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a b s t r a c t

More than ten state-of-the-art regional air quality models have been applied as part of the Air Quality
Model Evaluation International Initiative (AQMEII). These models were run by twenty independent groups
in Europe and North America. Standardised modelling outputs over a full year (2006) from each group
have been shared on the web-distributed ENSEMBLE system, which allows for statistical and ensemble
analyses to be performed by each group. The estimated ground-level ozone mixing ratios from the models
are collectively examined in an ensemble fashion and evaluated against a large set of observations from
both continents. The scale of the exercise is unprecedented and offers a unique opportunity to investigate
methodologies for generating skilful ensembles of regional air quality models outputs. Despite the
remarkable progress of ensemble air quality modelling over the past decade, there are still outstanding
questions regarding this technique. Among them, what is the best and most beneficial way to build an
ensemble of members? And how should the optimum size of the ensemble be determined in order to
capture data variability as well as keeping the error low? These questions are addressed here by looking at
optimal ensemble size and quality of the members. The analysis carried out is based on systematic
Solazzo).
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minimization of the model error and is important for performing diagnostic/probabilistic model evalua-
tion. It is shown that the most commonly used multi-model approach, namely the average over all
available members, can be outperformed by subsets of members optimally selected in terms of bias, error,
and correlation. More importantly, this result does not strictly depend on the skill of the individual
members, but may require the inclusion of low-ranking skill-score members. A clustering methodology is
applied to discern among members and to build a skilful ensemble based on model association and data
clustering, which makes no use of priori knowledge of model skill. Results show that, while the meth-
odology needs further refinement, by optimally selecting the cluster distance and association criteria, this
approach can be useful for model applications beyond those strictly related to model evaluation, such as
air quality forecasting.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Regional air quality (AQ) models have undergone considerable
development over the past three decades, mainly driven by the
increased concern regarding the impact of air pollution on human
health and ecosystems (Rao et al., 2011). This is particularly true for
ozone and particulate matter (e.g., Holloway et al., 2003; Jacob and
Winner, 2009). Regional AQ models are now widely used for sup-
porting emissions control policy formulation, testing the efficacy of
abatement strategies, performing real-time AQ forecasts, and evalu-
ating integrated monitoring strategies. Moreover, ozone estimates
have been used in assimilation schemes to provide further informa-
tion on meteorological variables such as wind speed (e.g., Eskes,
2003). The combination of outcomes predicted by several models
(regardless of their field of application), in what is typically defined
as ensemble modelling, has been shown to enhance skill when
compared against an individual model realisation (e.g., Delle
Monache and Stull, 2003; Galmarini et al., 2004; van Loon et al.,
2007). Although ensemble modelling is well established (both from
the applied and theoretical perspectives) and is now routinely used in
weather forecasting, it is only during the last decade that a growing
number of AQ modelling communities have joined their model
outputs in multi-model (MM) combinations (Galmarini et al., 2001;
Carmichael et al., 2003; Rao et al., 2011). The advantages of
ensemble modelling versus an individual model are at least twofold:
(i) the mean (or median) of the ensemble is, in effect, a new model
that is expected to lower the error of the individual members due
to mutual cancellation of errors; and (ii) the spread of the ensemble
represents a measure of the variability of the model predictions
(Galmarini et al., 2004; Mallet and Sportisse, 2006; Vautard et al.,
2006, 2009; van Loon et al., 2007). Potempski and Galmarini (2009)
also point out the scientific consensus around MM ensemble
techniques as away of extracting information frommany sources and
synthetically assessing their variability. In particular, the mean and
median offer enhanced performance, on average, compared with
single-model (SM) realisations (Delle Monache and Stull, 2003;
Galmarini et al., 2004; McKeen et al., 2005, and others).

A MM ensemble can be generated in many ways (see, e.g.,
Galmarini et al., 2004), including by varying some internal param-
eters for multiple simulations with an SM, by using different
input data (e.g., emissions) for multiple simulations with an SM, or
by applying several differentmodels to the same scenario. This latter
approach is the main focus of the Air Quality Model Evaluation
International Initiative (AQMEII) (Rao et al., 2011), an international
project aimed at joining the knowledge and experiences of AQ
modelling groups in Europe and North America. Within AQMEII,
standardised modelling outputs have been shared on the web-
distributed ENSEMBLE system, which allows statistical and
ensemble analyses to be performed by multiple groups (Bianconi
et al., 2004; Galmarini et al., 2012). A joint exercise was launched
for European andNorth American AQmodelling communities to use
their own regional AQ models to simulate the entire year 2006
for the continents of Europe and North America, retrospectively.
Outputs from numerous regional AQmodels have been submitted in
the form of both gridded, hourly concentration fields and values
at specific locations, allowing for direct comparison with air quality
measurements available from monitoring networks across North
America and Europe (see Rao et al., 2011 for additional details).
This type of evaluation, with large temporal and spatial scales,
is essential to assess model performance and identify model
deficiencies (Dennis et al., 2010; Rao et al., 2011).

In this study, we analyse ozone mixing ratios provided by
simulations from eleven state-of-the-art regional AQ models run by
eighteen independent groups from North America (NA) and Europe
(EU) (while a companion study is devoted to the examination of
particulatematter, Solazzo et al., 2012).Model predictions have been
made available, along with observational data, to the ENSEMBLE
system. The ability of the ensemble mean and median to reduce the
error and bias of SM outputs is examined, and conclusions regarding
the size of the ensemble and its quality are made. The level of
repetition provided by each individual model to the ensemble is
quantified by applying a clustering analysis to examine whether the
improvement in error using the mean or median of the model
ensemble is due to the increased ensemble size, or if information
carried by each model contributes to the MM superiority.

The main objective of this study is to assess the statistical
properties of the ensemble of models in relation to the individual
model realisations for a range of air quality cases. Each model has
imperfections, and it is beyond the scope of this analysis to identify
the causes of model bias for each ensemble member. Several
other papers examining the performance of the individual model
simulation are available in the AQMEII special issue.

2. Models and data

2.1. Experimental set up

In order to carry out a comprehensive evaluation of the partici-
pating regional-scale AQmodels, themodel estimates are compared
to observations for the year of 2006, with the various modelling
groups providing hourly ozone mixing ratios and concentrations of
other compounds. Surface concentrations were then interpolated to
the monitoring locations for the purposes of model evaluation.

