FACULTY OF AGRICULTURE

lvana Sestak

Use of Field Spectroscopy for Assessment of
Nitrogen Use Efficiency in Winter Wheat

DOCTORAL THESIS

Zagreb, 2011



AGRONOMSKI FAKULTET

lvana Sestak

Procjena winkovitosti gnojidbe dusikom
spektroskopijom usjeva pSenice

DOKTORSKI RAD

Zagreb, 2011.



FACULTY OF AGRICULTURE

lvana Sestak

Use of Field Spectroscopy for Assessment of
Nitrogen Use Efficiency in Winter Wheat

DOCTORAL THESIS

Supervisor: Milan Mesi

Zagreb, 2011



AGRONOMSKI FAKULTET

lvana Sestak

Procjena winkovitosti gnojidbe dusikom
spektroskopijom usjeva pSenice

DOKTORSKI RAD

Mentor: Milan Mes¢

Zagreb, 2011.



Supervisor:
Milan Mesk, Ph.D., Associate Professor



Dissertation was evaluated by Committee for dissiert assessment in the following
composition:

1. Boris Varga, Ph.D.

Full Professor, Faculty of Agriculture, University Zagreb

2. Milan Mesk, Ph.D.

Associate Professor, Faculty of Agriculture, Unsigr of Zagreb

3. Amy Kaleita, Ph.D.

Associate Professor, Department of Agricultural @idsystems Engineering, lowa State

University

Dissertation is defended on Faculty of AgricultUm@versity of Zagreb, before the
Committee on 07 December 2011 in the following cosifon:

1. Milan Poljak, Ph.D.,

Full Professor, Faculty of Agriculture, University Zagreb

2. Milan Mesk, Ph.D.,

Associate Professor, Faculty of Agriculture, Unsigr of Zagreb

3. Amy Kaleita, Ph.D., M

Associate Professor, Department of Agricultural &idsystems Engineering, lowa State

University



.Dar mentalne energije dolazi od Boga, vrhunskag lbiako mi koncentriramo nase misli o toj

istini postajemo skladni s ovom velikom tn6

»1he gift of mental power comes from God, Divineilg and if we concentrate our minds on that

truth, we become in tune with this great power. “

Nikola Tesla



ACKNOWLEDGMENTS

| would like to thank my supervisor Prof. Milan Mesic on distinct guidelines, help and his open minded
character. That was crucial for creating idea for my scientific work.

| express my gratitude to my boss Prof. lvica Kisic who recognized necessity for infroducing new
technologies and soft science in agricultural research.

My special thanks go out to Prof Amy Kaleita on her help and collaboration. Visit to ISU reinforced my
wish to be a scientist.

| thank to Prof. Boris Varga and Prof. Milan Poljak on useful *agronomic” and “physiological” remarks
during thesis writing.

| wish to acknowledge contributions of Dr. Bosko Milo§ who showed me how to understand spectra.
His enthusiasm encouraged me for further and deeper investigation.

I am especially thankful to my dear colleagues from Department of Agronomy, Zeljka, Aleksandra,
Helena, Darija and Marija on their every day support, professional help and comfort when it was
tough.

| thank my students and friends Bernard, Dino, lvan, Jakov, Ana Marija, Franjo, Tomislav, Petar, Karl

and Iva on assistance and good atmosphere during the field work.

And:

MY DEAR HUSBAND FILIP, THANK YOU FOR LOVE, CARE AND PATIENCE IN EVERY SECOND OF OUR
TIME!!

MY DEAR DOMO, MUM, DAD AND GRANNY, THANK YOU FOR YOUR ENDLESS LOVE AND SUPPORT!
WITHOUT YOU | WOULDN'T BE HERE!

Zagreb, December 2011

Ivana Sestak



% Doctoral thesisUse of field spectroscopy for assessment of génouse efficiency in winter wheat

ABSTRACT

Key words: winter wheat, nitrogen fertilization, nitrogen usiiciency, leaf reflectance,

vegetation index, neural networks, linear modelirigssification

The objective of doctoral study was evaluate the ability of field VNIR spectroscofy
estimaten-season N status and harvest variables of wintexat under field conditions,
and to determine the effects of N fertilization epectral reflectance and agronomic
characteristics. Agronomic data included leaf tdtatontent, CCI, grain total N content,
yield and NUE. Research was conducted on experahdmid in Western Pannonian
subregion of Croatia. To simulate different cropwgth scenarios, field measurements with
reflectance (350-1050 nm) were acquired from wintdreat flag leaves grown under
different mineral N fertilization treatments rangifrom 0 to 300 kg N K during stem
extension (F8) and heading stage (F10.5) of growergpd 2008 with cultivar “Fiesta” and
2010 with cultivar “Lucija”. Linear statistical mets (SLR, MLR, PLSR), non-linear
pattern analysis (ANN) and classification analy@\, CLA, ANN) were generated to
estimate crop biophysical variables and to discrate between nitrogen fertilization
categories, based on th& derivative of reflectance in form of PCs and \Wsfertilization
and high level of greenness during F8 reduced leisiind increased NIR spectra. These
changes were related to lower levels of chloropagtl earlier senescence in the N-limited
plots and F10.5 stage. The greatest spectral eiféms between N fertilization treatments
and the highest correlations with the winter wheatables were found in the visible and
the red edge region which contributed most to tkae development. High and robust
correlations between VIs calculated from reflecaatiat was acquired at F8-“Lucija”, and
all crop variables among each other proved to ahgusld [r (NDVI : yield) = 0.91] as
input to prediction models development. The absentetreatmentx cultivar/year
interaction for leaf TN content measured at F8 whiadicates possibility for spectral
sensing of winter wheat in stem extension stagarddgss of cultivar differences. MLR
identified a 7PC leaf reflectance model that exmdi 83 % of the variability in winter

wheat yield, and accounted for a large variandeahand grain biochemical concentration
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(R*~ 0.8, P < 0.05) (F8, cultivar ,Lucija"). Forecimst NUE from harvest data estimated
by ground-based remote sensing was feasibler (observed vs. predicted NUE was 0.81,
p < 0.05). This relationship is the most encourggesult due to the high predictive ability
of the models based on F8 spectral data to actyraestimate winter wheat harvest
variables. ANN models were the most efficient iptcaing the complex link between yield
and leaf reflectance spectra (train and test datasle r = 0.95 and r = 0.92, RMSEC =
2.57 dt hd and RMSEP = 4.41 dt Harespectively) compared to corresponding SLR-VIs,
MLR and PLSR models. Performance of the 8 facto6RLmodel indicated the highest
consistency due to the small difference between R®I®.10 dt hd) and RMSEP (4.61 dt
ha) besides high prediction ability (validatiorf R0.84), and showed that it is possible to
predict grain yield using hyperspectral field spestopy data. Still, NDVI and RVI
reached a very strong relationship with yield dughe cross-validation results? R 0.80
and B = 0.73, respectively. Classification analysis dadéd that hyperspectral
measurements are best at detecting where N isetimither than where it is in excess
during the fast vegetation development (F8) whishof great interest in precision
agriculture by optimizing N top-dressing, identifgi crop stress patterns and aid in yield
forecasting. Irrespective of pre-analysis type lagsification approaches, extreme groups
were completely separable [I (Controlg)Nand 111 (Nosg, Nasg + amendments, fNo)], and
the small proportion of variability in intermediaienon-limited treatments [l (Mo, Niso,
N2og)] was probably result of some additional factorgimy the growing season. The
results obtained in this doctoral thesis confire liigh information potential and feasibility
of field spectroscopy for estimation of winter wheanditions during development and
harvest because they are scalable and applicabiéginrange of N stress and non-N-
limited environments. Key spectral features andiigms should help to support non-
destructive and real-time monitoring of N statusvimeat production by using hyperspectral
remote sensing. Further efforts should be takemdoease the amount, complexity and

representation of samples so that the derived neaaebe applied under varied conditions.
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PROSIRENI SAZETAK

Procjena Wwinkovitosti gnojidbe duSikom spektroskopijom usjevapsenice

Kljuénerije¢i: ozima pSenica, duia gnojidba, dinkovitost gnojidbe dusikom, spektralna
refleksija lista, vegetacijski indeks, neuralne aerdinearno modeliranje, klasifikacija

UvoD

Ucinkovita gnojidba dusikom (N) od presudne je vainam ekonomski isplativu
proizvodnju Zitarica i zaStitu okoliSa. Razumijejeprocesa koji upravljaju usvajanjem
dusSika i njegovom distribucijom u biljci ozime p$en jednako je vazno i s obzirom na
zastitu okoliSa i na kvalitetu poljoprivrednin preoda. Buddi da biljka pSenice iskoristi
samo oko trénu primijenjenog duSika tijekom vegetacijskog rallja, vazno je
usmjeravati gospodarenje u ratarskoj proizvodnginma optimalnoj primjeni mineralnih
gnojiva, smanjenju troskova proizvodnje i poboljsartinkovitosti usvajanja, akumulacije
i iskoriStenja duSika u pSenici. Istrazivanje obad®no ovim doktorskim radom ima cil;
procijeniti stanje duSika u ozimoj pSenici tijekoragetacije kao i prinos, tecimkovitost
gnojidbe dusikom pod utjecajem r&#iih koli¢ina mineralnog dudhog gnojiva, koristé
nedestruktivne metode. U svrhu péarja agronomske ¢inkovitosti gnojidbe dusikom
(NUE — ,nitrogen use efficiency“) u uzgoju ozimeepice sve se viSe i&& potreba za
informacijama o sezonskim promjenama u iskoriStévju biljci. Poljoprivrednici kao i
prate&a industrija te korisnici ciljaju na realizaciju éegy profita pratéi stanje usjeva prije
Zetve. Napredna tehnologija kao 5to je hiperspklrapektroskopija u vidljivom i blisko-
infracrvenom podrgju spektra (VNIR — ,visible and near infrared”) kwru precizne
poljoprivrede moze unaprijediti gospodarenje dusiko agroekosustavu. Senzori ovakve
vrste koriste refleksiju elektromagnetskogéemgja s vegetacije u odii@anju ishranjenosti
biljke duSikom te prate razvoj usjeva tijekom ajevegetacije. U ovom istrazivanju,
terenska spektroskopija je koriStena za modelirag@nomskih znsjki ozime pSenice.
Kvantitativna analiza s kalibracijom i validacijota pratéom statistikom provedena je s
ciliem procjene predikcijske i klasifikacijske spbmosti VNIR spektroskopije u

odrefivanju statusa N u ozimoj pSenici i prognozi priaoke winkovitosti gnojidbe
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dusikom. Primjena daljinskih istrazivanja u agronjorn obliku satelitskih i zranih
snimaka, kao i terenske spektroskopije izuzetnmajmedovala zadnjih nekoliko desetfe
Dosadasnja istrazivanja pofwju uspjeSnost koriStenja ovakvog senzorskog i
nedestruktivnog pristupa u @enju razvoja usjeva na temelju povezanosti cti
svojstava vegetacije i odtenih biokemijskih i agronomskih varijabli (sadrij klorofila

u listu, sadrzaj N u zrnu, prinos, NUE), no i dghestoji potreba za mnogo preciznijom
kvantitativnom procjenom razvoja usjeva vaznom &Ziakovito gospodarenje dusikom u
agronomiji. Biljni materijal ima jedinstveni speétni otisak koji se mijenja pod utjecajem
fenoloskih promjena tijekom vegetacijskog razdglt@o dehidracije ili slabe ishranjenosti
duSikom. Terenska spektroskopija, kao vrsta hiptsplnog daljinskog istrazivanja,
predstavlja visoko osjetljivu tehniku s md@moesu kontinuirane kvantitativne procjene
stanja N u biljci i prinosa na brz, nedestruktivageftin nain, primjenom raztitih
statistékin modela, zamjenjujti na taj n&in skupe i dugotrajne laboratorijske analize.
Komercijalna primjena spektralne refleksije vegg¢aprinvatena je u okviru ,variable
rate” tehnologije (VRT), odnosno varijabilne primgdu&tnih gnojiva, ali koristéi samo
nekoliko ranije utwienih valnih duljina odnosno multispektralnin kanatankovitin za
detekciju nedostatka duSika. No, i dalje predssatdk dodatni alat u procjeni agronomskih
svojstava koji se uvijek potiuje odreéienim brojem standardnih laboratorijskih analiza.
Podaci prikupljeni na razini poljskog pokusa imajadatnu vrijednost za istrazivanje,
testiranje, procjenu i donoSenje odluka ukoliko iseegriraju u regionalni, nacionalni,
lokalni, te okvir samog poljoprivrednog gospodaastvlerenska spektroskopija kao
dijagnosttki pristup moze unaprijediti biljno-uzgojne zahvdd®z procjenu prostorne i
vremenske varijabilnosti odtenih agronomskih svojstava. Bitno je napomenuti dalje
postoji pitanje razvoja generalnih spektralnih algma neovisnih o razvojnom stadiju
usjeva, kao i odabira tehnike modeliranja s naglmlsposobna@$ predikcije. Osim toga,
istrazivanja bi se trebala usmijeriti na detaljngnalizu velikog broja hiperspektralnih
podataka kako bi se izvela informacija bitna za gtecizniju kvantitativnhu procjenu

istrazivanih parametara.
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PREGLED ISTRAZIVANJA

Proizvaiaci ratarskih kultura sve su viSe pod pritiskom p&aga i prinosa i profita bez
obzira na mjere zastite okoliSa i visoke cijene er@tnih gnojiva. Uniformna primjena
gnojiva iskljituje ¢injenicu da su zalihe duSika u tlu, biljci, kao @akcija biljke na
gnojidbu prostorno varijabilni. Stoga je jedan dalvgih ciljeva poljoprivrednika detaljniji i
¢e&i uvid u status duSika (N) u biljci i pravovrememgmojidba u svrhu povanja
agronomske tinkovitosti gnojidbe N uz istodobno smanjenje gak#& N u okolis.
Ucinkovitost gnojidbe N manja je od 50% u svjetskajipvodnji ozime pSenice
(Thomason i sur., 2000.Pstatak N vezZe se u tlu, dok se&ivéio gubi denitrifikacijom,
volatizacijom, emisijom du&nih oksida, ispiranjem nitrata, te povrSinskim o$rgem
(Raun i Johnson, 1999.)ViSekratno prihranjivanje duSikom tijekom vegésimg
razdoblja omogtuje prilagodbu kotiina gnojidbe razvoju usjeva ptiemu se moze
ocekivati maksimalno iskoriStenje hranjiyBoman i sur., 1995.)U¢inkovita dijagnoza i
dinamina regulacija statusa dusSika u biljci trebala bibaeirati na “real-time” prgenju
razvoja usjeva i sadrzaja dusika u bi(jeeng i sur., 2008.Spektralna refleksija vegetacije
u korelaciji je s razvojnim karakteristikama, teemra tome, ima potencijala pruZziti
informaciju o statusu duSika u biljéRaun i sur., 2008.; Gong i sur., 2003.; Thenkabalil
sur., 2000.) Preliminarna istrazivanja pokazala su da ovajtpp rjeSava pitanja prostorne
varijabilnosti tijekom vegetacijskog razdoblja na’in da se primjena dusSika uskladi sa
sadrzajem duSika u biljcfShanahan i sur., 2008.YJsvajanje ove vrste informacijske
tehnologije od strane poljoprivrednika intenzivirée se ukoliko odgovaraju sustav
potpora odldivanju postane dostupan kroz modifikaciju prikupifei obratenih podataka
u konkretne odluke u okviru “site-specific” gospoglga u poljoprivred{McBratney i sur.,
2005.; Pimstein i sur., 2009 3pektralni otisci ili spektralni uzorci vegetactemelje se na
interakciji energije i tvari, a oddeni su refleksijom ili apsorpcijom zZfanja kao funkcijom
valne duljine elektromagnetskog spektra. €katisvojstva lista u rasponu od 350 do 1050
nm sadrZze informaciju o koncentracijama biljnih mp&nata i stakdhoj strukturi lista
(McCoy, 2005.) Klorofil snazno apsorbira energiju valnih duljio&ko 450 nm i 670 nm

