Generalized Rose Surfaces and their Visualization with Mathematica

SONJA GORJANC
University of Zagreb, Faculty of Civil Engineering,
Kačićeva 26, 10000 Zagreb, Croatia
e-mail: sgorjanc@master.grad.hr

In [1] we studied circular surfaces $\mathcal{C} \mathcal{S}(\alpha, p)$ that are defined by a curve α and a congruence of circles $\mathcal{C}(p)$, where $\mathcal{C}(p)$ contains all circles passing through the points $P_{1,2}(0,0, \pm p), p=\sqrt{q}, q \in \mathbb{R}$. Depending on the type of points $P_{1,2}, \mathcal{C}(p)$ is an elliptic, parabolic or hyperbolic congruence of circles. It was shown that the rose surfaces, treated in [2], are circular surfaces $\mathcal{C} \mathcal{S}(\alpha, p)$ where α is a rose (rhodonea) and $\mathcal{C}(p)$ is an elliptic or parabolic congurence. The rose lies in the plane $z=p$ having the directing point P_{i} as the point of the highest multiplicity.
If we extend α to all cyclic-harmonic curves with the polar equation $r=\cos \frac{n}{d} \varphi+k$, $k \in \mathbb{R}^{+} \cup\{0\}, \varphi \in[0,2 d \pi)$, and include hyperbolic congruences $\mathcal{C}(p)$, numerous forms of new class of surfaces are obtained. This class we call generalized rose surfaces, study their algebraic properties and visulaize their shapes with the program Mathematica.

Figure: Three examples of generalized rose surfaces.

References

[1] S. Gorjanc, E. Jurkin, Circular surfaces $\mathcal{C S}(\alpha, p)$. manuscript
[2] S. Gordanc, Rose Surfaces and their Visualizations. Journal for Geometry and Graphics, 13 (1), 59-67 (2010).
[3] S. Izumiya, K. Said, N. Takeuchi, Circular Surfaces. Advances in Geometry 7 (2), 295-313 (2007).