2.2. Participating models

Table 1 summarises the meteorological and AQ models partici-
pating in the AQMEII intercomparison exercise and providing
ozone mixing ratios at European or North American receptor sites,
or both. In some cases the same model is used with a different
configuration by different research groups (or in a few cases by the
same research group). In total, eleven groups submitted ozone



Table 1
Participating models and important characteristics.

Model Res (km) No. Vertical
layers

Emissions Chemical BC

Met AQ

European Domain MM5 DEHM 50 29 Global emission databases, EMEP Satellite measurements
MM5 Polyphemus 24 9 Standarda Standard
PARLAM-PS EMEP 50 20 EMEP model From ECMWF and forecasts
WRF CMAQ 18 34 Standarda Standard
WRF WRF/Chem 22.5 36 Standarda Standard
WRF WRF/Chem 22.5 36 Standarda Standard
ECMWF SILAM 24 9 Standard anthropogenic In-house biogenic Standard
MM5 Chimere 25 9 MEGAN, Standard Standard
LOTOS EUROS 25 4 Standarda Standard
COSMO Muscat 24 40 Standarda Standard
MM5 CAMx 15 20 MEGAN, Standard Standard

North American Domainb GEM AURAMS 45 28 Standardc Climatology
WRF Chimere 36 9 Standard LMDZ-INCA
MM5 CAMx 24 15 Standard LMDZ-INCA
WRF CMAQ 12 34 Standard Standard
WRF CAMx 12 26 Standard Standard
WRF Chimere 36 9 Standard standard
MM5 DEHM 50 29 global emission databases, EMEP Satellite measurements

a Standard anthropogenic emission and biogenic emission derived from meteorology (temperature and solar radiation) and land use distribution implemented in the
meteorological driver (Guenther et al., 1994; Simpson et al., 1995).

b Standard inventory for NA includes biogenic emissions (see text).
c Standard anthropogenic inventory but independent emissions processing, exclusion of wildfires, and different version of BEIS (v3.09) used.
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predictions for EU and seven submitted ozone predictions for
NA. No a-priori screening on theworst performingmodels has been
performed on the participating members; however, it is assumed
that the models have at least previously gone through an opera-
tional model evaluation, as defined in Dennis et al. (2010).

AQMEII participants were provided with a reference meteoro-
logical simulation for the year 2006, generated with the WRF v3.1
(Skamarock et al., 2008) and theMM5 (Dudhia,1993)models, for NA
and EU respectively, which were applied by the majority of groups.
Several other groups performed simulations using other meteoro-
logical drivers (Table 1). Skills and shortcoming of the meteorolog-
ical models within AQMEII are described by Vautard et al. (2012).

The AQ models participating in the exercise, listed below, have
been extensively documented in the scientific literature (including
sensitivity tests and evaluation studies):

- CMAQ (Byun and Schere, 2006)
- CAMx (ENVIRON, 2010)
- CHIMERE (Schmidt et al., 2001; Bessagnet et al., 2004)
- MUSCAT (Wolke et al., 2004; Renner and Wolke, 2010)
- DEHM (Brandt et al., 2007)
- POLYPHEMUS (Mallet et al., 2007; Sartelet et al., 2012)
- EUROS (Schaap et al., 2008)
- SILAM (Sofiev et al., 2006)
- AURAMS (Gong et al., 2006; Smyth et al., 2009)
- EMEP (Simpson et al., 2003; Jeri�cevi�c et al., 2010)
- WRF/Chem (http://www.acd.ucar.edu/wrf-chem/)

The combination of meteorological and chemical transport
models varies for each group (with the only exception being theWRF
model with the WRF/Chem model, which was used twice for EU),
thus allowing analysis of a diversified set of model output, which is
necessary to sample the spectrumof uncertaintywithin anensemble.

Emissions and chemical boundary conditions used by the various
AQMEII groups are summarised in Table 1. AQMEII provided a set of
time-varying gridded emissions (referred to as “standard” emis-
sions) for each continent, focusing on the evaluation of the AQ and
meteorological models. The EU standard emissions were prepared
by TNO (Netherlands Organization for Applied Scientific Research),
which provided a gridded emissions database for the years 2005 and
2006. This dataset was partly developed in the framework of the
European MACC project (http://www.gmes-atmosphere.eu/), and
is an update of an earlier TNO emissions database prepared for
the GEMS project (http://gems.ecmwf.int). This inventory does not
include biogenic emissions, and therefore different approacheswere
used by different groups to provide biogenic emissions, as sum-
marised in Table 1. The NA standard emissions are based on the 2005
U.S. National Emissions Inventory (NEI), 2006 Canadian national
inventory, and 1999 Mexican BRAVO inventory. Biogenic emissions
were provided by the BEISv3.14 model, while daily estimates of fire
emissions were provided by the HMS fire detection and SMARTFIRE
system (year 2006). In-stack emissions measurements for many U.S.
power plants were provided by Continuous Emissions Monitoring
data for the year 2006. Full details regarding the standard emissions
used for EU and NA are given in Pouliot et al. (2012). The standard
emissionswere used by the vastmajority of the participatingAQMEII
groups (Table 1). Model results generated with other emissions
inventories have also been submitted, however, which provides
a useful comparison in interpreting the results of model-estimated
ozone mixing ratios.

AQMEII also made available a set of “standard” chemical
concentrations at the lateral boundaries of the EU and NA domains,
which were provided by the Global and regional Earth-system
Monitoring using satellite and in-situ data (GEMS) re-analysis
product provided by European Centre for Medium-range Weather
Forecast (see Schere et al., 2012 for more details). Other boundary
conditions for ozone used by several AQMEII modeling groups were
based on satellite measurements assimilated within the Integrated
Forecast System (IFS). LMDZ-INCA, which couples the general
circulation model Laboratoire de Meteorologie Dynamique and the
Interaction with Chemistry and Aerosol model (Hauglustaine et al.,
2004) was used for CAMx and CHIMERE in one set of simulations
(NA simulations), with another CHIMERE model simulation using
the standard AQMEII boundary conditions (Table 1).