(Lillesand i sur., 2004.)Najveta osjetljivost refleksije i apsorpcije na promjansadrzaju
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klorofila nalaze se u zelenom dijelu spektra (580-5im) i crvenom rubu (oko 700 nm)
(Hatfield i sur., 2008.)Nasuprot tome, i refleksija i transmisija & su visoke u NIR
podriju spektra (700-1300 nm) zbog slabe apsorpcij€enja staninih cestica ili
pigmenata te rasprSivanja energije od stahistijenki mezofilgSlaton i sur., 2001.; Pinter

i sur., 2003.) Takaier, mnoge vrste stresa kod biljke dtjena NIR podrtije, te se senzori
koji mjere taj raspon elektromagnetskogcerga mogu Koristiti za oddévanje razine
promjena na vegetacifLillesand i sur., 2004.pod utjecajem suSe, manjka dusika, niskog
pH tla, zadrzavanja vod&ausman i sur. (1971ngavode razloge utjecaja razvojnog stadija
usjeva na refleksiju mladog biljnog tkiva koje sadnanje zraka unutar mezofila u odnosu
na starije listove koji pokazuju smanjenu reflek$IR podruéja spektraScotford i Miller
(2004.) u svom istrazivanju iznose da se vrijednosti vaggkog indeksa NDVI
(“normalized difference vegetation index”) ozime epi&e postupno povavaju s
vremenom sve do maksimuma tijekom klasanja, nalega se p&inju smanjivati iddi
prema kraju vegetacije. Sadrzaj klorofila u listajemu proporcionalan sadrzaj duSika u
listu indikatori su potreba usjeva za duSik@gastori, 2005.; Follet i sur., 1992Filella i
sur. (1995.)prepoznali su daljinska istrazivanja kao pouzdafeftinu metodu préenja
dusSika u biljci te izdvoijili refleksiju valnih duha od 430 nm, 550 nm, 680 nm, te pagau
crvenog ruba kao bithne pokazatelje statusa duSikgamici. Osim toga, u usporedbi s
rué¢nim Klorofilmetrima, terenska spektroskopija pruzéo detaljne i bogate informacije
zahvaljuj«i velikom broju valnih duljina i visokoj spektralpoezoluciji (Blackmer i sur.,
1994.) Metode hiperspektralnih mjerenja predstavljajwundehnologiju koja bi mogla
rijeSiti danasnje probleme intenzivne poljoprivre@ekoja je vé dovela do zn&jnog
napretka u biljno-uzgojnim zahvatima zadnjih 30-gkdina. Mnoga istrazivanja su
provedena u svrhu procjene stanja ishranjenogtiebl putemin-situ mjerenja spektralne
refleksije usjevgStone i sur., 1996.; Raun i sur., 2002.; Hinzmaari, 1986.; Xue i sur.,
2004.; Tarpley i sur., 2000.; Read i sur., 200DB9prinos pojedinaca u razvoju metoda
daljinskih istrazivanja doveo je do slkdaaja refleksije i emisije lista biljlke kao odraza
strukture i starosti lista, biljne vrste, oblikajibg pokrova, te sadrzaja hranjiva i vode
(Hatfield i sur., 2008.) IstraZivanja utjecaja razltih kolicina duséne gnojidbe na

spektralnu refleksiju ozime pSenice objavljena stadovimaAyala-Silva i Beyl (2005.),
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Feng i sur. (2008.), Filella i sur. (1995.), Flowersur. (2003.), Sembiring i sur. (1998.),
Jensen i sur. (2007.) i Fouche i sur. (19990znavanje spektralnih obiljezja refleksije lista
doprinijelo je definiranju vegetacijskih indeksall\Vkoji povezuj¢i razlicite kombinacije
valnih duljina elektromagnetskog spektra sa svojsvbilike, mogu modelima predikcije
kvantificirati odrelene agronomske varijable, odrediti njihove prostoinvremenske
varijacije, te joS detaljnije istraziti informacijé&oje pruza spektralni otisak lista.
Najpoznatiji algoritmi Siroke primjene sud&spomenuti NDVI(Rouse i sur., 1974i)RVI
(“ratio vegetation index”YJordan, 1969.)er sadrze informacije o fizioloSkim uvjetima i
razini stresa biljke koji potencijalno mogu djeltivaa prinos.Tarpley i sur. (2000.havode
da omjeri izmdu crvenog ruba (700 ili 716 nm) i NIR podja (755-900 i 1000 nm) imaju
najbolju korelaciju sa sadrzajem N u usjevu pam@ksbourne i sur. (20022akljutuju da
je NIR podruje elektromagnetskog spektra bilo presudno za gnacprinosa zrna pSenice,
s tim da se refleksija odtenih valnih duljina mijenja ovisno o razvojnom spadStone i
sur. (1996.sugeriraju da se sadrzaj TN u pSenici moze pratijgpektralnim indeksom u
kombinaciji valnih duljina od 671 i 780 nm. Premayniers i sur. (2006podaci dobiveni
daljinskim istrazivanjima integriraju utjecaje rggih vanjskih i unutarnjincimbenika na
razvoj usjeva, te prema tome, predstavljaju vgdiiencijal za primjenu u prognoziranju
prinosa. Primjena terenske spektroskopije u gospogla N moze smanijiti kaline
primijenjenih gnojiva uz istovremeno zadrzavanjepbvetanje prinosa ratarskih kultura
(Ferrio i sur., 2005.; Serrano i sur., 2000.; Wasgr., 2003.)Raun i sur. (2002.ytvrdili
su da procjene potencijalnog prinosa ozime pSetijekom vegetacijskog razdoblja
primjenom indeksa NDVI mogu pridonijeti optimizagirihranjivanja dusikom i povati
NUE za viSe od 15 % u odnosu na ujesimu primjenu duSika. NDVI izmjeren u
razvojnim fazama kasnog vlatanja, klasanja i cwjetekorelirao je s prinosom ozime
pSenicg(Freeman i sur., 2003.)) okvirima precizne poljoprivrede, pouzdana infiacija o
sadrzaju N u biljnom tkivu nuzna je prilikom primg tehnologije varijabilnih kalina N
gnojiva u prihranjivanju usjevaZhao D. i sur. (2005.ustanovili su da se refleksija u
vidljivom dijelu spektra (556 i 710 nm) z&sno poj&ala pri nizim razinama N gnojiva Sto
je dovelo i do pomaka refleksije u blisko-infraomeen podrdju prema kraim valnim

duljinama. Prema navedenim zakfima, mjerenja spektralne refleksije lista moguziu
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brz i dovoljno pouzdan & procjene ishranjenosti biljke dusSikom. Spektuahefleksiju
kao funkciju razvojne faze i sadrzaja N u biljnokivti istrazivali su iGraeff i Claupein
(2003.) koji su utvrdili da su mjerenja metodom terenskeksroskopije vrlo pouzdano
identificirala razléite varijante N gnojidbe i ragiit sadrzaj N u kukuruzu. Primjenom
diskriminantne analize na temelju vrijednosti veggskih indeksa za odtene valne
duljine, svaki se spektar mozZe klasificirati prermpdpadajiéem statusu Ncime se
omoguuje potencijalna procjena sadrzaja N u pSefidiella i sur., 1995.) Razltite
statisttke metode analize hiperspektralnih podataka zanomg odréenih agronomskih
varijabli uklju¢uju empirijske modele odnosa izdwe standardno izmjerenih varijabli i
spektralnin podataka (Korelacijska analiza — CAakga glavnih komponenata — PCA,;
Parcijalna regresija najmanjih kvadrata — PLSRp&jevana multipla linearna regresija -
SMLR) (Atzberger i sur., 2010.; Gislum i sur., 2004.; Miori sur., 2007,) procjene
primjenom neuronskih mreZza (ANN) kao klasifikatof@aediktora(Uno i sur., 2005.; Sui i
sur., 1998.; Tumbo i sur., 2002t¢ diskriminantnu analizu (DA) i klaster anali@@iLA) za
procjenu kategorijske pripadnog8trachan i sur., 2002.; Jensen i sur., 2007.;ridrsur.,
2005.) Rezultati ovih modela razlikuju se prema mjergnimanja, vrsti vegetacije,
spektralnim podrgjima snimanja te sloZzenosti modékatfield i sur., 2008.)Kaleita i sur.
(2006.)u svom su istrazivanju iznijeli zanimljive rezuétgprema kojima su ANN i PLSR
modeli imali slénu sposobnost predikcije odenih svojstava u kukuruzu. Neuralne mreze
jednostavne nelinearne anali@g@mes i sur., 1998.)Razvoj preciznih i offh modela za
pracenje i procjenu statusa N u biljci na temelju spakih podataka jo$ uvijek je u tijeku
kao aktualan problem. No, glavni izazov znanstvenikoji se bave metodama
hiperspektralnog snimanja u poljoprivredi jest dapotpunosti shvate potencijal ove
tehnologije kao izvora vrlo korisnih informacija z#noSenje odluka u agronomiji i
unaprjelenje gospodarenja na razini farfiatfield i sur., 2008.)

Hipoteza ovog istrazivanja temelji se na postojargaa izméu hiperspektralnih zrajki
lista ozime pSenice te agronomskih varijabli - gagh duSika i klorofila u listu, duSika u
zrnu ozime pSenice, prinosa te agronoms&ekovitosti gnojidbe duSikom - oddenih

standardnim laboratorijskim analizama i terenskijaremjima. Glavni cilj doktorskog rada
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bio je procjena primjenjivosti VNIR spektroskopije definiranju statusa duSika u biljci
tijekom vegetacije kao i parametara ozime pSendredenih nakon Zetve, te odiiganju
utjecaja razliitih koli¢ina duséne gnojidbe na spektralnu refleksiju i agronomskastva.
Istrazivanje je usmjereno na izvedbu i interprgtapredikcijskih i klasifikacijskih modela

temeljenih na hiperspektralnim podacima.

MATERIJALI | METODE

Lokacija i eksperimentalni dizajn

Istrazivanje je provedeno na stacionarnom poljshmkusu u sklopu hidromelioriranog
poljoprivrednog zemljiSta kojeg koristi tvrtka Maska d.d. (Agrokor) u podiu
zapadno-panonske podregije Hrvatske (45°33" N, I68). Tip tla je definiran kao
drenirani pseudoglej, rawarski, distréni. Osim fizikalnih znaajki tla koje pogoduju
stagnaciji vode u povrSinskom dijelu profila te kwg sadrZaja organske tvari, glavni
ograntavajli ¢imbenik prinosa jest niska vrijednost pH tla, k@adjelomtno i rezultat
dugogodisnje mineralne gnojidbe dusSikom. Teren Kar&ira ravan reljef s prosjeom
nadmorskom visinom 97.2 m. Sire pogai obuhvéga umjerena kontinentalna klima s
prosjg&gnom godiSnjom temperaturom od 10.7°C te ptosen godiSnjom kotinom
oborina od 865 mm (1965. — 1990. godina). Obje mmdstrazivanja bile su toplije od
viSegodiSnjeg prosjeka (2008.: 1.9°C i 2010.: 0)8t0k je godisnji hod oborina bio
izuzetno varijabilan u odnosu na prosjek. Na tembljance vode u tlu, utdeno je da je
2008. godina bila je mnogo susSnija od referentrexgloblja i 2010. godine, koja se pak
smatra ekstremno vlaznom u odnosu na prosjek.

Ruralni krajobraz ¢ine manja obiteljska gospodarstva dok hidromekoar tla s
intenzivnom poljopriviedom dominiraju u sklopu ¢ie poljoprivrednih povrSina
smjestenih izvan naplavnog podjai Lonjskog polja. Pokusna povrsina Kkoristi se ok
viSegodiSnjeg istrazivanja utjecaja mineralne giimi dusikom (N) na prinos vaZznijih
ratarskih kultura, agronomskuciokovitost gnojidbe te ispiranje nitrate, u okviru
znanstvenog projekta “Gnojidba duSikom prihvatljiza okolis” (Voditelj projekta:
Prof.dr.sc. Milan Megi 178-1780692-0695, MZOS). Pokus ukupne povrsinelad4 ha
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postavljen je prema shemi bloknog rasporeda s %awmtir mineralne gnojidbe u 4
ponavljanja. Veltina osnovne parcele za svaku varijantu je x3Q30 m, uklj@ujuci

meduprostore. Pokusne varijante ukijyu:

. Kontrola—negnojeno,

Il. NoPK,

Il N1o0PK,

V. N1s0PK,

V. N2ooPK,

VL. NasoPK,

VII. N2s0PK + Fosfogips,
VIII. N2soPK + Dolomit,

IX. N3oPK (kg N ha).
Istrazivanje u okviru doktorske disertacije uklpalo je vegetacijske godine 2008. i 2010.
s ozimom pSeniconilfiticum aestivuni.) kao test kulturom i standardnim agro-tetinin
mjerama gospodarenja. Za ozimu pSenicu od ukupheirk® fosfora i kalija odnosno PK
gnojiva, 2/3 primijenilo se pri osnovnoj obradi {b6-30 cm dubine), a 1/3 zajedno s 30 %
N neposredno prije sjetve. Ostali duSik koristio &z prihranjivanje u tri obroka
primjenjujwi kalcij-amonijev nitrat (KAN): 1. 25 %, Il. 25 % illl. 20 %. Prvo
prihranjivanje provelo se getkom proljetnog busanja, a drugo i¢eeu fazi vlatanja.
Gnojidba za ozimu pSenicu iznosila je 500 kg korkghe®g mineralnog gnojiva NPK 10-
30-20, za varijantu s k@&inom N od 200 kg, kao i za sve varijante s viSinid&oama N.
Odgovarajda kolicina fosfora (150 kg #®s) i kalija (102 kg KO) za varijantu bez N te za
varijante sa 100 i 150 kg N aplicirala se s pojaghim gnojivima, tripleksom (334 kg) i
60% kalijevom soli (170 kg). Korekcija gnojidbe Né dhetodikom preddenih vrijednosti
vrSila se pojedinaim gnojivima (urea, KAN). Za sjetvu ozime pSenkeistile su se sorta
Fiesta (2008. godina) u kalini od 300 kg sjemena Hae sortalucija (2010. godina) u

koligini od 280 kg sjemena Ha
Biljni materijal

IstraZivanje je provedeno u dvije razvojne fazarezipSenice (vlatanje — F8 i klasanje —

F10.5, Feekes™ skala) te nakon Zetve tijekom vegskéa godina 2008.Triticum aestivum
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L. — sortaFiestg i 2010. {riticum aestivumL. — sorta tucija’). Ozima pSenica je
pouzdan indikator simptoma d8og stresa izraZzenih u oblikuéanja listova, smanjenja
lisne povrSine i intenziteta fotosinteg€astori i sur., 2005.)Svojstva ozime pSenice pod
utjecajem su genekih ¢cimbenika u interakciji s ekoloSkim uvjetinjBalogh i sur., 2006.)
U okviru ovog istrazivanja, okolisSni stres je zajeds ostalim faktorima koji djeluju u
poljskim uvjetima postignut kroz eksperimentalnzajh, odnosno dvije vegetacijske
godine, dvije razvojne faze i ragle kolicine gnojidbe dusikom. Uzorkovan je prvi list
ispod klasa ili zastavica na kojem su izvrSenantka mjerenja i laboratorijske analize.
Zastavica cini oko 75 % efektivne lisne povrSine koja pridonasalijevanju zrna
(Beuerlein, 2001.)Usjev pSenice u razdoblju viatanja vrlo je ogjetta nedostatak duSika,
¢ime se postize dobra osnova za klasifikaciju bdjakrazkitim statusom dusSika ponio

analizein situizmjerenih hiperspektralnih podataka.

