). In active behavior
each agent sends its flash-message to its neighbors when the value of its excita-
tion reaches threshold value. Excitation evolution is governed by the following
equation z, = f,(z,). Mirollo and Strogatz demonstrated that synchronization
can be achieved when using a monotonic and concave down function [10].
Finally, neighborhood of each agent can be calculated using algorithms for
topologies and metrics described in Section 2.

Algorithm 5 The simulation skeleton: active behavior

while (true)
wait until (excitation == threshold)
neighbors < findNeighbors()
send flash to all neighbors

end while

A e

In passive behavior each agent first receives message and then processes it
by sensing a certain amount of luminescence from its neighbors. If that amount
of luminescence is larger than a trigger and agent’s excitation is smaller than
buffer, agent will flash and reset its excitation to zero. Therefore, the trigger
sets the amount of luminescence required for a firefly to reset its excitation
prematurely, while buffer prevents it to happen too often.

12 Iva Bojic and Mario Kusek

Algorithm 6 The simulation skeleton: passive behavior

1. while (true)

2 receiveFlash()

3 neighbors < findNeighbors()

4. sumlLights = 0;

5. foreach agent a; in neighbors such that (a, # ame)
6

7

8

sumLights += €,me * light(a,)
end foreach
. if (sumLights > trigger && excitation < buffer)
9. excitation = 0
10. end if
11. end while

The simulation parameters include numberFirefiies, threshold and buffer.
The numberFireflies sets the number of fireflies in the simulation. The thresh-
old sets the excitation threshold at which point a agent will flash and reset
its excitation to zero. The buffer sets how many time steps are necessary for
the flashing signal to evolve and terminate in a flash. If an agent is triggered
to reset its excitation when the excitation is within ”buffer” of the threshold,
the flash will proceed as planned despite the resetting.

In our simulations, the numberFireflies parameter was set to 10 (i.e. we
have small overlay networks with a maximum of up to 10 nodes). To determine
the threshold and buffer values, in our previous work [4] we made two series of
simulation experiments where we determined that the threshold value should
be equal to 20 and the buffer value to 2.

5 Simulation results

In our previous work [3, 4] we used only Fuclidean metric with combina-
tion of different topologies (e.g. star, line, mesh, fully-meshed, ring) and have
concluded that best topologies on condition of successful synchronization are
fully-meshed, mesh and star topologies. MAS is said to achieve synchronicity
when all agents flash simultaneously.

In this work we extend our previous results adding additional metrics
(Chebyshev, Mahalanobis and Manhattan). Thus, for testing influence of
topologies and metrics on synchronization process we used combinations of
all metrics and all topologies (i.e. 40 combinations). Evaluation metric is the
same as in previous papers [3, 4]:

e successful synchronization: percentage of successful synchronization;

e network traffic: denotes the amount of messages sent between agents
during the synchronization process and

e time to sync: denotes the time (discrete time units At) until all agents
have entered the synchronization state.

Bio-inspired Approach to Time Synchronization in Multi-Agent System 13
Table 2. Simulation results - successful synchronization in %
Metrics
Chebyshev Euclidean Mahalanobis | Manhattan
Fully-meshed 94% 97% 94% 96%
Line 70% 69% 72% 72%
Mesh(3) 74% 78% 78% 84%
. Mesh(4) 7% 84% 84% 89%
if,o Mesh(5) 91% 93% 93% 93%
S Mesh(6) 89% 92% 92% 93%
& | Mesh(7) 88% 94% 94% 96%
Mesh(8) 96% 93% 93% 95%
Ring 1% 70% 71% 72%
Star 94% 94% 94% 94%

First we investigate how different metrics influence on percentage of suc-
cessful synchronization and then we investigated which parameter is more
important: overlay topology or metric (see Table 2). Results in Table 2 show
that Manhattan distance is resulting with best result of successful synchro-
nization. For mesh(3) topology, when using Manhattan distance, results are

about 10% better than when using Chebyshev metric.

Table 3. Simulation results - time to sync/network traffic

Metrics

Chebyshev Euclidean Mahalanobis | Manhattan
Fully-meshed 47/217 42/198 47/217 43/202
Line 128/83 128/83 128/83 128/83
Mesh(3) 64/76 64/77 64/77 68/83
2 Mesh(4) 54/92 56/97 56/97 56/98
% | Mesh(5) 54/124 54/123 54/123 53/120
g Mesh(6) 49/139 48/136 48/136 46/130
= Mesh(7) 47/159 46/157 46 /157 46/158
Mesh(8) 49/197 45/183 45/183 44/175
Ring 95/70 95/70 95/70 95/70
Star 40/29 40/29 40/29 40/29

14 Iva Bojic and Mario Kusek

Furthermore, from the same table it can be concluded that choice of net-
work overlay topology has greater influence on percentage of successful syn-
chronization than the chosen metric. For example, the most significant dif-
ference is between fully-meshed and ring topology (28%), while the biggest
difference between metrics is only 12% (for Chebyshev and Manhattan metric
in mesh(4) topology).