2.3. Observational data for ozone

The European and North American continental areas have each
been divided into four sub-regions (EU1 to EU4 and NA1 to NA4).
Fig. 1 displays the sub-regions for both continents, the locations of

http://www.acd.ucar.edu/wrf-chem/
http://www.gmes-atmosphere.eu/
http://gems.ecmwf.int


Fig. 1. Continental maps of (a) Europe and (b) North America with locations of sub-regions marked. The dots and other symbols denote the positions of the rural ozone receptors
used in the evaluation analysis. The contours indicate the summertime anthropogenic NOx emissions (in kg km�2) from the standard inventories.
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the ozone receptors that have been used, and contours of “stan-
dard” anthropogenic NOx emissions averaged over the summer
months of JuneeJulyeAugust (JJA) of 2006. Only rural receptors
below an altitude of 1000 m have been examined, with at least 75%
annual data availability. The choice of analysing only rural receptors
is dictated by the need to provide comparison with spatial scales
consistent with themodel resolution (see, e.g., Vautard et al., 2009).
Moreover, ozone measured by monitoring stations in urban areas
is more sensitive to reactions with NOx, which may reduce ozone
production.

The selection of the sub-regions is based on emissions, climate,
and altitudinal aspects, as well as practical constraints (data
coverage, computational time). The four EU sub-regions are similar
to those in the analyses of meteorological forcing (Vautard
et al., 2012) and particulate matter (Solazzo et al., 2012) for
AQMEII. Sub-region EU1, consisting of the British Isles, France, and
northern Spain, was selected for its mid-latitude, mixed maritime-
continental climate and large conurbations (London, Paris). Sub-
region EU2, consisting of Central Europe, has a continental climate
with marked seasonality, many large cities, and areas with large
emissions. Sub-region EU3, consisting of the Po River Valley up
to the Alpine area of Italy and south-eastern France has a mixed
climate, generally poor air quality, and is influenced by the Alpine
barrier. The Southern European domain covers the Mediterranean
area (southern Italy, the east coast of Spain, andGreece), with typical
Mediterranean climate and large cities (e.g., Barcelona, Rome).
The number of rural receptors for the EU sub-regions is 201, 225, 77,
and 140, respectively.

For NA, the number of rural receptors in the four sub-regions
varies between 134 and 150. The NA sub-regions are broadly
derived from previous studies (e.g., Eder et al., 1993), and consider
the NOx emissions intensity, with the additional constraint of
a uniform number of receptors. Sub-region NA1, consisting of the
western portion of the United States and south-western Canada,
has high emissions along the coast of California, smaller emissions
toward the interior of the continent, a high amount of solar radi-
ation, low relative humidity, and some large cities with poor air
quality (e.g., Los Angeles). Sub-region NA2 consists of the U.S. Plains
states to the east of the Rocky Mountains and is characterised by
a continental climate in the north and a hot, humid climate in the



Fig. 2. Box-plots of ozone frequency distribution at receptors, averaged in space over
(a) EU domain and (b) NA domain and in time for the whole 2006 year, for observa-
tions (MEAS), individual SMs, and two MM ensembles (Mean, Median).

E. Solazzo et al. / Atmospheric Environment 53 (2012) 60e7464
south, with a number of large cities with poor air quality
(e.g., Houston, Dallas). Sub-region NA3, consisting of northeastern
NA including parts of south-central Canada, has a marked seasonal
cycle, most of the Great Lakes, some of the highest emissions
areas in NA, andmany large cities (e.g., New York City, Philadelphia,
Toronto, Montreal). Finally, sub-region NA4, consisting of the
southeast United States, has high emissions and strong solar
radiation.

Ozone data for EU were derived from hourly data collected
by the AirBase and EMEP (European Monitoring and Evaluation
Programme, http://www.emep.int/) networks, for a total of 1563
stations, of which over 1400 have a percentage of data validity
higher than 80%. Ozone data for NAwere prepared fromhourly data
collected by the AIRS (Aerometric Information Retrieval Systems,
http://www.epa.gov/air/data/aqsdb.html) and CASTNet (Clean Air
Status and Trends Network, http://java.epa.gov/castnet/) networks
in the United States and the NAPS (National Air Pollution Surveil-
lance, http://www.ec.gc.ca/rnspa-naps/) network in Canada. A total
of 1445 stations are available, more than half with a percentage
of data validity higher than 80% (many U.S. ozone stations only
operate from May to October).

3. Single models and multi-model ensembles:
operational evaluation and general statistics

3.1. Operational SM and ensemble statistics for the
continental-wide domains

van Loon et al. (2007) showed that the ensemble mean
ozone daily cycle over EU, obtained by averaging over all monitoring
stations for the entire year of 2001, agrees almost perfectly with
the observations, and better than any individual member of the
ensemble. This result provides substantial evidence of the enhanced
skill of MM predictions versus the individual SM predictions. Such
a result, though, while encouraging, poses some additional ques-
tions, such as what is the role of repeated averaging (in time and
space) in smoothing out peaks and reducing variability, andwhether
any ensemble combinationwill show additional skill relative to SMs.
For example, Galmarini and Potempski (2009) showed that for the
ETEX-1 case study the MM did not offer significantly superior
skill (andperformed lesswell than for a long-termAQ case due to the
transient nature of the short-term ETEX tracer release). They thus
concluded that in the absence of a method for pre-selecting or
discriminating between ensemble members, the MM improved
performancemight be just coincidental and dependent on the ‘lucky
shot’ of having the right collection of models around the measured
data.

Fig. 2 presents annual frequency distributions of ozone mixing
ratios averaged across the receptor set that were estimated by
the AQMEII SM andMM for EU (Fig. 2a) and NA (Fig. 2b). A box-and-
whisker representation has been used to show the frequency
distribution, where the rectangle represents the inter-quantile
range (25th to 75th percentile), the small square identifies the
mean, the continuous horizontal line inside the rectangle identifies
the median, the crosses identify the 1st and 99th percentiles, and
the whiskers extend between the minimum and maximum values.
The measured frequency distribution is also shown in each row.
The top row displays the distribution of hourly values (i.e., each bar
is the distribution over 8760 receptor-averaged hourly values),
the middle row is the daily average distribution (over 365 receptor-
averaged daily values), and the bottom row is the mean diurnal
range (each bar reflects the distribution over 24 receptor-averaged
hourly values, inwhich the same hours are averaged for each day of
the year). Depending on the averaging period, ozone mixing ratios
are reduced by a factor of two for both continents, which results in
a dramatic reduction of the spread (e.g., min and max values are
within the inter-quantile ranges for the diurnal cycle) and a clus-
tering of the diurnal time series, which in turn results in improved
statistical agreement. Thus, averaging over extended areas (conti-
nent) and periods (year) has a dramatic effect in reducing the
spread of the data. Note that in order to maintain model anonymity
each participating model has been assigned a random model
number (Mod 1 to 11 for EU and Mod 12 to 18 for NA) that do not
correspond to the order of models presented in Table 1.