Uzorkovanije biljnog materijala, terenska mjerenja i laboratorijske analize

Uzorkovanje lista ozime pSenice i terenska mjerémyaSena su za svaku vegetacijsku
godinu i sortu tijekom dvije razvojne faze ozimepg§e, vliatanja i klasanja, te neposredno
prije Zetve u svrhu analize zrna. Shema uzorkovpo@razumijevala je direktno dkasto
prikupljanje uzoraka biljnog materijala sastavljgnod 10 zastavica prema mreznom
rasporedu sa svake od 36 pokusnih parcela na powdi 1nf na osnovi prostorne
varijabilnosti odrédene razkitim razinama gnojidbe. Spektralni podaci uKluali su
nedestruktivho mjerenje refleksije elektromagnegski@enja (faktor refleksije) s povrSine
lista, dok su agronomske varijable potrebne zaajakalibracijskog model&inili sadrzaj
ukupnog dusika u listu i zrnu (TN %), indeks sagirddorofila u listu (CCl), prinos zrna i
ucinkovitost gnojidbe dusikom (NUE). Precizna poacivakog uzorkovanja zabiljeZzena je
GPS urdajem (£ 4 m). Isti uzorci biljnog materijala koe$i su za standardne
laboratorijske analize sadrzaja ukupnog N u subaii tlista. Neposredno prije Zetve na
svakoj pokusnoj parceli uzeti su uzorci ozime pders povrsine od 1 Todretene istim
mreznim rasporedom s ciljem odieanja gustée sklopa i sastavnica prinosa. Nakon Zetve

odreien je prinos zrna ozime p3enice koji je standamtizha jedinice dt Waukupne suhe
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tvari. Stacionarna nedestruktivha mjerenja hipeispine refleksije lista ozime pSenice u
poljskim uvjetima provedena su terenskim spektroraétrom FieldSpec®3ASD Inc.,
SAD) s rasponom valnih duljina elektromagnetskog spebdr 350 do 1050 nm, intervalom
uzorkovanja od 1.4 nm i spektralnom rezolucijom3odm, biljezéi simultano podatke za
700 valnih duljina. Snimanije je izvr$eno na 10 aeisa uzorkovanih na povrsini od m
koje su predstavljale pod-uzorak svake pojedingp@ientalne parcele (ukupno 360
spektralnih refleksija lista po razvojnoj fazi).oBpek 10 uzastopnih mjerenja spektralne
refleksije ¢inio je jedan podatak za isti uzorak. Uprésjanje spektra reduciralo je Sum
spektralnog signala u danom rasponu valnih duljimaleks sadrzaja klorofila (CCI)
odreien je takder brzo i nedestruktivnan situ rucnim klorofilmetrom CCM-200
Chlorophyll Content Mete{ADCBioscientific Ltd., Engleskana istih 10 zastavica po
svakoj parceli. @tanja apsorbiranog i reflektiranog 2emja u dvije valne duljine (crveno -
653 nm i infracrveno - 931 nm) izmjerena su naisietastavice, te analizirana kao prosjek
3 uzastopna mjerenja istog lista. Uzorci lista ¢k od 10 zastavica) i zrna ozime pSenice
uzorkovani s 1 mpo parceli analizirani su standardnim destruktiviiaboratorijskim
analizama sadrzaja ukupnog dusika (TN %) metoddmogsagorijevanja na instrumentu
CHNS Elemental Analyzer Vario Macro prema HRN 1S@818:2004. Navedene
laboratorijske analize koriStene su kao referemtnarenja za kalibraciju predikcijskih
modela baziranih na spektralnim podacima kao i aeelkcijske analize. Dva dodatna
indikatora ukljena u izradu modela izhanata su na temelju izmjerenih i analiziranih
varijabli. Empirijski su iz refleksije lista izvede vegetacijski indeksi (VI). Na temelju
korelacijskih koeficijenata iznael refleksije svake pojedine valne duljine i agroséin
varijabli, a uzimajdi u obzir i spektralna ri@la te uobiajeno koriStene indekse, odabrana
su najznaajnija spektralna podga i valne duljine na temelju kojih su izxnati NDVI
[(Rnir—Rrep)/(RnirtRrep)] | RVI (Rair/Rrep) indeks (R-refleksija; NIR-blisko infracrveno
podriije spektra; RED-crveno podije spektra). Kao relativni indikator agronomske
ucinkovitosti odabrana je dinkovitost gnojidbe dusSikom (NUE) izanata na temelju
jednadzbe: NUE = (N izneser N izneseg) / koli¢ina N u gnojivu % (G-tretirana parcela;

K-kontrola; N iznesen— prinos zrna x sadrzaj ukupNou zrnu) Raun i sur., 2002.).
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Statisticka obrada podataka

Analiza spektralnih podataka metodama multivargaanalize provedena je u softverskom
alatu za analizu spektralnih podataka Unscramhle(@AMO Software AS., Norveska)

u statisttkom paketu Statistica 8.(BtatSoft, Inc., SAD) Spektralni podaci vizualno su
interpretirani u aplikaciji ViewSpec Pro 4.07ASD, Inc., SAD) nakon ¢ega su
modificirani iz .asd oblika datoteke u .ASCII oblpomau softvera ENVI(Research
Systems, Inc., SAD)Originalni spektralni podaci ohtani su metodama predtretmana i
transformacije pomau razlgitih algoritama kako bi se izbjegli fenomeni “ponadk
(“shift”) i ,Suma“ (“noise”) kojima je otezano raativanje varijabilnosti u podacima.
KoriSteni su prva i druga derivacija refleksije liaearizacija originalnih spektralnih
podataka pomtu Savitzky-Golay filtera i polinomijalne funkcijewubog reda za derivacije

i izravnavanje podatakge Maire i sur., 2004.)Za potrebe analiza regresije uklonjene su
valne duljine do 400 nm i iza 1040 nm zbog slakiggaa instrumenta. U svrhu smanjenja
koli¢cine podataka i olakSavanja kompleksnih st&tgti analiza odabrana je svakacae
valna duljina¢ine¢i ukupno 231 podatak kroz puni spektralni raspamgene refleksije i
njenih razlgitih transformacija. Nezavisne varijabdaili su spektralni podaci — refleksija,
1. i 2. derivacija refleksije, vegetacijski indelk@fl) i glavhe komponente spektralnih
podataka (PC), dok su sadrzaj ukupnog dusSika u iligrnu ozime pSenice (TN), indeks
sadrzaja klorofila (CCI), prinos ic¢inkovitost gnojidbe duSikom (NUE) odabrani kao
zavisne varijable. Analiza glavnih komponenata ([P&dyiStena je za smanjenje dimenzije
podataka i kolinearnosti. Multivarijatni linearntatisticki modeli (SLR, MLR, PLSR),
nelinearna analiza strukture podataka pé&maie¢ih algoritama (ANN) i klasifikacijske
analize (DA, CLA, ANN) generirani su u svrhu pragge biokemijskih i agronomskih
svojstava ozime pSenice i diskriminacije kategodastne gnojidbe na temelju prve
derivacije spektralne refleksije u obliku PC i \Rovezanost spektralnih podataka lista
pSenice s vrijednostima izmjerenih varijabli ozirp8enice istrazivala se i analizom
korelacije (CA) kako bi se identificirale ztggne valne duljine i iziaunali VI. Kroz
statisttku analizu multiple linearne regresije prikazanigéavni odnosi izméu spektralnih
podataka i parametara ozime pSenice u obje godimaZivanja. S obzirom na bolju

izvedbu modela sa sortom “Lucija” (2010) u fazi talga (F8) u odnosu na kasniju
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fenofazu i sortu “Fiesta” (2008) u obje faze, drugadina istrazivanja odabrana je za
daljnje modeliranje. Drugi razlog za detaljnu analsamo jedne godine odnosno sorte bio
je svesti dimenzije doktorskog rada na optimalalimen kroz smanjenje broja prikazanih
rezultata. Vizualna analiza spektralnih krivuljagh CMLR provedene su za sve podatke, no
samo su rezultati MLR prikazani u cijelosti. |zdoecetiri varijable ozime pSenice, model
prinosa zrna pokazao je najbolju izvedbu i u CALR te na osnovu toga bio odabran za
daljnje regresijske (SLR — VIs, PLSR, ANN) i klakdcijske modele (DA, CLA, ANN).
Svaki od navedenih modela testiran je u svrhu pregjpouzdanosti i predikcijske
sposobnosti na temelju odenog broja laboratorijski utdenih vrijednosti zavisnih
varijabli korist&i ,leaven-out” ili potpunu unakrsnu validaciju (svaki pojedini uzorak
koriSten je za testiranje procjene modela na tenmijh ostalih uzoraka). U svrhu analize
to¢nosti i izvedbe modela odabrani su slij@idsatisteki parametri: korelacijski koeficijent
(r), koeficijent determinacije (& korjenovana srednja kvadratna pogreska (RMSE) te
funkcija pogreske u obliku sume kvadrata (SOS)adkusne entropije (CE) za ANNete
algoritme. Modeli su m#sobno usporeni u svrhu definiranja modela procjene svojstava
pSenice s najboljom predikcijskom i klasifikacijghosposobnadi. Statisttka analiza
razlika u sadrzaju TN u listu i zrnu ozime pSeni€Cl u listu, NUE, prinosu i
vegetacijskim indeksima NDVI i RVI prema varijantargnojidbe provedena je analizom
varijance (ANOVA) u statistkom paketu SAS 9.1SAS Institute Inc., SAD)Provjera
znaajnosti za cjelokupnu statigkiu analizu izvrSena je za razinu vjerojatnosti psge od

p < 0.05. Duncan-ov post-hoc test korisSten je wkolie F test bio zr@jan za razinu

vjerojatnosti pogreske od<0.05.

REZULTATI, RASPRAVA | ZAKLJU CCI

Varijante du&ine gnojidbe kao i zwajna varijabilnost unutar pojedinog tretmana
uzrokovana klimatskim prilikama, gen#im svojstvima sorte, razvojnim
karakteristikama, zrajkama tla i rezidualnog duSika u tigBerrano i sur., 200Q.)
rezultirali su Sirokim rasponom vrijednosti biokéskih i agronomskih varijabli ozime
pSenice: sadrzaj TN u listu od 0.73 % do 4.27 %t @C3.0 do 50.0; sadrzaj TN u zrnu od
1.89 % do 2.67 %; prinos od 0.9 dt’hdo 50.1 dt hd; i NUE od 3.1 % do 57.4 %.
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Uzimajii u obzir sve vanjskéimbenike, zabiljeZzen jecekivani utjecaj dughe gnojidbe
na varijable ozime pSenice, Sto je bilo od izuzetagnosti za daljnju analizu spektralnih
podataka i modeliranje. Analizom varijance (ANOVA)vrdene su statistki znaajne
razlike izmeu srednjih vrijednosti sadrzaja TN u listu i zri@CI, prinosa, NUE kao i
spektralnih indikatora NDVI i RVI izmjerenih za geisorte/vegetacijske godine, dvije
vegetacijske faze pod utjecajem ré&itl varijanti mineralne dusne gnojidbe. Sve
istrazivane varijable ovisile su o razinama dnéi gnojidbe, dok su im se vrijednosti
pove&avale s rasitim dozama duSika (ANOVA, p < 0.001). Do istih zakhka doSli su
Barraclough i sur. (2010.)te Lopez-Bellido i Lopez-Bellido (2001.)u svojim
istrazivanjima. Kroz analizu ukupnog utjecaja s¥dktora nain situ i laboratorijski
izmjerene varijable, utdena je statistki znatajna interakcija gnojidba razvojna faza
ukazujii time na Sirok raspon reakcija odemih svojstava. Statigki znatajne interakcije
sorta/vegetacijska godinaazvojna faza i gnojidbasorta/vegetacijska godina zabiljeZzene
su samo za sadrzaj TN u listu ukaZijua ovisnost razvoja biljke o klimatskim prilikama
rezimu vode u tlu, te na z&gni utjecaj dukine gnojidbe na svojstva sorte. Prema
rezultatima ANOVA-e za ukupni utjecaj, sorte sugiesle sltno na razllite razine
gnojidbe duSikom u obje razvojne faze. Osim togepastojanje statiski znaajne
interakcije gnojidbax sorta/vegetacijska godina za sadrzaj TN u listajezen tijekom
vlatanjacvrsta je osnova za zak§ak da se spektralna istrazivanja ozime pSenice mogu
provoditi tijjekom faze vlatanja neovisno o sortniazlikama. Na osnovi navedenih
rezultata i vizualne evaluacije spektralnih krieuipoze se zaklfiti da su hiperspektralni
podaci odrazili kompleksne informacije o razvojunoe pSenice. Na temelju ANOVA-e i
statistéki zna&ajnih razlika u agronomskim varijablama izioe pojedinih varijanti,
prosje&ne spektralne krivulje lista s devet varijanti gdbg grupirane su u tri klagge su

se srednje vrijednosti riasobno statistki znatajno razlikovale. Pretpostavlj&@uda je za
statisttki znaajno razléite varijante gnojidbe dusSikom ovo indikacija indhanog
dusinog stresa, spektralni otisak lista je kasnije $¢teri u klasifikaciji razine gnojidbe
odnosno biljaka s razitim statusom duSika. Skn pristup Klasifikaciji na temelju
spektralnih podataka koristili suAlchanatis i Schmilovitch (2005.)Varijante duine

gnojidbe najbolje su se razlikovale na temelju s@dhkih podataka lista snimljenih u fazi
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vlatanja sortd_ucija. Refleksija se pov@la u blisko-infracrvenom podtju spektra (NIR)
(> 740 nm), a smanjila u crvenom rasponu (660 —r&8) za kategoriju Péo i N3go (kg N
ha'). Iste rezultate u svom radu patuju Nguyen i Lee (2006.)Nedostatak dusika u
kategoriji s Kontrolom i varijantom Nutjecao je na znatno paianje refleksije crvenog
dijela spektra te smanjenje NIR refleksije. Upramea promjena spektralne refleksije
smatra se kljgnom u detektiranju nedovoljne ishranjenosti bilike&Sikom(Serrano i sur.,
2000.) Najvece razlike u spektralnoj refleksiji izrig varijanti dusine gnojidbe kao i
najjae korelacije s varijablama ozime pSenice d#vie su u vidljivom i rubnom crvenom
podrwiju spektra koje je najvisSe doprinijelo i ekstrakgjavnih komponenata (PC). Kod
refleksije uzoraka bez dusie gnojidbe ugen je pomak crvenog ruba premadanavalnim
duljinama Sto navode Penuelas i sur. (1994t Zhao i sur. (2005.)Vece kolicine
apliciranog dusSika te puni razvoj usjeva tijekonatahja (F8) utjecali su na smanjenje
refleksije vidljivog i povéanje refleksije NIR spektra. Potpuno suprotan efe&ba dijela
spektra bio je rezultat niskog sadrZaja klorofilbstu i ranijeg sazrijevanja na parcelama s
nedostatkom dusSika kao i tijekom faze klasanja (b}10zime pSenice. Apsorpcija Zemja
izmjerena u klasanju 2010. godine jasno je ralHudevet varijanti dughe gnojidbe
uzimajwi u obzir raspone vrijednosti agronomskih varijgtema tretmanima. Tijekom
vlatanja, varijante bez duSika spektralno su seajgde od ostalih koje su zbog intenzivnog
rasta biljke i véeg usvajanja duSika imale i viSi relativni sadridgrofila u listu.
Usporedba varijante IX (g izmeiu sorata/vegetacijskih godina ukazuje na jasniju
diskriminaciju razvojnih faza pSenice tijekom 20@®dine Sto se objasSnjava nepovoljnim
klimatskim prilikama u obliku suSe tijekom vlataraja se kasnije odrazila na slabijem
razvoju i brzem sazrijevanju usjeva. Ptatelljeve ovog istrazivanja, moze se zaklju
kako su raztiite kolicine duséne gnojidbe izravno utjecale na cjelokupnu razimaspon
spektralne refleksije lista ozime pSenice ¢S rezultate navode Hansen i Schjoerring
(2003.).Visoke korelacije izméu spektralnih, biokemijskih i agronomskih varijaff8 —
Lucija) dokazale su kako prinos ozime pSenice [r (ND¥ytinos) = 0.905] kao konkretan
parametar moze biti odabran za ulaznu zavisnu alduij u prognostkim modelima.
Tijekom vlatanja utwtena je i statistki znatajna korelacija izmé& CCl mijerenja i