Finally, we measure the number of time units (steps) until the system
achieves synchronicity and the network traffic (number of exchanged mes-
sages) considering the usage of different combinations of network topologies
and metrics (Table 3). We can conclude that the choice of metric does not
have significant impact on those two parameters.

6 Conclusion

In this paper we proposed a synchronization scheme for using swarm-intelli-
gence based on firefly behavior. The system consists of firefly agents placed at
each node in the MAS. These agents are responsible for synchronization and
coordination processes in the system.

Presented fireflies model was tested with different overlay topologies and
metrics used for neighborhood determination in order to find the most suitable
combination. From results presented in this work, we can conclude that choice
of overlay topology is more important than choice of used metric. This means
that the way agents communicate (i.e. are connected) is more important than
the intensity of influence that connected agents have on each other (that is
determinate by the choice of metric).

However, there are few differences between our simulation and real world
scenarios. Simulation conducted in our work does not support message delay
as neither the possibility that message can be lost which happens in the real
world. Also the firefly in the real world cannot transmit and receive flash at
the same time and this is possible in the simulation.

Therefore, in our future work we will make a series of experiments in
real word environment where messages between communicating agent can be
lost or can be delayed. In those cases we will adopt some changes in our
algorithm in order to have high percentage of successful synchronizations and
still reasonable simple synchronization protocol that does not influence on
other process in MAS.

Acknowledgements.

The authors acknowledge the support of research project ”Content Deliv-
ery and Mobility of Users and Services in New Generation Networks” (036-
0362027-1639), funded by the Ministry of Science, Education and Sports of
the Republic of Croatia.

Bio-inspired Approach to Time Synchronization in Multi-Agent System 15

References

1.

11.

12.

13.

14.

15.

16.

An, Z., Zhu, H., Zhang, M., Xu, C., Xu, Y., Li, X.: Linear pulse-coupled oscilla-
tors modela new approach for time synchronization in wireless sensor networks.
Advances in Complex Systems 2(2), 108-114 (2010)

Babaoglu, O., Binci, T., Jelasity, M., Montresor, A.: Firefly-inspired Heartbeat
Synchronization in Overlay Networks. In: 1st IEEE international conference on
Self-Adaptive and Self-Organizing Systems. pp. 77-86 (2007)

Bojic, I., Kusek, M.: Fireflies Synchronization in Small Overlay Networks. In:
Proceedings of 32nd International Conference on Information and Communica-
tion Technology, Electronics and Microelectronics. pp. 27-32 (2009)

Bojic, 1., Podobnik, V., Ljubi, 1., Jezic, G., Kusek, M.: A self-optimizing mobile
network: Auto-tuning the network with firefly-synchronized agents. Information
Sciences 182(1), 77-92 (2012)

Camazine, S., Deneubourg, J.L., Franks, N., Sneyd, J., Theraula, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton University Press (2003)
Leidenfrost, R., Elmenreich, W.: Establishing wireless time-triggered communi-
cation using a firefly clock synchronization approach. In: International Workshop
on Intelligent Solutions in Embedded Systems. pp. 1-18 (2008)

Leidenfrost, R., Elmenreich, W.: Firefly clock synchronization in an 802.15.4
wireless network. EURASIP Journal on Embedded Systems pp. 7:1-7:17 (2009)
Lucarelli, D., Wang, 1.J.: Decentralized synchronization protocols with nearest
neighbor communication. In: Proceedings of the 2nd international conference on
Embedded networked sensor systems. pp. 6268 (2004)

MASON web site: http://www.cs.gmu.edu/ eclab/projects/mason/

. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscil-

lators. STAM Journal on Applied Mathematics 50(6), 1645-1662 (1990)

Nath, S., Gibbons, P.: Communicating via fireflies: geographic routing on duty-
cycled sensors. In: Proceedings of the 6th international conference on Informa-
tion Processing in Sensor Networks. pp. 440-449 (2007)

Scholtes, 1., Botev, J., Esch, M., Sturm, P.: Epidemic self-synchronization in
complex networks of kuramoto oscillators. Advances in Complex Systems 13(1)
(2010)

Sudeikat, J., Renz, W.: Engineering environment-mediated multi-agent sys-
tems. chap. Toward Systemic MAS Development: Enforcing Decentralized Self—
organization by Composition and Refinement of Archetype Dynamics, pp. 39—
57. Springer-Verlag (2008)

Taniguchi, Y., Wakamiya, N., Murata, M.: A distributed and self-organizing
data gathering scheme in wireless sensor networks. In: Proceedings of 6th Asia-
Pacific Symposium on Information and Telecommunication Technologies. pp.
299-304 (2005)

Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-Inspired
Sensor Network Synchronicity with Realistic Radio Effects. In: Proceedings of
the 3rd international conference on Embedded Networked Sensor Systems. pp.
142-153 (2005)

Wokoma, I., Liabotis, I., Prnjat, O., Sacks, L., Marshall, I.: A Weakly Coupled
Adaptive Gossip Protocol for Application Level Active Networks. In: Proceed-
ings of the 3rd international Workshop on Policies for Distributed Systems and
Networks. pp. 244-247 (2002)