The ability of the MM ensemble to sample measurement uncer-
tainty for both continents is analysed by means of the rank histo-
grams presented in Fig. 3, which are a measure of the ensemble
reliability (Talagrand et al., 1998; Jollife and Stephenson, 2003).
The rank histogram is a widely adopted diagnostic tool to evaluate
the spread of the members of an ensemble. In a rank histogram, the
population of the k-th rank is the fraction of time that observations
fall between the sorted members k � 1 and k, and the number of
ranks or bins is one greater than the number of ensemble members.
Ideally, the frequency for each bin should be the same, meaning
that the ozone estimate from each ensemble member is as probable
as from any other member, and that observations have an equal
probability of belonging to any bin (Hamill, 2000). In such a case the
observations and the ensemblemembers are selected from the same
probability distribution, and the probability of an observation falling

http://www.emep.int/
http://www.epa.gov/air/data/aqsdb.html
http://java.epa.gov/castnet/
http://www.ec.gc.ca/rnspa-naps/


Fig. 3. Rank histogram for the whole domain of (a) EU and (b) NA, full-model ensemble, hourly data for the whole 2006 year.

Fig. 4. Time series (JJA) of diurnal ozone cycle for (a) EU and (b) NA sub-regions.
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into a particular bin is the same for all bins. In Fig. 3, spatially-
averaged hourly ozone data from the full year are used. For EU
(Fig. 3a), the bin populations are rather uniform for the first ten
bins (between 6% and 11%), with bins 11 and 12 having a frequency
of w18% each. This distribution indicates the ensemble mean has
difficulty simulating high hourly mixing ratios, which indicates
a negative bias in the ensemble mean (i.e., underestimation). For NA
the intermediate bins of the rankhistogramaremore populated than
the side bins (Fig. 3b), indicating the possible presence of outlying
members.

It is not clear whether the deviation from a uniform distribution
for both EU and NA is due to chance (for case in which ensemble
members and observations are truly selected from the same distri-
bution) or if there is a compensating effect over such large domains
and long time scales. These aspects will be further examined in
Section 3.3.

3.2. Sub-regional SM and MM ensemble analyses

Regional AQ models are often used on limited spatial and
temporal scales (e.g., a fewmonths or a season over several hundred
kilometres: Camalier et al., 2007; Bloomer et al., 2009; Boynard et al.,
2011; Hogrefe et al., 2011), for which mutual cancellation of model
errors might not be as effective as in the case of continental and
yearly scales, as discussed for the results of Fig. 2. The analyses
presented in this section focus on the spatial variability of ozone
mixing ratio statistics in four distinct sub-regions of each of the
continental domains of Fig. 1, examining the temporal variability for
the summer months JJA, when the ozone mixing ratios are typically
the highest and are of most concern for public health. Analysis and
evaluation of SM performance over the whole year are presented in
companion papers in this Special Issue.

Sub-regional ozone diurnal cycles are shown in Fig. 4a (EU) and
Fig. 4b (NA), including ensemblemean andmedian (hourly data have
been used for the analysis). Examining the observed summertime
diurnal cycles for the four EU sub-regions (Fig. 4a), it is evident that
there is considerable intra-continental variability of the daily ozone
maximum,with the northern Italian andMediterranean sub-regions
(EU3 and EU4) reaching 60 ppb or more whereas peak daily ozone
mixing ratios ofw45e50 ppb occur in the other two EU sub-regions.
For sub-regions EU1, EU2, and EU3 the daily maximum occurs at
1700 local time (LT), while the daily maximum occurs 2 h earlier in
the EU4 sub-region due to the higher average insolation. Daily
minimum ozone values occur between 0700 LT and 0800 LT, and
range between 20 and 30 ppb, with the Mediterranean area (EU4)



Fig. 5. Normalised Mean Bias vs. Normalised Mean Square Error for (a) EU and (b) NA.
Sub-regions 1 to 4 are represented by number and coloured by model or ensemble.
Mean and median for each sub-region are highlighted by boxes. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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having the highest minimum due to the relative abundance
of biogenic emissions (see, e.g., Sartelet et al., 2012). The daily
maximumozone values for NA are of the same generalmagnitude as
EU, between 45 and 55 ppb for sub-regions NA1, NA2, and NA4,
while only reaching w35 ppb for sub-region NA3 (the northeastern
NA region) due to the inclusion of some remote monitoring stations
from the Canadian NAPS network. Daily maximum values occur at
1600 LT for all four NA sub-regions. Daily minimum values typically
occur at 0700 LT, and range between 20 and 25 ppb for sub-regions
NA1, NA2, and NA3 and less than 20 ppb for sub-region NA4.
This latter sub-region (south-eastern United States) exhibits a steep
rise of ozone mixing ratios in the late morning that is indicative of
strong daytime photochemistry in this region.

The majority of individual models (indicated by the thin lines in
Fig. 4) exhibit highly region-dependant behaviour, although some
common patterns are present. Models for EU have a predominant
tendency to underestimate (in some cases significantly) the peak
dailymixing ratio and/ordisplace the timeof thepeakmixing ratio, as
well as to overestimate nighttimemixing ratios,with the exception of
sub-region EU2 (central Europe), which may be due to the strong
daily temperature gradient in this region. Nighttime overestimation
is known to occur in some models due to difficulties in dealing with
stable conditions (e.g., Smyth et al., 2009; Herwehe et al., 2011)

Model results for the NA sub-regions exhibit a lower spread
throughout the diurnal cycle (Fig. 4b), with the exception of
one outlying model for sub-regions NA1, NA2, and NA3, which is
consistently biased low, especially at night. However, themajority of
the models exhibited nighttime overestimation to varying degrees,
indicating that most of the AQ models have at least some difficulty
dealing with stable conditions despite the variety of vertical mixing
schemes implemented by the models. The case of the southeast U.S.
sub-region (NA4), on the other hand, with consistent model over-
estimation throughout the diurnal cycle, clearly requires a dedicated
investigation that is beyond the scope of this study.