sadrZzaja TN u suhoj tvari lista (r = 0.922) Stov&d mnogo ranije potvrdiliFox i sur.
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(1994.) te Evans (1983.) Dosadasnji rezultati ovog istrazivanja Gpu na odabir faze
vlatanja za prognozu prinosa ozime pSenicee se pruza mognost za optimizaciju
prinrane duSikom. Mautim, treba napomenuti da bi se daljnja istrazigamjebala
usredotditi na prognozu prinosa na temelju spektralnih smja ozime pSenice u ranijim
fazama razvoja kao Sto je busanje, [udia je u nasSim uvjetima zbog Keavegetacije
naglasak na ,ranoproljetnoj* gnojidbi pSenice. Paerazultatima korelacijskih analiza za
svaku pojedinénu valnu duljinu, jaka povezanost izdoe spektralnih i agronomskih
varijabli utvidena je tijekom faze vlatanj@bdel-Rahman i sur. (2010.), Penuelas i sur.
(1994.), Read i sur. (2002t¢ Zhao i sur. (2003.p svojim istrazivanjima ukazali su na
slicna spektralna podéa zna&ajna za preddianje statusa duSika u usjevu. dra
znaajnih valnih duljina nalazi se u vidljivom i rubnoorvenom prema NIR podgju
spektra ukazujti na opttka svojstva klorofila. Korelacijska analiza prveridacije
refleksije pokazuje maksimalnisa sadrZzajem TN u listu na 602 nm i 671 nm (r83)).s
relativnim sadrzajem klorofila (CCI) na 602 nm (0:86), sa sadrZzajem TN u zrnu na 896
nm (r = -0.89), te s prinosom na 587 nm (r = 0.98%i i sur. (2008.takader utviduju
blisku povezanost akumulacije duSika u listu ozip$enice s poloZzajem crvenog ruba.
Sadrzaj TN u listu i zrnu, CCI i prinos ozime p&enipokazali su vrlo slan uzorak
korelacije sa spektralnim podacima Sto je opet pame i s visokim korelacijskim
koeficijentima izmédu te cetiri varijable. Prva derivacija refleksije rezuvdtia je s viSimr
vrijednostima u odnosu na originalne podatke. Najkorelacijski koeficijenti izméu
prinosa ozime pSenice i vrijednosti refleksije werrom do rubnom crvenom i NIR
podruwju spektra izdvojili su valne duljine za izan vegetacijskih indeksa. Prerdardan
(1969.)i Rouse i sur. (1974.)zratunati su NDVI i RVI indeksi iz vrijednosti reflelsi na
704 nm Kcrveno) | 785 nm Knir). VI sa slénim spektralnim zn&jkama utvdeni su i u
istrazivanjima autor&arter (1994.), Barnes i sur. (2000.), Moges i §2005.)i Stone i
sur. (1996.)koji su utvrdili jake korelacije sa sadrzajem kifila, statusom dusika i
prinosom zrna. Na osnovu provedenih korelacija geare@ su jednostavni linearni
regresijski modeli za procjenu prinosa ozime p3eniz vrijednosti NDVI i RVI
integriranih na temelju mjerenja u vlatar(fdBenedetti i Rossini, 1993.YJtvrdene su vrlo
jake korelacije izméu prinosa i vegetacijskih indeksa: r (NDVI) = 0/91RVI) = 0.87 (F8
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- 2010. - sortd.ucija) (p < 0.05). Postignuti rezultati slazu se sajogklma skupine autora
Girma i sur. (2006.koji iznose da rezultati i korelacijskih i regrekih analiza sugeriraju
NDVI izmjeren sredinom vegetacijskog razdoblja kamuzdan prediktor prinosa ozime
pSenice. Méutim, u fazi klasanja iste sorte ufena je tek srednja korelacija izdue
prinosa i istih vegetacijskih indeksa (r ~ 0.5)atticke i ANN metode istraZivanja
spektralninh podataka koriStene su za razvijanje efeodoreduianja biokemijskih i
agronomskih varijabli ozime pSenice iz spektralpibdataka u obliku prve derivacije
refleksije. Ustanovljene su jednadzbe regresijeezmspektralnin varijabli u obliku
glavnih komponenata i sadrzaja TN u listu i zrn@&lCprinosa i NUE. Primjena prve
derivacije refleksije kao nezavisnog prediktoraapala je povezanost s varijablama ozime
pSenice u odnosu na originalnu refleksiju i njenugd derivacijuZhao i sur., 2005.)Prva
glavna komponenta (PC1) objasnila je 63 % varijadsti spektra lista, dok se 12 %
varijabilnosti nalazilo u PC2. Multipla linearnagresija (MLR) rezultirala je spektralnim
modelom od 7 PC kaoiji je objasnio 83 % varijabilmasprinosu ozime pSenice te ustanovio
visok udio varijance u biokemijskim svojstvima #stzrna (R ~ 0.8, P < 0.05) (F8, sorta
Lucija). Modeli predvianja varijabli sortd_ucija (2010.) razvijeni na temelju mjerenja u
klasanju (F10.5) bili su manje precizni u usporesihlatanjem (F8) Sto se prema nekim
rezultatima(Ferrio i sur., 2005.)noZe objasniti ptetkom translokacije duSika u zrno te
starenjem listova pod utjecajem nepovoljnih abioli cimbenika (nedostatak N,
prekomjerno zadrzavanje vode zbog obilnih oborig#) je ograniilo moguwnost
spektralne refleksije lista datinkovito prati promjene u produktivnosti ozime pi&en
Vrijednosti koeficijenta determinacije §Rza unakrsno validirane modele iznosile su 0.67
za sadrzaj TN u listu, 0.61 za prinos, 0.56 zazgdrfN u zrnu i 0.54 za CCI. Predanje
NUE iz Zetvenih podataka procijenjenih hiperspditra snimanjem uspjesSno je
provedenor( za izmjeren vs. predien NUE bio je 0.81, p < 0.05).dlaa ove povezanosti
ohrabrujéi je rezultat koji ukazuje na visoku predikcijskposobnost modela baziranih na
hiperspektralnim mjerenjima u vlatanju u procjegranomskih varijabli ozime pSenice
(Wright i sur., 2004.) ANN modeli pokazali su se na&@juakovitijima u prepoznavanju
kompleksne veze izmie prinosa ozime pSenice.ycija) i spektralne refleksije lista

(kalibrirani i validirani setovi podataka s koefestima korelacije r = 0.95 odnosno r =

lvana Sestak — Doktorski rad: Procjetiakovitosti gnojidbe dusikom spektroskopijom usje&enice



Doctoral thesisUse of field spectroscopy for assessment of génouse efficiency in winter wheat

0.92, RMSEC = 2.57 dt Haodnosno RMSEP = 4.41 dt Hau odnosu na odgovara
SLR-VIs, MLR i PLSR modele, ukazujutime na dobru izvedbucenja algoritama ANN-a
Sto su u svom istrazivanju dokazalChen i sur. (2007.)JUtvrdene su male razlike izrie
MLR i PLSR regresijskih parametara nebitne za ostya prognoze prinosa i optimizaciju
viSekratne prihrane dusikom tijekom vegetacijskagdoblja. 1zvedba PLSR modela s 8
faktora rezultirala je s najgem postojanai u predikciji koja je vidljiva u maloj razlici
izmedu RMSEC (4.10 dt hY i RMSEP (4.61 dt H) uz visoku predikcijsku sposobnost
(validacija R =0.84), te pokazala da je magupredvidjeti prinos zrna in-situ izmjerenih
hiperspektralnih refleksija lista. Podja EM spektra zn@jna za PLSR model prinosa
ozime pSenice obuhvatila su vidljivi dio spektrad® nm do 670 nm i 690 nm do 710 nm
s podréjem crvenog ruba od 730 nm do 770 nm. Iste speidrabne ututene su i u
korelacijskim analizama. Kao Sto je vidljivo iz debnih rezultata te istrazivanja skupine
autora Ferrio i sur. (2005.)i Atzberger i sur. (201Q.)model razvijen na temelju
eksplanatorne PC analize i PLSR kalibracije uhiatmm empirijskom karakteru uspio je
integrirati fizioloSke karakteristike iz refleksijgelikog broja valnih duljina kako bi
uspjesno procijenio prinos ozime pSenice. Najvidgreska predikcije utdena je za SLR
model odnosa indeksa RVI i prinosa (RMSEP = 5.7Bad). To¢nost modela baziranih na
vegetacijskim indeksima manja je za oko 23 % (\eiih) u usporedbi s ANN procjenama,
te 20 % u odnosu na PLSR model. Bez obzira na maeedhzlike, NDVI i RVI ostvarili su
vrlo jaku povezanost s prinosom ozime pSenice Skapuju i rezultati unakrsne validacije
modela: B = 0.80 odnosno &= 0.73. Pogreske predikcije (RMSEP) dobivene stiéitim

i ANN modelima mogu se smatrati vrlo prihvatljivinikoliko se uzme u obzir sloZenost
procjene prinosa i agronomskih varijabli pSeniceteraelju spektralnih podataK&no i
sur., 2005.)Na osnovi podjele varijanata dé$e gnojidbe u tri statistki znatajno razléite
kategorije (analiza varijance varijabli ozime p$e)j izvrSena je klasifikacija spektralnih
podataka izmjerenih u vlatanju soitecija (2010.) prema principu koji su upotrijebili i
Alchanatis i Schmilovitch (2005.Klasifikacijskom analizom (DA, CLA i ANN) utdeno

je da su hiperspektralna mjerenja tijekom najbrzagyoja pSenice (F8)c¢inkovitija na
mjestima s nedostatkom duSika nego tamo gdje poafgk duSika Sto su zakfii i

Jensen i sur. (2007 Ypravo je taj rezultat od izuzetne vaznosti wam@oj poljoprivredi u
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smislu prilagodbe prihrane duSikom zahtjevima biljkdentifikacije prostornih uzoraka
fizioloSkog stresa vegetacije te prognoze prin@&aachan i sur., 2002.Klaster analiza
pokazala je da se varijante bez dodanog dusSika mexdikovati od ostalih kategorija, i to
najvise na temelju plavog, zelenog i rubnog crvepodritja EM spektra koji ukazuje na
promjene u sadrzaju klorofila. Multivarijatna diskinantna i klaster analiza bazirana na
glavnim komponentama spektra (PC) klasificiralergarenja lista ozime pSenice statikti
razlicitin kategorija statusa dusika sa 100 %-tnotmé&xu. Karimi i sur. (2005)objavili su
slicne rezultate prema kojima jectwst klasifikacije dughe gnojidbe u kukuruzu na
temelju spektralnin podataka iznosila viSe od 95 Jédnako uspjeSna bila je i ANN
klasifikacijska analiza. Neovisno o inventarizakgs karakteru metoda klasifikacije
koriStenih u ovom istrazivanju, ekstremne kategodijiSéne gnojidbe bile su u potpunosti
izdvojive [I (Kontrola, N) and Il (Npsg, Naoso + dodaci, Nog)], dok je maniji udio
varijabilnosti, utvden u srednjoj kategoriji s najoptimalnijim k&ihama dusSika [Il (Moo,
N1so, Noog)] (kg N hal), vjerojatno posljedica utjecaja nekih dodatniblekkih faktora kao

i prirodne varijabilnosti tijekom vegetacijskog dablja. U nastavku istrazivanja, rezultate
klasifikacijskih analiza potrebno je validirati potu novih spektralnih mjerenja kako bi
bilo moguwe pouzdano predvidjeti fizioloSko stanje ozime p&en Rezultati ovog
doktorskog rada potduju visoki potencijal i primjenjivost terenske sprelskopije u
procjeni stanja ozime pSenice tijekom razvoja véeer se mogu Koristiti u razltim
prostornim mjerilima, Sirokom rasponu stresa duSikao i u podrgjima s
neograntavajwim koli¢inama biljci raspolozivog duSika. Kna spektralna obiljezja i
dobiveni algoritmi predstavljaju kalibracijsku ostwoza daljnje nedestruktivno i ,real-
time" pratenje statusa duSika u ozimoj pSenici hiperspektrattaljinskim istrazivanjima.
Slijedeta nastojanja trebala bi se usmijeriti peargu koliine i sloZenosti uzoraka kako bi
izvedeni model bio primjenjiv u raznovrsnim agrolel&kim uvjetima. Istrazivanje bi
trebalo nastaviti u smjeru integracije amdn i satelitskih hiperspektralnih informacija s
modelima dobivenim mjerenjima u okviru ovog rade,izrade softverske platforme s
integriranim algoritmima za tehnologiju varijabiln@imjene duSika (VRT). Rezultati
prostorne raspodiele istrazivanih varijabli ozintempice mogu se iskoristiti za promjene i

poboljSanja agro-teh&kih mjera u gospodarenju narednim kulturama u pledo.
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1 INTRODUCTION

Efficient nitrogen (N) fertilization is crucial foeconomic cereal crop production and
environmental protection. Understanding procesdest tgovern N uptake and its
distribution in wheat crops is a major importancghwespect to both environmental
concerns and quality of crop products. Becauseama third of applied nutrients are used
by wheat plants during vegetation period, it isyvenportant to guide field management
practices toward optimizing quantity of fertilizexecreasing expenses of production and
improving efficiency of wheat plants to absorb, @oalate and reutilize nitrogen. Nitrogen
status in wheat leaves and grain represents imdicAtN accumulation in plant indicating
root system activity and translocation of nitrogerthe top of the plant. Wheat properties
are mainly caused by effect of genetic factorsnteriaction with environmer({Balogh et
al., 2006)as a set of very variable abiotic factors whicmaiyic balance is essential for
plant development through the whole vegetationggeiioss of chlorophyll (Chl), which is
approximately proportional to leaf nitrogen contestassociated to environmental stress
(Hendry and Price, 1993This investigation aims to assess winter whetbgen status
influenced by different mineral nitrogen fertilimat levels using Chl and N indirect

detection. Location and the condition of the expent during two vegetation periods

Figure 1.1 - Satellite image of field experimen{Source: Google Earth, 2010).

Ivana Sestak — Doktorski rad: Procjetiakovitosti gnojidbe dusikom spektroskopijom usjg#&enice
1



Figure 1.2 — Field experiment during stem extensiqgrheading and harvest of winter wheat
(2008, 2010).

However, to improve nitrogen use efficiency (NUR)winter wheat, there is an increased
need for reliable information on seasonal changezop N utilization. Both farmers and
industry stand to realize better returns on therestment with analysis of crops prior to
harvest. Better determination and classificatiorcip quality allow farmers to achieve
higher profits, and industrial buyers can lower tis& of purchasing out-of-spec product
(ASD Inc.).

New technologies using electromagnetic radiatidlected from plant leaves or canopies
have potential in evaluating and determining plaittogen stress under field conditions.
Ground-based remote sensing platform named hyparapéeld spectroscopy using many
very narrow bands of visible and near infrared (RINpart of electromagnetic spectra may
form a useful component of precision farming tedbgws and site-specific-crop
management programs in order to improve N manageimeaday's agroecosystems. The
sensor approach monitors actual growth conditiorer ¢ime. In the framework of this
research, field hyperspectral sensing was usedbfochemical modeling based on
qguantitative calibration techniques and statistic®rder to evaluate predictive ability of
VNIR spectroscopy in identification of wheat N stgfind prediction of yield and NUE.
Implementation of airborne, satellite and proxima&hote sensing in agronomy has made
an exceptional progress in developed countriekariast few decades. Non-contact sensing
or proximal remote sensing using field spectroraditer has shown to be a good approach
in detecting crop nutrient variability based on teéationship between the foliar optical

properties, particularly specific chlorophyll andtrogen spectral response, and its
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biophysical character. Some research has alreadyepr that variable levels of
chlorophyll/nitrogen concentrations in the leavan be a good indirect estimator, obtained
through spectral measurements, of a crop physicdbgondition. Vegetation has a unique
spectral signature which enables it to be distisiged readily from other types of land
cover or between itself by different species. Téftectance is low in both the blue and red
regions of the spectrum, due to absorption by dployll for photosynthesis. It has a peak
at the green region which gives rise to the gresloroof vegetation. Chlorophyll has a
relative low reflectance in the red part of thecel@magnetic spectrum, which means high
absorption. Low N content, dehydration or seneseeaftect leaf and stem chlorophyll
content which visible reflectance is increased.t@nother hand, healthy vegetation has a
higher and brighter response in the NIR than ingiteen part of the spectrum. The changes
in spectral response pattern of plant materiallrdsam phenologic changes through the
season.

According to these considerations, field spectrpgcbas a potential to be a highly
sensitive technique that allows rapid leaf reflacea detection as an early pre-visual
indicator of nutrient stress. Commercial applicasiohave been developed where
reflectance data are used as a basis for variabykgeNapplication, but utilizing only few
spectral bands already known to be efficient faeding N stress.

Ground-based VNIR hyperspectral sensing, charaatgricrop optical properties on the
leaf level, can provide functional data and nontdesive, cost-effective, rapid and
continuous quantitative assessment of crop vasablaportant for optimizing N
applications, thus replacing expensive and labd¢ensive laboratory testing used for
traditional soil and plant tissue analysis, andnglating the need for extensive field
sampling. However, it is an additional tool in asseg specific agronomic variables in
large-scale environments that should be alwayslatdd by specific number of standard
laboratory analyses. Calibration samples from tagjees are used for calibrating the
hyperspectral sensor and developing calibrationehddversion of the model is used for
measuring reflected energy and predicting the ¢mmlof plant material. Defining specific
spectral bands is also useful when deciding hovetsgeclasses would be grouped into

information classes when identifying nitrogen stres
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Ground-based remote sensing can be used to firichalpN rates directly or indirectly
through estimation of the crop N variability. Hovegyto be able to apply the required rate
of N, the calibration of the data with the crop r@wderistics is critical.

Data collected for use at the subfield and fiekklehave additional value for research,
testing, evaluation and recommendation when ingatpd in regional, national and also a
farm framework. Coupled with GPS, field spectrosc@s diagnostic approach offers
potential for improving farm management practicgsabsessing field spatial and temporal
variability. High resolution field spectra characteng crop optical features on the leaf and
plant canopy level can provide, at a relatively lowst, a detailed but not necessarily
precise quantitative assessment of crop growthcaop development variables (N status,
Chl content, biomass, and yield). Much detailedlysmi® of narrow-band leaf spectra
should be enabled using vegetation indices destrdse mathematical combinations of
specific wavelengths values. Due to efforts forriaying N use efficiency in winter wheat
production and environmental protection, there Egh interest to explore and introduce
in-field hyperspectral measurements as a souraesefiul information in monitoring crop
growth that can be easily and effectively used\fananagement decisions. Several studies
have illustrated the efficiency of this approadmgwing overall yield increases and more
uniform yield distributions. But, there is still @sue on using uniform spectral algorithms
independent of the crop growth stage, and on sefecf statistical modeling technique
with best predictive ability. More efforts shoul@ klirected on much detailed analysis of
narrow hyperspectral data to extract informationicltwill gave more precise quantitative
assessment.

