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Introduction
By d(x,A) we denote the Euclidean distance from x to a given
subset A in Rm. Let Aε be the open ε-neighbourhood of A, called
also the Minkowski sausage of radius ε around A. The upper
s-dimensional Minkowski content of a bounded subset A in Rm,
s ≥ 0, is defined as follows

M∗s(A) := lim sup
ε→0

|Aε|
εm−s,

where |Aε| denotes the m-dimensional Lebesgue measure of Aε.
The lower s-dimensional Minkowski content of A is defined by

Ms∗(A) := lim inf
ε→0

|Aε|
εm−s.

If M∗s(A) = Ms∗(A), the common value is denoted by Ms(A).
The upper box dimension of A is defined by

dimBA = inf{s ≥ 0 : M∗s(A) = 0} = sup{s ≥ 0 : M∗s(A) = ∞}.

Similary for the lower box dimension of A, denoted by d =
dimBA. If both of them are equal, the common value is called
the box dimension of A, and denoted by d = dimB A.
If 0 < Md∗(A) ≤ M∗d(A) < ∞, we say that A is Minkowski
nondegenerate. If there exists Md(A) for some d and Md(A) ∈
(0,∞), we say that A is Minkowski measurable.
Given any two functions f and g : (a,∞) → (0,∞) we write f ∼ g
as t →∞ if limt→∞ f (t)/g(t) = 1.

p-clothoid
By p-clothoid, p > 1, we mean a planar curve defined parametri-
cally by

Γp · · ·
{

x(t) =
∫ t
0 cos(sp) ds,

y(t) =
∫ t
0 sin(sp) ds,

(1)

where t ≥ 0. If we replace sp by |s|p in (1), then we may allow
t ∈ R.
For p = 2 we obtain the standard clothoid, or the Euler spiral.
For the classical, 2-clothoid, we know that its box dimension is
equal to 4/3, see [1, Theorem 1].
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Figure 1: Euler spiral

This is a special case of the following result dealing with gener-
alized Euler spirals.

Theorem 1 Let Γp be the p-clothoid defined by (1), p > 1. Then
d = dimB Γp = 2p/(2p−1). Furthermore, Γp is Minkowski measur-
able and

Md(Γp) = (2p− 1)
(
p(p− 1)p−1

)−2/(2p−1)
π1/(2p−1). (2)

In the proof of this theorem we use the following asymptotic
expansion of Fresnel integrals associated to generalized Euler
spirals. The result can be obtained using known expansions of
Fresnel integrals based on complex variables and the gamma
function. We propose a new, very short and elementary proof.

Theorem 2 Let x(t) and y(t) be generalized Fresnel integrals de-
fined by (1), p > 1, and a = limt→∞ x(t), b = limt→∞ y(t). Then for
any nonnegative integer N we have

{
x(t) = a + AN (t) sin(tp)−BN (t) cos(tp) + O(t−(2N+3)p+1)

y(t) = b−BN (t) sin(tp)− AN (t) cos(tp) + O(t−(2N+3)p+1),

when t →∞, where




AN (t) =
∑N

k=0(−1)ka2kt
−(2k+1)p+1

BN (t) =
∑N

k=0(−1)ka2k+1t
−(2k+2)p+1

an = p−n−1(p− 1)(2p− 1) . . . (np− 1), n ≥ 1 and a0 = p−1.

Together with the asymptotic expansion of Fresnel integrals, to
prove Theorem 1, we will exploit a result from [3] which we cite
here in a simplified, but equivalent form.

Theorem 3 (Minkowski measurable spirals) Assume that
f : [ϕ1,∞) → (0,∞) is a decreasing, C2 function converging to
zero, and ϕ1 > 0. Assume that there exists the limit

m := lim
ϕ→∞

f ′(ϕ)

(ϕ−α)′.

Let there be a positive constant C such that |f ′′(ϕ)| ≤ Cϕ−α for
all ϕ ≥ ϕ1. Let Γ be the graph of the spiral ρ = f (ϕ) with α ∈
(0, 1), and define d := 2/(1 + α). Then dimB Γ = d, the spiral is
Minkowski measurable, and moreover,

Md(Γ) = mdπ(πα)−2α/(1+α)1 + α

1− α
.
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Figure 2: p-clothoid for p = 3/2

q-clothoid
Let q : (0,∞) → R be a given function such that q(t) ∼ tp, p > 1,
when t →∞. By the clothoid generated by control function q, or
q-clothoid Γq, we mean a planar curve defined parametrically by

Γq · · ·
{

x(t) =
∫ t
0 cos(q(s)) ds

y(t) =
∫ t
0 sin(q(s)) ds.

(3)

Now we have even more general situation than in case od p-
clothoid.
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Figure 3: q-clothoid for q(s) =
√

s3 + 2s + 1

We first establish sufficient conditions needed for convergence
of Generalized Fresnel integrals (3) when t →∞.

Lemma 1 Let us assume that q(t) is increasing and convex C1

function, and q′(t) →∞ as t →∞. Then the limits

lim
t→∞x(t) = a, lim

t→∞ y(t) = b

of functions defined by (3) exist.
Now we describe an algorithm for the asymptotic expansion of
Generalized Fresnel integrals. First, assuming that q(t) is suf-
ficiently smooth, we introduce a sequence of auxiliary functions
Dn(t), n ≥ 0, as follows:

D0(t) =
1

q′(t), Dn+1(t) =
(−1)n+1

q′(t) D′
n(t), n ≥ 0.

Let us define remainder terms R
(i)
N (t), i = 1, 2, by

x(t) = a + sin q(t)

bN
2 c∑

k=0

D2k(t)− cos q(t)

bN−1
2 c∑

k=0

D2k+1(t) + R
(1)
N (t)

y(t) = b− sin q(t)

bN−1
2 c∑

k=0

D2k+1(t)− cos q(t)

bN
2 c∑

k=0

D2k(t) + R
(2)
N (t),

where N ≥ 1.
In the following theorem we find some sufficient conditions for
R

(i)
N−1(t) to be small for sufficiently large t. It extends Theorem

2.

Theorem 4 Let x(t) and y(t) be defined by (3), where the control
function q : (0,∞) → R is increasing, convex, of class CN+2, N ≥
1, and q(t) ∼ tp as t → ∞, and p > 1. Assume that Dn(t) → 0

as t → ∞ for all n = 0, 1, . . . , N − 1. If DN (t) = O(t−(N+1)p+1)

and D′
N (t) = O(t−(N+1)p), then for any γ such that Np − 1 < γ <

(N + 1)p− 1, we have R
(i)
N−1(t) = o(t−γ) as t →∞, for i = 1, 2.
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Figure 4: q-clothoid for q(s) = s3 + 2s + 1

Finally we give generalization of Theorem 1 regarding control
function q.

Theorem 5 Assume that q : (0,∞) → R is increasing, convex,
and of class C5. Let





q(t) ∼ tp, q̇(t) ∼ p tp−1

q̈(t) ∼ p(p− 1)tp−2, q(3)(t) ∼ p(p− 1)(p− 2)tp−3

q(4)(t) = O(tp−4), q(5)(t) = O(tp−5), as t →∞

be satisfied. Then d = dimB Γq = 2p/(2p − 1). Furthermore,
the spiral Γq is Minkowski measurable, and its d-dimensional
Minkowski content is equal to the value in (2).
Example. Theorem 5 applies for example to control functions
q(t) = t3 + 2t + 1 with p = 3, or to q(t) =

√
t3 + 2t + 1 with p = 3/2,

etc.

This work is made in collaboration with Luka Korkut, Darko
Zubrinić and Vesna Zupanović.
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