Reasons for individual model biases are detailed in other studies
of this special issue dedicated to AQMEII and are not covered here.
Collectively, though, the results of those studies have pointed to
a number of factors, such as: (a) the biogenic emissions adopted by
each model in EU (Brandt et al., 2012; Sartelet et al., 2012),
confirmed by examining the performance of the CHIMERE model
with MEGAN biogenic emissions, which is the best performing
SM for all EU sub-regions; (b) the meteorological driver (Vautard
et al., 2012), and the impact of overestimated wind speed on the
dispersion of primary pollutants (Solazzo et al., 2012), especially in
EU; and (c) the lateral boundary conditions used for ozone, espe-
cially for winter-time concentration in NA (Schere et al., 2012;
Appel et al., 2012; Nopmongcol et al., 2012).

The MM ensemble mean and median generally underestimate
the amplitude of the ozone diurnal cycle in EU despite one outlying
model demonstrating a large positive bias. By contrast, the MM
mean and median accurately follow the measured ozone diurnal
cycle for sub-regions NA1, NA2, and NA3 (while largely over-
estimating for the NA4 sub-region) due to themutual compensation
of a low-biased outlier and the tendency of the other ensemble
members to overestimate ozone. It should be noted that the mean
and median curves overlapping is a consequence of the repeated
data averaging (both spatially and temporally), which has smoothed
out the peaks of the distribution, as previously shown in Fig. 2.

Fig. 5 presents the error statistics for EU (Fig. 5a) and NA (Fig. 5b),
in the form of a “soccer-goal” plot (Appel et al., 2011). NMSE versus
NMB scores (see Appendix A for definition) are reported for each
individual model, together with scores for the ensemble mean and
median, for each of the four sub-regions. Points falling within the
dotted lines indicate model performance within the criteria set by
Russell and Dennis (2000) for ozone (bias within �15% and error
within �30%). For EU the majority of points lie in the left region
of the soccer goal, indicating underestimation, with the exception of
Mod1, which substantially overestimates the ozone mixing ratio
for all sub-regions. The ensemble mean and median scores for all
sub-regions fall within the 15% box, and therefore comply with the
performance criteria for ozone. For NAmodel results are well within
the 15% box (mainly overestimated), the exception being the NA4
sub-region, where three models show an overestimation between
15% and 20%. The ensemble mean and median for NA are approxi-
mately identical, as already noted for the diurnal cycle (see Fig. 4b).
3.3. Reliability of the multi-model ensemble

Biased rank histograms for all sub-regions of the two continents
have a sloped shape (Fig. 6). Analysis is based on hourly data for
the period JJA. The histograms for EU sub-regions 1 and 2 (Fig. 6a)
have the most populated bins towards the end of the ranks, indi-
cating model underestimation. The EU4 sub-region has empty or
nearly empty initial and final bins, indicating an excess of model



Fig. 6. Rank histogram for (a) EU and (b) NA by sub-regions, full-model ensemble,
hourly data for the period JJA.
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variability. The histogram for the entire EU domain is fairly flat,
a result of compensating biases between sub-regions EU1 and EU2
and sub-regions EU3 and EU4 (see Fig. 3a). As discussed at the
beginning of section 3.2, when using long averaging periods and
large spatial scales, seasonal and intra-continental variability can
be hidden by the averaging and compensating errors. Large biases
are also present for the NA sub-regions (Fig. 6b), with over-
estimation (left bins most populated) for all sub-regions, as seen in
Fig. 5b. The spread also suffers from deficiencies of the ensemble in
all cases, with excess of spread for sub-region NA1 (middle bins
more populated) or insufficient spread, such as in sub-regions
NA2, NA3, and NA4 (side bins more populated). This latter case is
typically due to not having captured all sources of error properly
(Vautard et al., 2009), which may be due too many members of the
ensemble using the same meteorological drivers and/or emissions.
Comparing the histograms in Fig. 6b for the entire NA domain for
JJA and that of Fig. 3b for the entire NA domain for the full year
highlights that for the full year the bins were more uniform, with
a tendency to form a “bell” shape, whereas for JJA the distribution is
drastically biased and bin populations are uneven. This is probably
due to the underestimation in the winter months by models
adopting the GEMS boundary conditions for ozone (Appel et al.,
2012), which compensates for the overestimation in the summer.

4. Multi-model analysis: selected vs. unselected model
ensembles

4.1. Ensemble size

In this sectionweevaluatewhetheranensemblebuiltwith a subset
of individual models can outperform the ensemble mean of all avail-
able members, as anticipated by the theoretical analysis of Potempski
and Galmarini (2009). The analysis is done for the sub-regions of EU
and NA separately, using hourly ozone data for the period JJA.

Consider the distribution of some statistical measures (RMSE,
PCC, MB, MGE, defined in Appendix A) of the mean of all possible
combinations of available ensemble members n (n is 11 for EU and 7
for NA). The number of combinations of any k members is�n
k

�
k¼2;.;n�1

. For example, there are as many as 462 combinations

of 5 models for EU, and 35 combinations of 3 models for NA.
The results of the statistical analysis are presented in Fig. 7. The
continuous lines on each plot represent the mean and median of the
distribution of any k-model combinations. MM mean and median
have similar behaviour decaying asO(1/k) (Potempski andGalmarini,
2009). These curves move toward more skilful model combinations
as the number of members (k) increases, which confirms the
common practice to average over all available members to obtain
enhanced performance with respect to SM realisations. For MB, the
mean trend is flat due to the quasi-symmetric error fluctuations
about the mean value for NA. Mean RMSE curves decrease steeply
from two to four models for all sub-regions except the sub-region
NA4. A further striking feature is that the best SM has similar
(EU sub-regions EU1 and EU2; NA sub-regions NA1 and NA3) or
lower (EU sub-regions EU3 and EU4; NA sub-regions NA2 and NA4)
RMSE than the ensemble mean with all members. This is most
probably due to having includedmemberswith large variances in the
ensemble (Potempski and Galmarini, 2009).