This study addresses the potential of using notlacbmeasurements for discrimination of
nitrogen status in winter wheat treated with deéfgramounts of mineral nitrogen fertilizer
by developing nitrogen calibrations using spectfawbole fresh leaves and, thus, is

focused on the performance and interpretation pehgpectral modeling techniques.
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The most valuable and applicable scientific contitns of this doctoral research are as
following:
e Discriminating N status in winter wheat using fiefgbectroscopy will make

contribution to world knowledge about hyperspeattaracteristics of winter wheat

e Information established at the field level could d»dended to regional level by

satellite remote sensing technology

e The identified N-specific spectral algorithms mag Used for image interpretation

and diagnosis of wheat N status for site-specifindhagement

e Spectral data can be used for identifying areasrevtieere is potential of crops to

respond to additional N

e Estimation of NUE and yield based on spectral dallacontribute to winter wheat
non-destructive and real-time monitoring and magyph fundamental role in
supporting policy formulation and decision makimgN fertilizer management in

wheat production
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2 BACKGROUND

Crop nitrogen status is known to be a key indicatat one of the most critical and variable
factors for evaluating crop growth, increasing iehd improving grain qualitjVei et al.,
2008) Nitrogen application is usually the most impottaput for winter wheat production
because of yield increases associated with inargdsvels of nitrogen (N) fertilizeivarga

et al., 2001) However, cereal producers are today under pregsuicrease Yyields and
maintain profitability against a background of eowimental constraints and high N
fertilizer costs. Uniform applications within fieddliscount the fact that N supplies from the
soil, crop N uptake, and crop response are spatialiable. One of the main objectives of
agricultural producers to accurately detect plant N status and proWdeertilizerin a
right time to improve crop yield and quality, inas® N use efficiency, optimize farm
profitability, and to minimize N losses to the enwviment. Current N management
strategies for world cereal production systems hasgelted in low NUE, averaging only
around 33% of fertilized N recovered. Of the mdrant 56 million tones of fertilizer N
applied to all cereal crops each year, 66 % isr@cdvered by the crop, some of which is
immobilized in the soil and the rest is lost by itigfication, volatilization, gaseous plant N
loss, leaching and surface run@Raun and Johnson, 1999he higher N rates generally
result in decreased NUE values, reflecting a poop cise of fertilizer, as investigated for
winter wheat(Sieling et al., 1998; Arnall et al., 2009; Vuké\et al., 2008; Lopez-Bellido
and Lopez-Bellido, 2001)An increase in NUE of 20% would result in a sggifin excess
of $4.7 billion per yea(Raun and Johnson, 1999itrogen use efficiency (NUE) is known
to be less than 50% in winter wheat grain producsgstemgThomason et al., 2000)
Current methods of determining N fertilization saia winter wheat are based on farmer
projected yield goals and fixed N removal rates yn@t of grain producedLukina et al.,
2001) A mid-season split application of N fertilizeropides room for adjusting rates
according to crop growth thus maximum utilizatidnfertilizer is expecteqBoman et al.,
1995) This N management strategy can be further imgtdwe applying topdressing N
rates based on winter wheat needs to maximize wettiminimize input cost@rnall et

al., 2009) Development of innovative strategies that imprdNg¢E and minimize off-field
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losses is crucial to sustaining cereal-based faymkffective diagnosis and dynamic
regulation of plant N status must be based ontmeed-monitoring of growth characters and
nitrogen levels in crop plan{geng et al., 2008 Non-destructive, indirect measures of crop
health have been identified as possible alternstteesoil N testing for evaluating crop
growth and production capability and making manag@ndecisions about agricultural
inputs (Moges et al., 2004)Remote sensing (RS), especially ground basedrspeetral
reflectance measurements in the visible and néaréd part of electromagnetic spectrum
based on leaf optical properties have been evasqubtentially valuable agronomic tool in
site-specific management, aimed to solve probleawnd intensive agriculture. Crop
spectral reflectance is well correlated with cropvgh, so has the potential to provide
information about N statuiRaun et al., 2008)The main task of agronomic RS is to
determine the sensitive bands of spectral reflactand their derived parameters
characterizing vegetation canopies for indicatingwgh status, and then to determine the
quantitative relationships between spectral progerdnd agronomic parametgfeng et
al., 2008) Preliminary research shows that this approachezgdds the issue of spatial
variability and is accomplished at a time withire throwing season so that N inputs are
synchronized to match crop N uptgl&anahan et al., 20083emotely sensed estimates of
crop condition during the growing season as eardymmg of yield reducing stress are
potentially important source of spatial and tempaiaa for precision agriculture and a
valuable input to crop growth and yield models. Mitfield variation in red and NIR
canopy reflectance, and hence in normalized diffiegevegetation index (NDVI) which
uses these parts of the spectrum in the algorithay, result from spatial patterns in N
deficiency (Eitel et al., 2008) RS coupled with global positioning system (GP&) a
geographical information system (GIS) representiapinformation technology which
concept is to sustainable manage agricultural systeased on information and knowledge.
That means to use these comprehensive data foyiagpplariable-rate technology (VRT).
Optical sensing equipment that employs this apgraacnow commercially available to
growers and fertilizer dealers. But, adoption a$ tinformation technology by farmers is

expected to increase as appropriate decision suppstems become available to translate
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the acquired data into site-specific managemenisibes (McBratney et al., 2005;
Pimstein et al., 2009)

The foundations and main concept of remote sernglgs on fact that information about
an object can be obtain through the analysis i dagjuired by a device that is not in
contact with the object under investigatidlesand et al., 2004)Corresponding with this
explanation, field spectroscopy as proximal type R$ is the measurement of the
interactions of radiant energy with situ objects in the environmer{McCoy, 2005)
Remote sensing has its physical principle in treoth of electromagnetic spectrum and
reflectance of particular wavelengths of this speut (Havrankova, 2007) Spectral
signatures or spectral response patterns of platermal are based on energy-matter
interaction and defined by their reflectance oroabance, as a function of wavelength in
the electromagnetic spectrum. Hyperspectral sensingy specific narrow bands and their
mathematical combinations provides critical infotima in quantifying crop variables
compared to broad band&ong et al., 2003; Thenkabail et al., 2000npder controlled
conditions, the signatures result from electrom&ngitions of atoms and vibrational
stretching and bending of structural groups of atdhat form molecules. Fundamental
features in reflectance spectra occur at energgidethat allow molecules to rise to higher
vibrational states(Shepherd and Walsh, 2002$pectral properties of vegetation are
influenced by a limited set of spectrally activengmunds (Figure 2.1).
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Figure 2.1 — Typical spectral response characterists of green vegetation (from Christensen,
2004).
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Reflectance in the VNIR region (0.4-140n) is dominated by chlorophyll pigment, and
reflectance in the SWIR (short-wave infrared) reg(@.0-2.5um) contains overtones for
C-H, N-H, C-0, and Chlbearing compounds (protein, lignin, sugar and tke) (Curtiss
and Goetz, 1994)Leaf optical properties, gathered in the 350-1050 region of the
electromagnetic spectrum, contain information oanplpigment concentrations and leaf
cellular structure. “Peak-and-valley” configuratiohspectral reflectance curves for healthy
green vegetation is consisted of reflection andogdi®n features. Interaction of
electromagnetic energy with leaf pigments is retd to the visible wavelengths (400-700
nm) (McCoy, 2005) Chlorophyll (Chl) strongly absorbs energy in thavelength bands
centered at about 450 and 670 fintlesand et al., 2004When Chl is abundant in the leaf,
it dominates both reflection in the green and gttsam in blue and red bands. If a plant is
subject to some form of stress that interruptsn@gemal growth and productivity, it may
decrease or cease Chl production. The result & Gkd absorption in the blue and red
bands(Lillesand et al., 2004)The highest sensitivity of reflectance and absonpto Chl
variation is in the green (530-590 nm) and in & edge (around 700 nigtjatfield et al.,
2008) In the visible wavelengths relatively little eggris transmitted through the leaves.
Reduced leaf moisture results in an overall in@eak reflectance in this part of the
spectrum(McCoy, 2005) Figure 2.2 shows a depiction of the plant leaicttire and how
different parts of the plant react with light energChlorophyll is contained within
numerous membranes called chloroplasts locateldeirstem and leaf structure, giving the

plant its green color.
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Figure 2.2 — Interaction of leaf structure and Surenergy represented with different parts of

electromagnetic spectrum(Source:leddv.com/Basic_ FACTs_E xp_15.html
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By contrast, reflectance and transmittance are bstially high in the near-infrared regions
(700 to 1300 nm) because there is very little diemoce by pigments and also because there
is considerable scattering at mesophyll cell wakifaceqSlaton et al., 2001; Pinter et al.,
2003) In that region, a plant leaf typically reflect8-80 % of the energy incident upon it.
Most of the remaining energy is transmitted, siabsorption in this spectral region is less
than 5 %. Plant reflectance in the range 700-1300results primarily from the internal
structure of plant leaves (Figure 2.3). Becausedhll structure is highly variable between
plant species, it provides discriminating betwepecges, even if they look the same in
visible wavelengths. Also, many plant stressesr alar-infrared region, and sensors

operating in this range can be used for vegetati@mss detectiofLillesand et al., 2004)

Reflectance, %
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400 600 800 10001200 1400 1600 1800 20002200 2400

Wavelength, nm
Figure 2.3 — Typical reflectance spectral signatureof soil and crop (after Scotford and Miller,
2005).

Gausman et al. (1971¢ported the reason for the impact of growth stageeflectance
reading of young plant tissue which had less a#cepwithin the mesophyll than older
leaves, which, thus, showed decreased NIR speetdince. For example, relationship
between NDVI and N status in winter wheat sugg#dstsneed for growth stage specific
calibration(Sembiring et al., 20005 cotford and Miller (2004%ound that NDVI values of
winter wheat canopies gradually increased with timéil a maximum (GS 45 - mid-
booting) was reached before starting to decreakies gharp dissimilarity in reflectance
properties between visible and NIR wavelengths tpide a majority of remote approaches

for monitoring and managing crop and natural vagetacommunitiegKnipling, 1970)
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Leaf chlorophyll and N concentration in the leay dnatter are indicators for crop nitrogen
requirementgKastori, 2005; Follet et al., 1992Approximately 10% of the plant total
nitrogen content is stored in chlorophyll moleculghristensen, 2004fFigure 2.4).
Chlorophyll content is approximately proportionalleaf nitrogen content, so quantifying
Chl content gives an indirect measure of nutrigatus (Filella et al., 1995) The same
authors recognized remote sensing as a reliabteeffestive method that could be used to
monitor N status in crop. They reported that the ofsreflectance at 430 nm, 550 nm, 680
nm, and red edge wavelengths offers potential §sessing N status of wheat (Figure 2.1).
N status of wheat can be measured using tissue lisgmpr estimated using spectral
reflectance device@Vright et al., 2004; Osbourne et al., 2002pmpared to the hand-held
chlorophyll meters, reflectance spectroscopy oféevgealth of information due to the large
number of narrow wavebands. For in-season adjustmeh N applications, spectral
measurements seem to be the most efficient techriijackmer et al., 1994)Nitrogen
applied before stem elongation in wheat can inergasld if the crop is deficient in N,
while applications of N fertilizer after stem el@tmpn increase protein contefitisher et
al., 1993) Still, the main issue relies in selecting morenggal spectral indicators or
specific wavelengths, which will be able to quantdrop N status or potential yield

regardless of growth stage and cultivar as well.

400 500 600 . 700
Anm

Figure 2.4 — Main absorption peaks of chlorophyll mlecule(Source:
www.ktfsplit.hr/glossary/image/chlorophyll.qgif).
Spectral sensing has provided valuable insights agronomic management over the past

30 years. Many studies have been conducted to sassafcanopy N status of crop,

estimate yield and determine N input recommendatidny in-field ground based
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measurements of crop spectral respoiiSeme et al., 1996; Raun et al., 2002; Hinzman et
al., 1986; Xue et al., 2004; Tarpley et al., 20B@ad et al., 2002)The contributions of
individuals to remote sensing methods have leashtterstanding of how leaf reflectance
and leaf emittance changes in response to led{rness, species, canopy shape, leaf age,
nutrient status, and water staftiatfield et al., 2008)Spectral reflectance data from leaves
and canopies have been related to specific biopalyand biochemical variables, which are
important in modeling crop growth and nutritiongtas(Vogelmann, 1993)Most of the
work in this field has encouraging results reachgdanany scientists. Studies on responses
of plant spectra corresponding to different N findtion levels were reported [Btrachan

et al. (2002), Alchanatis and Schmilovitch (200Blgy et al. (2006), Zhao et al. (2008y
corn, Ayala-Silva and Beyl (2005), Feng et al. (2008)elf et al. (1995), Serrano et al.
(2000), Flowers et al. (2003), Sembiring et al.98)9 Jensen et al. (2007), Fouche et al.
(1999) for wheat,Zhao et al. (2004), Buscaglia and Varco (20fii)cotton,Jongschaap
and Booij (2004)or potato,Jensen et al. (1990dor barley,Zhang et al. (2006hor rice,
Penuelas et al. (19949r sunflower. All these studies have shown catiehs between
various parts of the reflected spectrum and plardtatus. Classifying crops by nitrogen
stress is of great interest in precision agriceltiwnderstanding of leaf reflectance has lead
to various vegetative indices (VI) relating specifivaveband combinations to plant
properties with purpose to quantify various agromowariables, detect their spatial and
temporal variations to exploit the information camt of detailed leaf spectra. These
mathematical indices reduce complex spectra toglesvalue. Vis are based on knowledge
of the reflectance properties of the biochemicahponents in leaves and can be targeted to
estimate for example N content in Ié&fdams et al., 1999)nd, therefore, can be useful
for obtaining information about the physiologicahda stress conditions that could
potentially affect crop yield. The Normalized Difémce Vegetation Index (NDV[Rouse

et al., 1974)and Simple Ratio Index or Ratio Vegetation Ind8RI[ and RVI, respectively)
(Jordan, 1969based on defined specific red and infrared redlea® bands are widely used
algorithms for monitoring, analyzing, forecastingdamapping temporal and spatial
distributions of physiological and biophysical cheteristics of crops because they are

more steady and reliable compared to single wagéhense. While some scientists report
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strong relationships using novel indicgzarter, 1994; Barnes et al., 200@)ost applied
research is still using common NDVI and SfRaun et al.,, 2001; Wright et al., 2004,
Lukina et al., 2001; Moges et al., 2004; Sembiengl., 2000; Reyniers et al., 2006; Zhang
et al., 2006; Zhu et al., 2008)efining VI that maximizes the sensitivity to tharameter
of interest while minimizing the sensitivity to ethinternal and external variables and
conditions has been the main issue of many styBiesye and Leblanc, 2001; Haboudane
et al., 2004; Muller et al., 2008; Thenkabail et2802) Yao et al. (2010Wesigned a new
method to extract hyperspectral information anahidied novel sensitive bands for simple
spectral indices (contour maps) to quantify theatrehship of leaf N accumulation to
spectral features and to establish applicable Nitmxamg model for modern winter wheat
production. The advantages of these matrix plotdava regression coefficients between
VlIs and crop variables are that they give a quickraeiew of thousands of wavelength
combinations and make it possible to detect wagthenof interest for further analysis
(Thenkabalil et al., 2000There are several studies where green and rfeareid bands and
their combinations were found most sensitive to/l€ldontent variations in crop leaf and
highly correlated with grain yiel@Sembiring et al., 1998Blackmer et al. (1994jound
that linear relationship between leaf N content deaf reflectance at 550 nm had a
coefficient of determination of 0.9@itelson et al. (1996%ubstituted the green spectral
waveband for the red spectral waveband in the NBWl showed this index was more
responsive to leaf chlorophyll content than thegioal NDVI. Strachan et al. (2002)oted

a shift in importance from green-based derivatieeed-based derivatives from mid to late
season and attributed to the natural reduction reery pigments as the crop entered
senescence. These reports can be explained byokddcquemoud and Baret (1990ho
found reflectance sensitivity to Chl content isagez at 675 nm than at other wavelengths
for low content, and greater at 550 nm for medionmigh conten{after Inoue, 2003)Xue

et al. (2004yeported that a robust model between green ragetation index (GRVI) and
rice leaf N accumulation was established indepeinaegrowth stages and N levédlarpley

et al. (2000)ound that ratios between red-edge (700 or 716 amd) near-infrared (755—
900 and 1000 nm) provided the best correlation Wetf N concentrations in cotton,

similar to results oZzhao et al. (2007ho reported the same relationships to leaf area
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index (LAI) and chlorophyll content density (CCD) ¢otton. Howeverfernandez et al.
(1994)found that linear combination of green and red pgneflectance can be related to
nitrogen content of plants, but independently adnpltreatment, similar to results of
Osbourne et al. (2002vho, among that, concluded that NIR region wasciafufor
estimation of grain yield but with the particulaavelengths of importance changing with
growth stageStone et al. (199&uggested that total N concentration in wheat ptaotd

be estimated with the spectral index based on the gmatibn oftwo spectral bands at 671
and 780 nm. The identified N-specific spectral alhpons may be used for diagnosis of
winter wheat N status for site-specific N manageimBant still, growth stage and N level
independent spectral model for specific crop is sm Numerous significant
hyperspectral parameters are different betweerarelsers and change with crop growth.
Only specific spectral regions and wavelength rarthat mostly contribute, for example,
to yield predictions can be established regardtdsgrowth stage or cultivar. Yet, yield
prediction model or N monitoring model if dependeit growth stage is still under
influence of some other external factors when aéd in other situations (unfavorable soil
and climate conditions, plant diseases, other eniisideficiencies). To solve that problem,
in quantitative analysis of hyperspectral remotess® it is necessary to provide diverse
training samples, and increase the amount, contplerd representation of samples so that
the derived model can be applied under varied tiomdi. Nevertheless, it is obvious that
remote sensing data integrates manifestation efcesffof different external and internal
factors on the crop growth, and hence can proviteense potential for use in crop yield
forecasting(Reyniers et al., 2006Petection of N status in winter wheat and predicof
yield, yield variables and NUE from in season sgacgeflectance measurements were the
primary objectives of several studies. Their maindusions follow the fact that
hyperspectral sensing in site-specific N managenoamt reduce N applications while
maintaining or increasing crop yieldserrio et al., 2005; Freeman et al., 2003; Jermten
al., 2007; Benedetti and Rossini, 1993; Serrarad.eP000; Munden et al., 1994; Wang et
al., 2003) An indirect approach was proposedgun et al. (2002who found midseason
estimates (using NDVI measurements) of potentialdyiof winter wheat, would help

growers to adjust midseason top-dress N applicafitrey reported that N fertilization
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estimated on this way with respect to spatial stedeeased NUE by more than 15 % when
compared to traditional practices which applied tNugiform ratesMullen et al., (2003)
used spectral sensor measurements at differentt\gh®ath stages to predict winter wheat
yield response to N and to predict optimal N rdtekina et al. (2000)investigated
influence of winter wheat production on plant sp&cproperties and reported that NDVI
increased with N fertilizer rate at Feekes growtygs 4.Labus et al. (2002fjound strong
relationships between wheat yields and integratBd/INover the entire growing season,
and with late-season NDVI parameters on satelitell Zhao C. et al. (2005¢onducted
research on winter wheat and found that vegetatidex derived from the canopy spectral
reflectance at green and red bands, was significaotrelated to the leaf N content at
anthesis stage, and also highly significantly dateel to the final grain protein conteht.