Analysis of mean RMSE for EU sub-regions (Fig. 7a), for which
a large set of members is available, shows a plateau is reached for
k> 5. This would indicate that there is no advantage, on average, to
combine more than six members, as the benefit in minimizing
the mean RMSE is negligible. Investigating the maximum RMSE
(i.e., upper error bound), however, gives the result maxk RMSE
(k) > maxk RMSE (k þ 1). Thus, the mean of ensembles with a large
number of members has the property of reducing the maximum
error. For example, sub-region EU3 has a large error span for RMSE,
between 2.5 ppb and 15 ppb for k ¼ 2, which reduces to between
4 ppb and 7 ppb for k ¼ 10 (Fig. 7a). A similar trend is seen for PCC
(all sub-regions), with a monotonic improvement in the minimum
PCC values with increasing k.

Values of minimum RMSE (lower bound) exhibit a more complex
behaviour. A minimum, among all combinations, systematically
emerges for ensembles with a number of members k < n. Similarly,
a maximum of PCC is achieved by combinations of a subset of
members. This result suggests that ensembles of a few members
systematically outperform the ensemble of all members. In addition,
adding new members to such an optimal ensemble (thus moving
towards a higher value of k) deteriorates the quality of the ensemble,
as the minimum RMSE increases and the maximum PCC decreases
(Fig. 7).

4.2. Ensemble combinations of minimum RMSE

In Table 2, the MM combination of minimum RMSE is reported
for any k, where models are identified by the RMSE ranking



Fig. 7. RMSE, MGE or MB (in ppb), and PCC of the ensemble mean of any possible combination of members for (a) EU, and (b) NA. Continuous lines denote the mean and the median
of the distributions.
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(for example, 2e5 is the ensemble mean of the second- and fifth-
best SM in terms of RMSE). The SM RMSE ranking is defined by
domain, and individual models may not have the same SM RMSE
ranking over the different sub-regions.

An important point worth noting is that the RMSE ranking
shows that the optimal ensemble is in some cases achieved by the
MM ensemble containing low-ranking members, which suggests
that all members should be considered to build a skilful ensemble.
Therefore, an ensemble of top-ranking models can be worse
than an ensemble of top-ranking and low-ranking models: that is,
outliers may need to be included in the ensemble to obtain the best
performance.

It can be argued that large ensembles are needed to capture
extreme events (e.g., high mixing ratios). Fig. 8 presents a scatter
plot of 1-hour daily maximum ozone mixing ratios for the EU sub-
regions (analysis for NA sub-regions with fewer individual model
members produced similar results and is not shown). The x-axis
represents the 1-hour maximum of the ensemble of all available
members, while the y-axis represents the 1-hour maximum of the
ensemble of the selected members with minimum RMSE (bold-face



Table 2
RMSE-ranked combinations of models that give minimum RMSE for each
sub-region. The minimum of all combinations is listed in bold.

Number of models

2 3 4 5 6 7

EU dom1 1e2 1-5-11 1-2-7-11 1-2-5-7-11 1-2-4-5-6-11 1-2-3-4-5-6-11
dom2 3e8 2-3-8 2-3-5-8 1-2-3-5-8 1-2-3-4-5-8 1-2-3-4-5-6-8
dom3 2e3 2-3-5 1-2-3-5 1-2-3-9-11 1-2-3-5-8-11 1-2-3-5-8-9-11
dom4 5e9 1-6-9 2-6-7-9 1-6-9-10-11 1-2-6-9-10-11 1-2-3-6-9-10-11

NA dom1 1e2 1-2-3 1-2-4-6 1-2-3-4-6 1-2-3-4-6-7
dom2 1e2 1-3-4 1-2-3-4 1-2-3-4-5 1-2-3-4-5-6
dom3 2e3 1-2-3 1-2-3-4 1-2-3-4-5 1-2-3-4-5-6
dom4 1-2 1-2-3 1-2-3-4 1-2-3-4-5 1-2-3-4-5-6
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combinations of Table 2). The data distribution along the diagonal
line for each region shows that ensembles of selected models
and full ensembles have the same probability to capture the extreme
events. In particular, for the EU1 and EU3 sub-regions, the
maximum predictedmixing ratio is higher with the small ensemble.
This is because a poorly performing SM added to an ensemble can
improve RMSE and compensating biases can reduce overall bias.

As an example, consider the case presented in Fig. 9, in
which ozonemixing ratios of observations (Fig. 9a), the ensemble of
ranked models 1 and 5, (Fig. 9b), ranked model 2 (Fig. 9c), and
ranked model 11 (Fig. 9d) are displayed at the receptor sites. Note
that the ranked combination 1-5-11 represents a minimum RMSE
for the EU1 sub-region (Table 2). An interesting question to pose is
why the lowest-ranked model (11) improves the ensemble more
than a highly ranked model. Examining the receptor sites in the
British Isles and France (Domain 1 of Fig.1a), theMMmean of Fig. 9b
clearly underestimates the observations in the south of France.
When the 11th-ranked model (Fig. 9d) is added to the ensemble
in Fig. 9b, compensating errors result in lower RMSE than the
combination with the 2nd-best model in Fig. 9c. This is because the
2nd-best model has a performance very similar to the best per-
forming model (which is already included in the ensemble), and
thus brings no new information to the existing ensemble, whereas
the 11th-ranked model, while performing poorly across the entire
domain, matched the high mixing ratios in southern France (i.e., the
Fig. 8. Daily maximum concentrations for EU sub-regions, for the period JJA.
Horizontal axis: ensemble maximum of all available members. Vertical axis: ensemble
maximum of model combinations with minimum RMSE.
only place where the higher-ranked models performed worse).
Since RMSE weights large errors more heavily, including the
11th-ranked model results in less error at a greater number of
receptor sites thanwhen the 2nd-ranked model is included instead.

Statistical results and box-and-whisker plots for the full ensemble
and for the selected-member ensemble for each sub-region are
presented in Table 3 and Fig. 10, respectively. RMSE is, as expected,
lower for the selected-member ensemble for all sub-regions. PCC
varies only slightly, indicating that the association between obser-
vations and MM ensemble is not strictly related to model error.
The minimum RMSE combinations also improve the estimation of
themodelled spread (the standard deviation of theMMensemble, s)
compared to measured spread for almost all sub-regions (Table 3),
and especially for the EU sub-regions. Therefore, reducing the
number of members does not degrade the ensemble variability, but
instead actually compares better to the spread of the observations.
This ismost likely due to the reduced variability induced bymembers
sharing similar emissions and boundary conditions. Fig.10 presents a
graphical depiction of how the selected-member ensemble compares
against the full-member ensemble in terms of spread,maximum and
minimum, and percentile distribution. The improvement to spread of
the selected-member ensemble mean is most visible.

5. Reduction of data complexity: a clustering approach

Results discussed in the previous section have shown that
a skilful ensemble is built with an optimal number of members and
often includes low-ranking skill-score members as well. In order
to discern which members should be included in the ensemble,
a method for clustering highly associated models and then dis-
carding redundant information was developed using the PCC as the
determiningmetric (we note that PCC is independent of model bias;
therefore, the analysis would be the same for unbiased models).
The most representative models of each cluster, chosen based on
a distance metric, are then used to generate a reduced or selected-
member ensemble. In this way, the information that each member
provides to the ensemble is “unique” to the greatest possible degree.

The Euclidean distance metric has been used to calculate the
distance between the PCC of any two models and between clusters.
The points that are farthest apart are identified andused as the initial
cluster centres. Then, the other models are allocated to the closest
centre by the Euclidean distance from each centre. Results for this
procedure are presented in Fig. 11 (EU) and Fig. 12 (NA) as hierar-
chical diagrams called dendrograms. The “height” of each inverted
U-shaped line on the x-axis represents the distance between the
two clusters being connected. Independent clusters are identified
by different colours. Sensitivity analysis of other distance metrics
(not shown) has found that the clustering of models is independent
from the metric used to calculate the distance, thus leaving the
group associations unaltered. However, while the distance itselfmay
change, it does not affect the results of this study. The y-axis of
Figs. 11 and 12 identifies the models by their number and RMSE
ranking (discussed in Section 4.2). The ranking information allows
tracking of each model’s position and whether aggregation results
from differences between the models themselves (e.g., AQ model,
meteorological drivers, emissions) or if the model’s performance
itself (e.g., RMSE) has an influence.

For EU (Fig. 11), the maximum PCC distance (degree of model
disassociation) varies between 0.12 (sub-region EU4) to 0.28 (sub-
region EU2). By contrast, analysis of NA sub-regions (Fig. 12) shows
themaximumdistance is 0.08 for all sub-regions, with the exception
of sub-region NA2 (w0.03). Association between models is thus
stronger for NA, indicating a lower degree of independence. This is
likely due to four out of the seven models using the same meteo-
rological driver for NA, and six models using the same emissions.



Fig. 9. Hourly ozone concentrations (mg m�3) for the period JJA at receptor positions: (a) observations; (b) ensemble of ranked models 1 and 5; models ranked (c) 2nd; and (d) 11th.
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For EU it is possible to isolate two repeating groups of models
whose PCC distances are very small: Mod6 and Mod7, and Mod11
and Mod3. Models of the former group are essentially the same, as
they share both AQ and meteorological models, and used the same
emissions and boundary conditions. They also have similar RMSE
rankings.Mod11 andMod3 differ in the AQmodel used, but used the
same meteorological model (MM5) and anthropogenic emissions.
The NA cluster analysis, with fewer members, shows repeated
association of several pairs of models: Mod15 and16 (same meteo-
rological driver, anthropogenic emissions, and boundary condi-
tions); Mod13 andMod17 (same AQmodel, only different boundary
conditions), and Mod14 and Mod18 (same meteorological driver).



Table 3
Statistical skills for all-members ensemble (first row of each domain) and ensemble
of minimum RMSE (second row). s is the standard deviation in mg m�3 for EU and
ppb for NA.

Bias FBias RMSE PCC s

EU Dom 1 �5.11 �0.08 12.01 0.97 18.29
sobs ¼ 27.4 �0.82 �0.01 8.49 0.96 22.24
Dom 2 �8.77 �0.11 13.50 0.93 17.59
sobs ¼ 24.5 1.35 0.02 7.78 0.95 22.29
Dom 3 �4.87 �0.06 17.38 0.89 20.25
sobs ¼ 31.7 �2.34 �0.03 14.90 0.90 24.17
Dom 4 �1.11 �0.013 8.27 0.92 17.25
sobs ¼ 20.7 �1.25 �0.014 7.27 0.94 18.34

NA Dom 1 0.66 0.02 3.63 0.94 12.3
sobs ¼ 10.13 �0.11 �0.003 3.45 0.94 12.1
Dom 2 3.90 0.10 6.40 0.92 11.80
sobs ¼ 12.83 2.05 0.05 4.82 0.92 12.6
Dom 3 4.51 0.13 7.34 0.85 12.5
sobs ¼ 10.36 2.55 0.07 5.8 0.87 10.5
Dom 4 10.55 0.26 12.35 0.90 12.3
sobs ¼ 14.50 5.10 0.13 7.98 0.91 14.2
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Mod12 is associated with Mod14 and Mod18, with the exception of
the NA3 sub-region.

In order to find an optimal set of clusters, a threshold at which
models are said to be independent (imagine cutting the dendro-
grams vertically) is defined. The selection of the cutting height is in
part arbitrary. The common practice suggests cutting the dendro-
gram at the height where the distance from the next clustered
groups is relatively large, and the retained number of clusters
is small compared to the original number of models (Riccio et al.,
in press). Members of the ensemble generated with a higher
threshold are more distant and therefore more independent.
The cluster representatives and selected-member ensembles are
summarised in Table 4 for both continents and for different PCC
distances. For clusters composed by only two members and with
symmetric structures (same mutual distance among all members,
such as the third cluster of the EU2 sub-region in Fig. 11b), it was
not possible to identify a model whose distance from the centre of
the cluster was a minimum in terms of RMSE. In these cases, more
than one model is selected to represent the cluster.

The number of independent members varies between 3 and 6
for EU and between 2 and 4 for NA (this difference is probably due
to the smaller number of models for NA). It is interesting to
note that the number of independent clusters matches the number
of models needed to generate the MM ensembles with minimum
RMSE in Fig. 7 for both continents. The two methods are in fact
Fig. 10. Box-plots of observed ozone concentration, full-model ensemble and selected-
model (combinations with minimum RMSE) ensemble. Top row: EU sub-regions;
bottom row: NA sub-regions.

Fig. 11. Dendrograms of model clustering as function of mutual PCC distance for EU
sub-regions.
independent, as the clustering analysis makes no use of observa-
tional data (only model-to-model PCC is in fact used in the cluster
analysis). Looking at the minimum RSME combination in Table 2, it
can be seen that the ensembles of minimum RMSE have two or
more members belonging to the same cluster, and that for the NA4
sub-region all members are from the same cluster. This is a result of



Fig. 12. Dendrograms of model clustering as function of mutual PCC distance for NA
sub-regions.