et al., (2008)found that RVI can be used to estimate nitrogatustfor winter wheat in
over-fertilized farmers’ fields before heading wsahandheld spectroradiometer. Although
this excess N fertilization seldom occurs in adtimal production practice, future attention
should be paid to explore additional hyperspedtidices applicable to a wider range of N
levels in wheat plants. The NDVI at critical grondtages such as booting, heading and
flowering has been correlated to final winter whgiatd (Freeman et al., 2003But, very
few papers reported achievement of robust modelsrip N monitoring. NIR region was
found to be very sensitive to plant physiologidadmges, so it is very questionable to use it
for robust VIs. According to the recent literatuvesible range is more stable than NIR in
late-season predictions of leaf N status or yi#lde et al. (2007yeported that the strong
dependence of yield on crop N status may explajnifstant strong correlation between
GRVI and winter wheat grain yield at mid-fillingagfe. In the context of precision farming,
quantitative information on plant N concentratio necessary to apply variable rate
technologies of top-dressing fertilization. Radidrnoe measurements are useful for
monitoring crop conditions, especially N and chpargll (Chl) assessmeriStroppiana et
al., 2008) They found the most suitable bands in the vis{blee/green) region of the
electromagnetic spectrum where N/Chl compounds plkgy role in radiation absorption.
Hansen and Schjoerring (2008ported that visible spectral range, mainly ie thue

region, proved to be better to find linkage to @htl N content in winter wheat leaf tissue
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using narrow band indices and partial least squegeession (PLSRYhao D. et al. (2005)
found that spectral reflectance in visible partspectrum (556 and 710 nm) increased
significantlyas N fertilizer rate decreased which also causeedeedge shift to shorter
wavelength. Subsequently the reduction increase$ teflection and transmission,
decreases leaf absorbance, and shortens the redgafition (REP), defined as the
inflection point that occurs in the rapid trangitibetween red and near-infrargtcotford

& Miller, 2005). At the transition from red to NIR wavelengthsafleeflectance greatly
increases. The positioning of red edge has beeerlated mainly to chlorophyll content as
well as plant phenological stages and plant stfésgo et al., 1999; Filella and Penuelas,
1994) After Broge & Mortensen (2002REP can be defined as the wavelength where the
first derivative of the spectral reflectance is thaximum.Wei et al. (2008found a very
close relationship between leaf nitrogen accumutatin winter wheat and red edge
position. Reflectance spectra as a function of ¢nostage and N status were investigated
in study conducted byGraeff and Claupein (2003Wwho referred that reflectance
measurement precisely reflected different N treatsieand different N status of corn
plants. By discriminananalysis based on the pigment indices of refleetaaicspecific
wavelengths, each reflectance spectoam be assigned to a different N status class which
offers a potential for assessihgstatus of wheafFilella et al., 1995) Assessment of N
status in winter wheat from narrowband spectrdlectdnce indices was investigated to
improve N management and NUEi et al., 2009; Raun et al., 2002; Reusch, SQ520
Plants spectral signatures change according t@ltm’s physiological status and growth
conditions(Card et al., 1988hence the wheat temporal status and spatialtiariaver a
field is essential information in reaching goodifzer strategies.

Different statistical methods applied for remot@sseg of agronomic parameters using
agronomic information retrieval algorithms have meeveloped and confirmed by several
studies as efficient in extracting and creatingiatdé models in agronomy. These
approaches include empirical models between sudasguctive-measured crop
parameters and spectral variables (Correlatioryaisal CA, Principal component analysis
— PCA,; Partial least squares regression — PLSRyw#te multiple linear regression -
SMLR) (Atzberger et al., 2010; Wold et al., 2001; Femtaal., 2005; Gislum et al., 2004;
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Gong et al.,, 2003; Moron et al., 200®stimations using an artificial neural network
(ANN) as classifier and predictgno et al., 2005; Sui et al., 1998; Tumbo et 2002;

Liu et al., 2010) and discriminant analysis (DA) for prediction gfoup membership
(Strachan et al., 2002; Jensen et al., 2007; Kagiral., 2005; Penuelas et al., 1994; Zhao et
al., 2005) Patterns of the data are modeled and calibratdzk tapplied to future data in
order to predict the identity or condition of biggical material. The results from these
methods vary by scale of observation, number aversity of samples, type of vegetation,
spectral bands, spectra preprocessing and thessicplion of the model@Hatfield et al.,
2008) Kaleita et al. (2006yeported interesting results where a novel rangeratpr-
enabled genetic algorithm (ROE-GA), designed tosmer the shape of the spectra, had
similar predictive capabilities to the ANN and PLi§,evaluate hyperspectral reflectance
data for detecting onset of pollen shed in maiz=urdl networks employ a more powerful
and adaptive nonlinear equation form as comparégditional linear and simple nonlinear
analyses(Kimes et al., 1998)Yang et al. (2009¥ound generalized regression neural
network (GRNN) model based on first derivative $pedo be the best model for the
prediction of rice LAl and green leaf chlorophy#rmsity (GLCD) which resulted from the
strong capacity for nonlinear mapping and good stiess of GRNN. Research lafi et

al., (2010)verified that the back propagation neural-netwankdel could provide an
effective and faithful estimation of leaf chlorophyariation based on the four performance
spectral indices in rice stressed by heavy meRdsults of recent research are different,
but generally the ANN and PLSR models seemed te leaually successful performance.
The analysis approach is different and procesdirspectral data and algorithms need to be
quite simplified for common usage in agronomy.

Due to the fact that spectral parameters may be-growth stage-year-site specific,
development of accurate and general models (gretabe or whole-season specific) to
monitor and predict N status in crop plants frorbeatance data is still an on-going task.
The major challenge for remote sensing researcisets fully realize the potential of
hyperspectral data as a source of useful informatimt can be used for agronomic
management decisions. Using field spectroscopyetp make agronomic decisions may

provide a tool to improve field-scale manageniéfdtfield et al., 2008)
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3 HYPOTHESIS AND OBJECTIVES OF RESEARCH

Hypothesis:

1.

Different N fertilization treatments have effectwmter wheat yield, NUE, leaf TN

content, CCl, grain TN content and spectral propert

2. Different N fertilization rates can change planésjpal response

Relationship between winter wheat leaf hyperspeptaperties and biochemical
variables measured by standard laboratory anadyssss

Models developed from in-season spectral data ceurately predict leaf TN content,
CCl, grain TN content, yield and NUE and classiinter wheat samples according to

different fertilization treatment using differerigarithms

Objectives:

Evaluation of potential use and reliability of fleteflectance spectroscopy for in-season

spatial and temporal assessment of N status iremimheat under different N fertilization

levels with final purpose to improve farm N managetthrough increasing NUE in wheat

production:

1. To determine effect of different N fertilizationviels on winter wheat yield, NUE, leaf
TN content, CClI, grain TN content and spectral prtps

2. Toinvestigate if a N rates discrimination modelicbbe established based on winter
wheat spectral response regardless of growth stage

3. To identify significant wavelengths and their comdtions as a potential indicators for
estimating winter wheat variables under field ctinds

4. To determine if it is possible to predict wintereat biochemical variables from the
hyperspectral data (reflectance values, spectuiates)

5. To establish a reliable model for winter wheat¢iahd NUE assessment based on

hyperspectral data by comparing predictive capstol different analytical techniques

and algorithms
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s

6. To determine if it is possible to classify diffetéfertilization rates from analysis of

leaf reflectance spectra

Figure 3.1 — Experiment plots (4 repeat plots pereatment) captured from the high during

ripening stage, 2008 (from above § Niog Naoo and Nago kg ha‘l).
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4 MATERIALS AND METHODS

4.1 Location and research conditions

Research was conducted on experimental field widhéaned cropland used by Moslavka
d.d. company in Western Pannonian subregion oft@roaar Park of nature Lonjsko polje
(45°33'N, 16°31°E) (Figure 4.1.1). Terrain is fleth average elevation of 97.2 m. Region
characteristic are small-holdings which dominatéhimi rural land from one side, and
hydro-ameliorated area with organized agricultyradduction within larger agricultural
holdings (Figure 4.1.2). Experimental field is atpe a long-term research of influence of
mineral nitrogen (N) fertilization on nitrogen us#iciency (NUE), crop yield and nitrate
leaching within a framework of scientific projechNitrogen fertilization acceptable for
environment” (Project coordinator: Milan Mésil78-1780692-0695, funded by Ministry

of Science, education and sports, MZOS).

et kuTing
sisar Wl ;

S5 . NOVAGRADISKA

&
%
&
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W% HRVATSKADUBICA

BOSNAT HERGEGOVINA

Figure 4.1.1 - Area of Park of Nature Lonjsko poljewith location of experimental field,

(Source:www.pp-lonjsko-polje.hr).
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e b
Figure 4.1.2 — Satellite images of field experimena) cropland near Park of nature Lonjsko
polje; (b) experiment during 2010; (c) experiment dring 2008, (Source: Google Earth, 2010).

The area has a temperate continental climate, Wit °C of annual mean temperature
(Figure 4.1.4) and the annual amount of rainfal865 mm for the reference period 1965-
1990 (Figure 4.1.3). Average annual cycle of meanthly temperature for years 2008 and
2010 had the same shape as for the reference p&®68-1990 (Figure 4.1.4). When
analyzing vegetation period, the largest differsncewarm 2008 compared to 1965-1990

were in winter and late spring which were warmenfr2.4°C to 3.4°C per month. Higher
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monthly temperatures appeared during whole vegetagirowth. Colder winter than
average was recorded in 2010. However, the retfteofegetation period was warmer than
average (0.6 — 3.4°C). Mean annual temperaturelv@€ and 0.8°C higher in 2008 and
2010, respectively, compared to the reference geignificant differences in monthly
precipitation between 2008, 2010 and the refergrezeod were recorded during most of
the vegetation period (Figure 4.1.3). Both 2008 200 were characterized by high annual
variability and intra-annual redistribution of mbhyt amounts. It is interesting that both
years had almost similar shape of the average &ammaaipitation cycle, but 2008 had
much lower amounts during spring and summer mofiths.shape of the average annual
precipitation cycle of 1965-1990 period indicateptimal conditions for winter crops
growth. Annual precipitation amounted 659 mm and®0lInm for 2008 and 2010,
respectively, indicating significant difference Wween those two years and compared to the
reference period (865 mm). The minimum amount etypitation in 2008 and reference
period was recorded in February, while 2010 hadirmim in early autumn. Maximum
annual precipitation was recorded in June forfaiéé¢ periods but with high inter-annual
differences. Increase in monthly precipitation dgr2010 compared to other two periods
was found in all months except March and April wiaralyzing winter wheat vegetation
period. The most pronounced decrease in 2008 veasded in winter and spring months.
According to presented meteorological data it carcéncluded that year 2008 was much
drier than reference period and 2010, while 2010 loa pronounced as very wet year
compared to the reference and 2008. Differencasilnvater balance (after Thornthwaite)
during years of investigation and the referenceopgegenerated from meteorological data
measured at the nearest meteorological stationslaogn in Figure 4.1.5. The annual
amount of evapotranspiration was 653 mm, 565 mm &id mm for years 1965-1990,
2008 and 2010, respectively. Soil water balancetdar extreme years (2008 and 2010)
showed large difference in seasonal pattern of vgatglus and water deficit. Water deficit
in 2008 was the main problem which caused drougining critical crop phenophases.
Water deficit caused by precipitation lower thammal combined with high mean monthly
temperatures was recorded in May, June, July argligtu The main characteristic of the

wet year 2010 was increased water surplus in marghally having optimal water supply,
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which was the reason for water stagnation in saifile. There was no water deficit in soll
during annual cycle. According to the average \altm the reference period, water
shortage was recorded only in August. Water surpiesaging 38.3 mm from January to
April, and it was much lower than one recorded@d@ (56.6 mm).

Rainfall path
200 -t e e e
A A
150 -
2 A
mm 100 +----------------- B A = - 3 A -

| 1 1] \Y% \% Vi vl VI X X Xl Xl
Months

\- 1965-90 m 2008 4 2010 \

Figure 4.1.3 — Monthly precipitation during year 208, 2010 and averaged across long-year
period from 1965-1990 (meteorological station Sisak

Temperature path
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Figure 4.1.4 — Mean monthly temperature during yea2008, 2010 and averaged across long-

year period from 1965-1990 (meteorological statioBisak).
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Soil water balance, 1965-1990

180,0 -
160,0 1
140,0 1
120,0
100,0

MM 80,0
60,0
40,0
20,0

0.0

1 2 3 4 5 6 7 8 9 10 11 12
Months

Soil water balance, 2008

180,0 -
160,0 -
140,0 -
120,0 -
100,0 A
80,0 4
60,0
40,0
20,0
0,0

mm

Water sur,
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Soil water balance, 2010

180,0 ~
160,0 ~
140,0 ~
120,0 ~
100,0 ~
80,0 A
60,0 -
40,0 Water surplus,
20,0 +
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1 2 3 4 5 6 7 8 9 10 11 12
Months

mm

Figure 4.1.5 — Soil water balance (after Thornthwae) for meteorological station Sisak for
reference period 1965-1990, and years 2008 and 2010
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T Myt

The soil type of trial site is distric Stagnosoigiire 4.1.6). Sufficient moisture is present in
upper part of soil profile as result of precipibatiand stagnation of water. Groundwater
occurs under 175 cm below soil surface. Precipitativater periodically stagnates on
illuvial horizon which was the reason for instadjipipeline drainage system across the

experiment area.

. STAGNOSOL

fisan T A
Figure 4.1.6 — Soil profile of Stagnosol — experiméal field, 1996.

Besides soil physical properties that favorize watagnation in upper layers and low soil
organic matter content, the main factor that linaitsp yield is low soil pH value. Soll is
acid in first two horizons, but pH increases witlepth according to carbonates
accumulation. Figure 4.1.7 shows within-field salwiariability of soil pH values (0-30 cm
depth) measured in 2010 after winter wheat harv&stl pH map was generated by
ordinary kriging with sampling density df5 x 15 m regular grid (ArcView, ESRI, 2006).
Results show that field experiment is not unifornthwespect to acidity (interpolation
range of soil pH: 3.31 — 6.91) and that treatmeliffer between themselves in soil pH
value range. In addition, each treatment consi$tareas with differing lime needs.
Sequence of changes in pH values was influencaddogasing N rates, influence of lime
materials on treatment with 250 kg N per hectardl(V effect of parent substrate on
treatment with 100 kg N per hectare as result aindige, and canal deposit on northeastern
side of field. Low soil pH values on N treatments anostly result of long-term mineral
nitrogen fertilization. According to the projectjebtive, calcification of all experiment
area was excluded as measure for improving crold,yéxcept for one treatment which
combined N fertilization with dolomite.
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Soil pH value - pH KCI
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Figure 4.1.7 — Soil pH value measured on field expment after winter wheat harvest, 2010.
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4.2 Experimental design

The trial, with total area of 4 ha, was establislsdblock design with different mineral

nitrogen fertilization treatments and 4 replicaiofParcel dimension is conditioned by

distance between drain pipes. Each treatment ackades two drain pipes. Dimension of

each trial treatment is 30 x 130 m including blapace, and 26 x 26 m for replication

parcel. Fertilization and seeding practice is immated on total area of each variant.

Fertilization treatments included (Figure 4.2.2.2):

l.
Il
[l
V.

Control — no fertilization,
NoPK,

N10oPK,

N1soPK,

N200PK,

N2soPK,

N2s50PK + Phospho-gypsum,
N250PK + Dolomite,

NaooPK (kg N ha)

igre2.1 — Field experiment with different nitrogen fertilization treatments(Source:
Google Earth, 2010).
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Field experiment presented in dissertation inclugeolwing years 2008 and 2010 with
winter wheat Triticum aestivumL.) as a test crop with standard agro-technical
management. Basic fertilization as 2/3 of total antf PK mineral fertilizer was applied
during ploughing up to depth of 25-30 cm, whileestli/3 of total amount with 30 % of N
was applied directly before sowing. Nitrogen topdieg was performed in three amounts
using calcium-ammonium-nitrate (CAN): I. 25 %, B5 % and lll. 20 %. The first
topdressing was applied in beginning of springetiig, second and third during stem
extension. Fertilization for winter wheat amounted500 kg of complex mineral fertilizer
NPK 10-30-20 for treatment with 200 kg Nhas for all treatments with higher amounts
of mineral N (Nso and Ngg). Within 500 kg NPK 10-30-20 applied, soil wasatiesd with

50 kg N, 150 kg P and 100 kg K, which was the redeo applying 334 kg of triple super-
phosphate (150 kg.Bs) and 170 kg of 60 % potassium chloride (102 kgDX for
treatments 1. BHPK, 1ll. N1gdPK and IV. NsgPK. Correction of N fertilization amounts to
assess exact values for N was made using sindikztas (urea, CAN). Calcification (3 t
ha' every thirdyear) was included only in one fertilizer treatmeMill. NasPK +
dolomite). Sowing of winter wheat was carried olithwFiestacultivar (300 kg seed Ha
andLucija cultivar (280 kg seed Hy Weed control was performed using herbici@main
amount of 1.5 kg h&

Figure 4.2.2 — View from the control treatment on he field experiment during winter wheat

tillering stage, 2008.
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4.3 Plant material

The research was carried out at the two winter wheawvth stages during growing years
2008 (friticum aestivuniL. — cultivar “Fiesta”) and 2010T¢iticum aestivuni. — cultivar
“Lucija”) to explore the potential for detection tife plant nitrogen status in focus, thus
creating basis for a yield compensating nitrogepliegtion strategy. The reason for
choosing winter wheat as a test crop is fact thiat plant is a good indicator of nitrogen
stress symptoms expressed as loss of green cotbeiteaves, decrease of leaf area and
intensity of photosynthesitKastori et al., 2005)Agrotechnical practices managed by
Moslavka holding included choice of cultivar, whietas the main reason for having
different winter wheat cultivars in crop rotatioafthed by project methodology. “Fiesta” is
medium early, and “Lucija” early maturing cultivdyoth with similar morphological and
yield performances. Beside the observed climatiferdinces between two growth years,
cultivar properties were included as well as exdkfactor affecting investigated agronomic
and crop spectral variables.

The nitrogen plays main role in wheat nutrition dgse of its importance in protein and
nucleic acid synthesis. Wheat properties are maialysed by effect of genetic factors in
interaction with environmeniBalogh et al., 2006)So, in order to evaluate the degree of
nitrogen stress measured through spectral refleetagestructive chemical analyses were
carried out and used as a measure of the realgaitrgtatus to which predictions were
compared. The total N content represents indigaitdd accumulation in planfDesai and
Bathia, 1978)indicating root system activity and translocati@inorganic and inorganic
matter to top of plant. Loss of chlorophyll whicbntent is approximately proportional to
leaf nitrogen content is associated to environmestigess (Hendry and Price, 1993)
Environmental stress, among many other factoreeroutdoor conditions, is accomplished
through experimental design and different nitrofgztilization rates.

Winter wheat leaf sampling with conducting non-dedive field measurements
(hyperspectral data and CCI readings) was carngddoring stem extension (F8-9: flag
leaf visible) and heading stage (F10.5: headingptet®) (Feekes™ scale) (Figure 4.3.1,

4.3.2), and directly before harvest for grain asslof each vegetation ye&amborski et
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al. (2009)reported in their review article that Chl measweats for small grains are most

optimal in the phenological period from tillerintggm extension to heading stage for in-
season N application.

Figure 4.3.1 — Winter wheat during stem extensionrgwth stage (2008 — “Fiesta”).

Comparison of Control treatment (left) and NosoPK + Dolomite treatment (right).

Heading |Ripening
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Figure 4.3.2 - Growth stages of winter wheat accomdg to the Zadoks and Feekes scales
(Source:http://www.ext.vt.edu/pubs/grains/424-026/424-026HiL 4).
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Yield and grain protein concentration depend prilyaon nitrogen supply before
flowering: potential number of grains is determirsdhis stage and the remobilization of
nitrogen stored in vegetative organs before flomgerand transferred to grains after this
stage accounts for 70 % of the N uptake in thengrat harvest on averagdacKown and
van Sanford, 1988)Thus, for winter wheat, the measurements of C®@hirey at
quantifying the crop nitrogen fertilizer requirentenare generally realized before
flowering, at Zadoks growth stage 30—-4®x et al., 1994)Nevertheless, several studies
have demonstrated the interest of chlorophyll meteasurements at later stages for the
prediction of grain yield and grain protein concation [GS65Reeves et al. (19935S71
beginning of the milk stagd:e Bail et al. (2005)grain filling period: Benedetti and
Rossini (1993) Osbourne et al. (2002¢ported that estimation of corn grain yield wastbe
accomplished by using spectral data from the lale shmpling date.

The N concentration of plants is highest at earbgh stages and decreases continually up
to the stage of senescence, with this reductidd aontent typically being interpreted as a
dilution effect of growth through differential tiss N contentgMistele and Schmidhalter,
2008) Stem extension is the most rapid period of vdyetagrowth where plant builds a
structure for producing carbohydrate to fill thaigr— flag leaf makes up approximately 75
% of the effective leaf area that contributes @irgfill (Beuerlein, 2001)This stage is also
very sensitive to nitrogen deficiencies, thus padow good basis for discriminating crops
with different nitrogen status using in-field hyppectral sensing. Figure 4.3.3 illustrates
the large N uptake from the beginning of April thgb the first two weeks of May for a
well-fertilized crop grown under Virginia climaticonditions(Alley et al., 1996) During
this phase nitrogen fertilizer management must idewenough nitrogen for the crop
development in order to have adequate leaf areprémtucing profitable yields. Also, there
is very little chance for leaching loss of N fer#r applied near the beginning of this
growth phase due to the extensive nature of theatviumt system by first part of stem
extension, relatively high rates of evapotransjgmtand the large amount of N uptake
during this time period. On the other hand, nitroggtake during the grain-fill period
(Figure 4.3.3, late May through June) is relatidely compared to uptake during the stem

elongation phase of growth. Plant tissue N is niwdyl and translocated to the grain during
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this period with only small additions coming frome#lable soil N. Foliar N applications at
this growth stage have been shown to enhance graiain levels.

Therefore, two distinct winter wheat growth stagesording to different N distribution

trends in plant tissue were chosen for detectingjriiss and predicting yield components

using leaf hyperspectral reflectance analysis.
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Figure 4.3.3 — Nitrogen uptake pattern for winter viheat grown

in the Coastal Plain region of

Virginia (Source:http://www.ext.vt.edu/pubs/grains/424-026/424-086HAL4).
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4.4 Time schedule

Following activities were performed within field woduring growing years 2008 (Figure
4.4.1) and 2010 (Figure 4.4.2):

11 November 2007 — basic fertilization for winteneat

13 November 2007 — winter wheat sowing - cultiviaiesta”

03 March 2008 — first N topdressing

09 April 2008 — second + third N topdressing

09 May 2008 — non-destructive field measuremen@ (@af spectra) + plant sampling
10 June 2008 — non-destructive field measurem@@s, (eaf spectra) + plant sampling
11 July 2008 — measurements of crop density + glampling

13 July 2008 — winter wheat harvest + plant sangplin
Wi . et |

Figure 4.4.1 - Field work during growing year 2008.
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17 October 2009 — basic fertilization for winter el

18 October 2009 — winter wheat sowing - cultivautija”

20 March 2010 — first N topdressing

24 April 2010 — second + third N topdressing

07 May 2010 — non-destructive field measuremen@ (&af spectra) + plant sampling
14 May 2010 — non-destructive field measuremergsdqpy spectra)

05 June 2010 — non-destructive field measurem@as, (eaf spectra) + plant sampling

12 July 2010 — measurements of crop density + wimkeat harvest + plant sampling
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4.5 Plant sampling, measurements and methods

Plant sampling scheme is described as discrete gampling which uses an understanding
of field variability to reduce the number of sangplehile still recognizing zones of
differing N status due to fertilization treatmenits-season plant samples composed of 10
flag leaves were taken according to grid sampliegigh from each of 36 experimental
plots from crop area of 1 fin order to determine leaf spectral reflectanoltnitrogen
(TN %) content in dry leaf and fresh leaf chloropH{hl) content. Precise position of
samples was recorded by GPS (Garmin; £ 4 m). Béfareest, whole winter wheat plants
were sampled from the grid based area of’ Iomeach plot to determine crop density and
yield variables. After harvest, grain yield was swad and standardized to dt'taf total

dry matter.

4 5.1 Field measurements

4.5.1.1 Leaf spectral reflectance measurements

Ground-based measurement of spectral reflectance agguired at two winter wheat
growth stages — stem extension (F8-9) and headith§.$) during years 2008 (Cultivar
“Fiesta”) and 2010 (Cultivar “Lucija”) (Figure 451.2) from 10 flag leaf samples per area
of 1 nt representing a sub-sample of the experiment régetiarcel (total of 360 leaf
spectra per stage). The same samples were usstfolard TN content analysis in dry leaf
tissue andn-situ CCI readings in fresh leaf tissue, which represgmeference data used
for calibrating hyperspectral sensor. Non-destwectiproximal in-situ stationary
quantitative measurements of leaf reflectance weeeformed using portable field
spectroradiometer FieldSpec®3 (ASD Inc., USA) witivelength range from 350 to 1050
nm, sampling interval of 1.4 nm and spectral resmtuof 3 nm at 700 nm. Leaf samples
were scanned with close proximate contact usingttety-powered hand-held fiber-optic
probe (connected to the spectroradiometer withber foptic cable) with built-in artificial
light source which allows ideal control of viewiagd illumination geometry, important for

biochemical modeling in order to evaluate predetability of VNIR spectroscopy in
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assessing nitrogen status in wheat (Figure 4.8)1.Quartz halogen lamps of 200-500 W
power with a spectral temperature of 3,400°K weseduto provide a light spectrally
similar to sunlight, which is usually recommendexst fnaking spectral measurements
(Curtiss and Goetz, 1994)

A spectroradiometer measures, as a function of \wagéh, the energy coming from an
object within its view(Lillesand et al., 2004)it is an optical spectrometer that produces
electrical signals, which correspond to radiank fenergy falling on its detectors for a
series of discrete wavelength intervals. Spectioraeter uses single photoelectric
detectors over which a spectrum is scanned andvaariaay of detectors aligned in the
spectrum path. Photoelectric detector current mdpdinearly to radiant flux energy while
voltage responds logarithmically. Instrument hagdtdiu electronics for converting the
analogue signal to digital. The signal output cfpectroradiometer may be calibrated to
NIST traceable standards to produce measuremettit$@diance or Irradiance units.
Through a fiber-optic input, this system acquiresoatinuous spectrum by recording data
in 700 narrow bands simultaneously (over the ra8%f&— 1050 nm). The unit incorporates
a built-in notebook computer, which provides faxibility in data acquisition, display and
storage. As a standard feature, reflectance spaxrdisplayed in real time. Calculation of
band ratios and other computed values was als@mpezfl in this research and will be
explained in following chapters.

Using a spectroradiometer to obtain spectral redfleze measurements is a three-step
process. First, the instrument is aimed at a ciitn panel (NIST-traceable) of known,
stable reflectance (Spectralon®, Labsphere, Suéf), which is a hard and durable white
unglazed ceramic surface having a reflectance giweyaabout 98.2 %, varying with
wavelength from 95.0 to 99.3 %. The purpose of #tep is to quantify the incoming
radiation, or irradiance, incident upon the plagaflor canopy. The instrument is then
suspended over the plant leaves and the reflectstiation is measured. Panel
measurements were taken before initial leaf readargl repeated approximately every 15
minutes. Vegetation radiance measurement was tékeraveraging 10 scans at an
optimized integration time, with a dark currentreation at every spectral measurement.

Spectrum averaging was used to reduce the noibe idesired spectral signal. Finally, the
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spectral reflectance of the object is computed lbyioming the reflected energy
measurement in each band of observation to themimgpradiation measured in each band.
The term reflectance factor is used to refer toréseilt of this computation. A reflectance
factor is defined formally as the ratio of the eadiflux actually reflected by leaf surface to
that which would be reflected into the same segsometry by an ideal, perfectly diffuse

surface irradiated in exactly the same way asdhgte(Lillesand et al., 2004)

Figure 4.5.1.1.1 — Proximal reflectance measuremenof winter wheat flag leaves acquired by
field spectroradiometer (F8-2008).

Figure 4.5.1.1.2 — Winter wheat during stem extensi (F8) and heading (F10.5) growth stage,
2008.
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4.5.1.2 Chlorophyll concentration index (CCI) readings

Leaf chlorophyll concentration index was determinsthg portable CCM-200 Chlorophyll
Content Meter (ADCBioscientific Ltd., England) dmetsame 10 fully expanded flag leaf
samples per 1 fmscanned with the spectroradiometer, which meatsd af 360 CCI
readings per growth stage during years 2008 and.20he midpoint of the last fully
developed leaf was found to be the best positiotherwinter wheat plant on which to take
chlorophyll meter readingdoel, 1998) After selecting the flag leaf, readings were take
from a sample area of a 1 cm diameter circle hedfdistance between the leaf tip and the
collar and halfway from the leaf margin to the mil{Figure 4.5.1.2.1). The mean of 3
readings was obtained for each flag leaf.

In-situ CCl measurements in fresh leaf tissue represeatetence data used for calibrating
hyperspectral sensor, and biophysical feature ideainng relationship with leaf spectral
data. Since chlorophylimeter uses leaf spectrgbarse, information obtained by this
instrument is similar to spectral data from speeimmeter, considering specific

wavebands in red and infrared regions.

Figure 4.5.1.2.1 — Chlorophyll measurements, 2010.

Since most leaf N is contained in chlorophyll moles, there is a close relationship
between leaf N and leaf chlorophyll content. Thiersg positive relationship is the basis
for predicting crop N status by measuring leaf treédachlorophyll conten{Francis and

Piekielek, 1998)Chlorophyll as quantified by the CCM-200 chlorgjpimeter represents a

unitless relative measurement of leaf chlorophglhtent. It is theoretically possible to
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convert the meter readings to a measure of spediferophyll content. However, this is
not necessary for N management considerations.r@figll meters have their greatest
sensitivity in the deficient to adequate range ohirition. As such, the meter cannot
indicate how much excessive N is available to gcits strength lies in measuring a
relative difference in crop N status and the apilit detect the onset of an N stress before it
is humanly visible.

The chlorophylimeter makes instantaneous, rapid rasvddestructive readings on a plant
based on the quantification of light intensity (p@&velength: 653 nm: red LED) absorbed
by the tissue sample. A second peak (peak wavéie88i nm: infrared LED) is emitted
simultaneously with red LED to compensate the l&atkness (Figure 4.5.1.2.2).
Compared with the traditional destructive methottss equipment might provide a

substantial saving in time and costs.

70 T T T T T T T T T T T

| Transmission Spectrum
55 | of Green Leaf

30 (measured with

45 F spectroradiometer)
Transmission at
931 nm = 64%
(due to leaf thickness) = &

Transmission at
653nm=7% |
30 (due to chlorophyll)

Transmittance [%]
[¥%]
(4]

64 %

%

=9.1Cd

U 1 1 1 1 1 1 1 1 1 1
400 450 500 550 600 650 700 750 800 850 900 9501000

Wavelength [nm]

Figure 4.5.1.2.2 — Transmission spectrum of greerdf with absorption and reflection peaks of

light (Source:http://apogeeinstruments.com/chlorophylimeter/c¢mia
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4.5.1.3 Preharvest measurements and yield analysis

Directly before winter wheat harvest (Figure 4.3.1), crop density and yield components
were measured from an area of 1per repetition parcel. Total number of plants pen’l
stem length, ears length, number and weight ofngraier ear were determined. After
harvest, grain yield was weighted and standardipedt ha' of total dry matter, with
determination of 1000-kernel weight and hectoliterss.