Table 4
Ranking of cluster representatives for EU and NA sub-regions for varying PCC
distance.

Distance Number of members Ranking of cluster representatives

EU1 PCC > 0.06 3 6-2-8/9
PCC ¼ 0.05 4 3-2-8/9-11
PCC ¼ 0.03 5 3-2-8/9-11-1/10

EU2 PCC > 0.045 4 6-1/8-2-7/9
EU3 PCC > 0.08 3 3-6/7-1

PCC ¼ 0.06 5 3-11-6/7-1-9
EU4 PCC > 0.04 4 1-4/5-2-11

PCC ¼ 0.02 6 1-4/5-2/10-9-11/7-8
NA1 PCC > 0.04 3 3/4-1/5-2
NA2 PCC > 0.012 3 3/5-6/7-1
NA3 PCC > 0.035 2 2/4-6

PCC ¼ 0.03 4 4-2-3-6/7
NA4 PCC > 0.025 3 4/7-5/6-3
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too few independent members due to models sharing of boundary
conditions, meteorology, and emissions.

The RMSE of MM ensembles in Table 4 were compared to the
RMSE curves discussed in Fig. 7 by connecting, for any number of
models, the minimum (thick lines) and maximum (dotted lines)
RMSE values. The results are presented in Fig. 13. The short lines in
Fig. 13 represent the RMSE of combinations from Table 4 (obtained
with the clustering technique) and are reported along with the
ranked combination. In the case of clusters with only twomembers
(symmetric clusters), it was not possible to identify the represen-
tative member, and therefore both members have been retained for
the analysis. Comparing the position of the cluster’s combination
against the RMSE of the full-member ensemble in Fig. 13 allows one
to infer whether the new methodology is able to produce reduced
ensembles that are more skilful than the full ensemble mean.
Note that combinations of independent models have, in most cases,
lower RMSE than the full ensemble, and that for all sub-regions
there are ensembles that clearly outperform the full ensemble.
Fig. 13. Curves of minimum (thick lines) and maximum (dotted lines) RMSE obtained
by connecting min and max of Fig. 8. The short lines are the RMSE of MM ensembles
from clustering analysis (combinations of Table 4). The labels are the individual RMSE
rankings of MM members. Different colours correspond to different sub-regions for
(a) EU and (b) NA. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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For example, the combinations 1-2-3-8-11, 2-6-7-8, 1-3-6-9-11, 1-
2-4-8-9-11 for sub-regions EU1, EU2, EU3, and EU4, respectively,
have a lower RMSE than the mean of all ensemble members and
are close to the minimum curve. Conversely, there are situations in
which the ambiguous definition of representative cluster leads to
high-RMSEMM combinations, as for the four-member combination
of the EU4 sub-region (1-2-4/5-11) and NA1 sub-region (2-4-5).
Further work is needed to remove such ambiguity.

6. Conclusions

This study collectively evaluates and analyses the performance
of eleven regional AQ models and their ensembles in the context of
the AQMEII inter-comparison exercise. The scale of the exercise is
unprecedented, with two continent-wide domains being modelled
for a full year. The focus of this study was on the collective analysis
of surface ozone mixing ratios, rather than on inter-comparing
metrics for each individual model. The study began with an anal-
ysis of ozone time series for sub-regions of EU and NA, followed by
an interpretation of the uncertainties of the individual models and
ensemble. Analysis of model error in each sub-region demonstrates
that most of the error in the models is introduced by bias from
emissions, boundary conditions, and meteorological drivers.

While MM ensembles demonstrate improved performance over
the individual model realisations, the most skilful ensemble is not
necessarily generated by including all available model results, but
instead by selectingmodels that result in aminimization in ensemble
error. In addition, an ensemble of top-ranking model results can be
worse than an ensemble of top-ranking and low-ranking model
results. Until now, the prevailing assumption has been that as long
as a large set of results was treated statistically in one ensemble,
the ensemble would perform better than any individual ensemble
member. Furthermore, it was assumed that the better the model
results the better the ensemble. However, the analysis presentedhere
suggests that this is not necessarily the case, as outliers also need
to be included in the ensemble to enhance performance. Further-
more, the skill-score does not necessarily improve by increasing the
number of models in the ensemble. By contrast, the level of depen-
dence of model results may lead to a deterioration of the results and
to an overall worsening of performance. Despite the remarkable
progress of ensemble AQ modelling over the past decade and the
effort spent to build a theoretical foundation, there still are many
outstanding questions regarding this technique. Among them,
what is the best and most beneficial way to build an ensemble of
members? And how to determine the optimum size of the ensemble
in order to capture data variability while minimizing the error?

To try address these questions we apply a method for reducing
data complexity known as a clustering technique, which has the
advantage of simplifying information provided by the large amounts
of data (such as AQ model outputs) by classifying, or clustering,
the data into groups based on a selected metric, where there is no
prior knowledge of grouping. Results show that, while the clustering
technique needs further refinement, by selecting the appropriate
cluster distance and association criteria, one can generate an
ensemble of selected members whose error is significantly lower
than that of the full-member ensemblemean.While the results of the
clustering analysis are directly relevant for ensemble model evalua-
tion applications, it is also applicable to other ensemble communities,
for example AQ forecasting, climate analysis, and oceanography.
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Appendix A. Statistical Measures

Defining y the vector of model output and obs the vector of
observations (n-component both), having mean value y and obs,
respectively.

Mean bias:

MB ¼

P
i
ðyi � obsiÞ

n
(A1)

Root mean square error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
ðyi � obsiÞ2

n

vuut
(A2)

Mean Gross Error:

MGE ¼

P
i
jyi � obsij

n
(A3)

Normalised mean square error

NMSE ¼

P
i
ðyi � obsiÞ2

n y obs
(A4)

Fractional Bias

FB ¼ 2
obs� y

obsþ y
(A5)

Normalised Mean Bias:

NMB ¼

P
i
ðyi � obsiÞ

n y obs
(A6)

Pearson correlation coefficient:

PCC ¼

P
i
ðyi � yÞðobsi � obsÞ

P
i
ðyi � yÞ2 P

i
ðobsi � obsÞ2

(A7)
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