Figure 4.5.1.3.1 — Winter wheat harvest — “Fiesta”2008.

4.5.2 Laboratory measurements

Standard destructive methods were used on averag® plant leaf samples and grain
taken from 1 rfiparcel. Laboratory analyses were used as referereasurements for

calibrating spectroradiometer and making corretatimalysis with spectral data acquired
on the same leaf samples (Figure 4.5.2.1). Dry enatvater content and total nitrogen
content (TN %) in dry leaf tissue and grain wertedained.

Figure 4.5.2.1 — Analysis of total nitrogen (TN %J}ontent in dry plant tissue using the dry
combustion method with the Vario Macro CHNS Analyze.
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4.5.2.1 Samples preparation for chemical analysis

Winter wheat samples preparation for chemical aslywas performed according to HRN
ISO 11464:2006. After the plant leaf sampling amdecmination of yield components,
leaves and grain were dried in the oven at 60°@rAfrying, samples were grinded with a
knife mill (IKA, M20) and sieved through a<20@m sieve (Retsch). Plant samples
(powder) were than homogenized and each was sudlediVviy hand into two sub-samples
and stored in plastic boxes (Figure 4.5.2.1.1). @xiesample was prepared for laboratory

analysis and the other for archive.

Figure 4.5.2.1.1 — Dried and grinded plant leaf angrain samples ready for the laboratory

analysis.

4.5.2.2 Determination of total nitrogen by dry comhistion method in leaf and
grain

Total nitrogen (TN [% DM; g/kg]) content in plargdf and grain was determined using the
dry combustion method (elemental analysis) with Werio Macro CHNS Analyzer,
Elementar (2006) according to HRN ISO 13878:2004. cbntent in plant samples was
determined by heating the sample in oxidation columa temperature of at least 900°C.
Mineral and organic element compounds are oxidiaad/or volatilized. Combustion
products are mixture of different oxides: N@IO and NQ), N.. In a reduction column
(the temperature was 850°C at which Cu® was oxitlineo Cif") all nitrogen forms were

transformed (reduced) into,NThis gas was transported by the carrier gas el (He) =
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2.0 bar;V (He) = 500 mL/min) to the thermal conductivity detector (TCD)daafter
adsorption and desorption in specific columns, Thecontent was measured. Pressure in
the system was 1.24 bars. Standard sulphanilamédeused for daily calibration and daily
factor calculation (99 %, Sigma; 16.27 % TN). Theoant of test sample for analysis
depended on the expected TN content. Approximdt@y mg + 2 mg of oven-dried plant
samples were weighted in thin foils (Figure 4.52.3In solid sample, capsules were
formed by pressing and compressing samples in dottien boats. Samples were then
placed in autosampler and were ready for analigshods used in analysis were: method
plant for plants (flow of @Qup to 60 mL/min).

Figure 4.5.2.2.1 — Weighting of oven-dried plant saples.

4.5.3 Empirical extraction of information from real data

4.5.3.1 Derivation of vegetation indices from leakflectance

To estimate crop characteristics by remote serdang, reflectance of selected wavelengths
(mostly combination of red and infrared wavelenyiesransformed to vegetation indices
(VIs) which are well used in praxis. These transfations are ratios or linear combinations
of signals from radiometer bands. VIs provide hygbbrrelated relationships with certain
indices of crop development (wet and dry biomag¥, plant N status, Chl content, leaf
water stress, yield), especially under stressedliions of vegetation, and, hence, could
provide important additional information for agrtuwe. Within the field, relative
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differences in the VI can show whether a crop igetlgping uniformly at any one time or
over the growing season.

Using the high resolution reflectance spectra, aymam spectra and its'12" derivatives
and linearization as log(1/&cancd, ratio- and difference-based vegetation indicesew
constructed using 231 spectral bands (over theerd@g — 1040 nm). Based on coefficients
of correlation between each wavelength and cro@mrpater, and in consideration of
spectral principle and commonly used VIs, the beasture bands (NIR = 785 nm, RED =
704 nm) and corresponding NDVI and RVI were detegdi(Table 4.5.3.1.1). Finally, the
correlation of these particular VIs with winter veltgrain yield was evaluated to determine
the strength of the agronomic parameter-spectratioakhip. The Statistica software

(Statistica 8.0, Statsoft Inc., USMas used for statistical computations.

Table 4.5.3.1.1. Algorithms of hyperspectral veietaindices analyzed for wheat.

Index abbreviation Name Algorithm Reference

RVI I(?F?\EI(; Vegetation Index Rnir/Rren after Jordan, 1969
Normalized Difference after Rouse et al.,

NDVI (Rnir—Rrep)/(RuirtRrep) 1974

Vegetation Index (NDVI)

4.5.3.2 Calculation of relative indicators of agronmic performance
The N use efficiency of mineral N fertilization waslculated according tRaun et al.
(2002)by equation:
NUE = (N removeg— N removeg) / Fertilizer N applied %
F-fertilized crop; C-unfertilized control

N removed — grain yield x TN grain

According to Arnall et al. (2009) NUE, together with response index {Rdvest) as
agronomic indicator, has the ability to measurgamsponsiveness to N fertilizer. NUE
encompasses the effect of environmental factorh asctemperature and moisture which

highly influences N transformations and directlfeafs crop growth.
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4.6 Statistical evaluation

Spectral data analyses by methods of multivaritiestics were performed to evaluate the
prediction and discrimination results of nitrogemess and status estimations from the
spectral responses. Multivariate data analysisalasen since it can be used in situations
with numerous dependent and independent variaBkasistical evaluation was processed
using spectroscopy software suite Unscrambler(@8AMO Software AS Norway) and
Statistica 8.0(StatSoft, Inc., USA) Spectra were visually reviewed using software
application ViewSpec Pro 4.07ASD, Inc., USA) and then formatted from .asd to .ASCII
data format using ENV(Research Systems, Inc., USA)riginal spectral reflectance data
were pretreated and transformed using various i#thgas to avoid “shift” and “noise”
phenomena and then included in statistic anal¥&isprocessing included first derivatives,
second derivatives and linearization of raw spewutith Savitzky-Golay filter using a
second-order polynomial for derivation and smoaghile Maire et al., 2004)First-order
derivatives involve the calculation of the slope tbke spectrum (rate of change of
reflectance with wavelengthjLiu et al., 2010) Second derivative was used as a
mathematical treatment to correct the baselinectsffand separate overlapping peaks
(Moron et al., 2007)Derivatives are useful for reducing the effedtealtiple scattering of
radiation due to sample geometry, surface roughaessfor locating the positions of
absorption features on the spectra. Logarithmitsfii@mation of reflectance [log (1/R)] or
absorbance was used for visual spectra evaluagoause it allows a simple correction of
baseline drifts and approximates the actual behafigarious samples sufficiently well to
be of practical use. Moreover, the absorbance papes better maintain integrity
important for evaluation of main differences in gd@s compared to the raw reflectance.
Spectral bands up to 400 nm and beyond 1040 nm neereved due to large noise effect.
Spectra were also resampled taking every third lgagéh to reduce the amount of data
and, thus, facilitate the complex statistical asgly

Visible and near-infrared (VNIR) spectral refleatanof winter wheat leaf, the first
derivative of reflectance, the second derivative reflectance, the absorbance, band

combinations (vegetation indices), and principahponents of spectral data were chosen
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as independent data, and measured TN contentfirahelagrain, CCI readings, yield and
NUE as dependent variables. Independent data vadileated to dependent data by means
of linear modeling as Partial Least Squares Regnes$’LSR) with leaverout cross
validation and multiple linear regression (MLR) ngiPrinciple Component Analysis
(PCA) for reducing data dimensionality and coliriiyar The statistical models were
validated using full cross validation, where eaample was used to test the estimation of
the model by all the other samples. Discriminaratigses were performed to relate specific
spectral bands to the fertilizer treatments. Spéalata patterns were processed using
nonlinear modeling technique as Atrtificial Neura¢tiNorks (ANN) and than compared
with linear models to define which model has thstl@edictive capability. Biophysical
model for predicting the reference variables wa® @&xplained using specific vegetation
indices. Models were validated for accuracy evadmaand predictive capability and then
compared between themselves.

The main relations between spectral data and wea@bles at both investigated years
were extracted and showed through performed statisinalysis. According to the better
performance of cultivar “Lucija” (2010) model atogrth stage F8 compared to the latter
stage and cultivar “Fiesta” (2008) at both stagies,second year of research was selected
for further analysis. The other reason for detadedlysis of only one year was to reduce
the dimensionality of thesis volume. Visual spec&aluation, CA and MLR were
performed for all data, but only MLR results weh®wn in complete. Among four winter
wheat variables, grain yield showed the best pevémce in both CA and MLR analysis,
and it was selected for further regression (SLRIs, WLSR, ANN) and classification
modeling (DA, CLA, ANN).

Statistical analyses of differences in leaf TN agldtive Chl content, grain TN, NUE, yield
and spectral parameters according to fertilizati@atments for each growth stage and
cultivar were computed by analysis of variance (AMQ (SAS 9.1, SAS Institute Inc.,
USA). It was important to define up to which N levekspal and agronomic features of
winter wheat change which was a baseline for diaatiobn task. The significance test for

overall statistics was performed at probabilitydlesf p < 0.05.
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List of statistical analysis used in this research:
e Analysis of variance (ANOVA)
e Post-hoc test when F test is significant at prdiigbdevel of p < 0.05 (Duncan's
multiple range test)

¢ Discriminant analysis (DA)

e Correlation analysis (CA)

e Cluster analysis (CLA)

e Modeling:
— Principal component analysis (PCA)
— Simple linear regression models (SLR)
— Partial least square regression (PLSR)
— Multiple linear regression (MLR)

— Artificial neural networks — regression and classifion (ANN)

4.6.1 Data manipulation and model development

Recent studies cited in this doctoral thesis h&aosvghat multivariate analytical techniques
can prove quite useful in the interpretation ofimas forms of remotely-sensed data. Thus,
multivariate linear and nonlinear modeling techeisiuhnave been used to explain the
relationships between spectral data and winter tvpasmeters, and, then compared for
predictive and classification capability in thisudy (Figure 4.6.1.1). Spectral input
variables consisted of 231 spectral data acrosgliftérently preprocessed spectral range
taking every third wavelength, their principal campnts (PC) and vegetation indices.
Spectral measurements were calibrated against samith known chemical composition
in order to extract the desired information: le&f, TTCI readings, grain TN, yield and NUE
as crop input variables. Calibration techniques ewdased on pattern recognition

algorithms to capture the important variabilitytie data.
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Figure 4.6.1.1 — lllustration of the biophysical ad spectral modeling process (after Curtiss
and Goetz, 2009).

Correlation analysis (CA) were done to determineéf reflectance at each wavelength was
positively or negatively correlated with crop védes and to identify significant
wavelengths as inputs for VIs computations, and,tfior simple regression models (SLR)
where spectral indicators were regressed over wregables to predict N nutrition status
and yield components in wheat. The best relatigsstderived from this correlation
analysis were inverted to form an empirical moael Winter wheat variables estimation
from hyperspectral data.

Multiple linear regression (MLR) is one of the mastmmonly used linear methods to
develop empirical models from large data sets angrédict crop biophysical variables in
plants (Thenkabail et al., 2000\When the factors or independent variables are ifew
number and not significantly collinear (like PCsapfectra), and have a well-understood

relationship to the responses or dependent vasatiien MLR can be a good way to turn
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data into information, which was the case in thisdg. It is used for fitting models to
continuous variables such as spectral data. Stegwscedure was used to select the most
effective spectral features capable of discrimmatN treatment effects and predicting
winter wheat variables (N, Chl, NUE, and yield) atwd generate an equation for the
optimum estimation of crop parameters from reflectain selected wavelengtt@Gurran et
al., 1992) Then, discrimination analysis (DA) was appliedhaa well-chosen subset of the
selected PCs to classify samples by N applicatieatinents and growth stage. The DA
procedure generates one or more discriminant fomstbased on linear combinations of the
predictor variables that provide the best discration between group&lensen et al.,
2007) Factor scores acquired from the calculated PCGs wsed as predictor variables in a
MLR modeling.

To avoid over-fitting (number of factors gets t@wge, poor prediction), some other “soft
science” applications are used. The risk of ouerft arises when large numbers of
independent variables are handled with a small murobsamples. One of the methods is
partial least squares regression (PLSR) with ldaeet cross-validation or full cross-
validation (each observation is used as a tesbsetlidate the predictive model), analyzing
numerous and collinear independent variables asporese profiles. This method is well
suited for calibration on a small number of samplath experimental noise in both
biophysical and spectral data. In addition, the hoétcan be used even if & s
(Atzberger et al., 2010)Because each leaf sample is described by sekarareds of
hyperspectral reflectance variables, PLSR, as k Spectrum”, method seemed to be a
reliable method to extract the relevant part ofitlfiermation from very large data matrices
which was proved by several studig$éansen and Schjoerring, 2003; Nguyen and Lee,
2006) In this study, PLSR was used to evaluate andtithte the correlation between the
observed winter wheat variables and the spectraoseaesults. PLSR provides a regression
model where the entire spectral information is takein a weighted form — into account
(Atzberger et al., 2010}t is bilinear technique that generalizes and loioies features from
principal component analysis and multiple regressids goal is to predict a set of
dependent variables from a set of independent blasa This prediction is achieved by

extracting from the predictors a set of orthogdaators called latent variables or principal
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components that account for most of the variationthe response and have the best
predictive power(Abdi, 2007) The number of PLSR factors used in each model was
determined by full cross-validation. Principal campnts analysis (PCA) is used to avoid
multicollinearity, and thus singularity in spectddta, which is the reason that regression
approach is no longer feasible. PCA and PLS asspéttrum methods are widely used in
chemometric§Wold et al., 2001)PC are computed as certain linear combinationfi®f t
spectral amplitudes, and the responses are prddictearly based on these extracted
factors scoregTobias, 1997)In this study, PCA was applied to all of the 23dectral
variables. This reduced the spectral informationfee principal components (PLS —
Unscrambler 9.7; NIPALS - Statistica 8.0). PCA fduhe set of directions in spectral
space that explain the most variance. The firstggual component is the combination that
accounts for the largest amount of variance instraple. The second principal component
is uncorrelated with the first one and accountstfe next largest amount of variance.
Successive components explain progressively snmadgions of the total sample variance,
and all are uncorrelated with each other. Only ¢hBE that individually captured more
than 0.1% of the variance in the data set weraneda(factors with eigenvalues greater
than 1 — Kaiser criterion) (Statistica 8.0). Alfleetance information was standardized prior
to computing the principal components accordinth&oprocedure described bjorp et al.
(2008)

This effective method which reduces the number n@fui variables by removing the
unnecessary or redundant information was also imssplectral analysis by artificial neural
networks (ANN). These machine learning algorithras de used in estimating various
field and crop conditions from remotely-sensed iegagrhis non-linear technique works
with pattern recognition problems and learns byngpla. The neural network gathers
representative data, and then invokes training ritlgnos to automatically learn the
structure of the data (Statistica 8.0). The abiityANN to associate complicated spectral
information with target attributes without any ctrasts for sample distributioMather,
2000) make them ideal for describing the intricate andglex non-linear relationships
which exist between canopy-level spectral signatarel various crop conditiofisimes et

al., 1998) In this study ANN was used to classify and prediontinuous variables.
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Regression type consisted of winter wheat variabgesontinuous targets and differently
preprocessed and pretreated spectral data as womsimputs. Classification type included
fertilization levels as categorical target and s@¢data as continuous inputs. So, the goal
was to assign 36 wheat samples to 9 fertilizatewels grouped in 3 categories based on
spectral data and organized according to signifigatifferent fertilizer treatments. The
supervised back-propagation neural network modsltweaned using PC of spectral data as
inputs and winter wheat variables (CCI readingaf &d grain N content, NUE, yield) as
an output. Spectral data were mean centered amdatized to a unit standard deviation.
The spectra were randomly divided into training &msting sets with proportions of 50%
and 50%, respectively. Models were trained in stipsdifferent numbers of training
cycles. The architecture of the ANN models usethis study was a fully connected feed-
forward, with structure consisting of input neurombich number corresponded to the
number of selected PCs representing the total ti@miaf the target spectra, of one input
layer, one output layer, and one hidden layer. @enimg classification task of ANN, the
output layer consisted of 3 neurons, one for eaohpof N treatment, and 36 neurons for
identification of crop variables (Figure 4.6.1.R)ulti-layer perceptron (MLP) and radial
basis function (RBF) network types with differenttigation functions and training

algorithms were used, as describeddautam et al., 2006

Input layer Hidden layer Output layer

Reflection Variable 1 (e —(

Reflection Variable 2

; . N level classes
Reflection Variable 3

Reflection Variable 4

Reflection Variable n

Weights

Figure 4.6.1.2 — lllustration of the neural networkused in classification task. The NN shown
has 1 hidden layer.
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4.6.2 Performance analysis

Statistical parameters used for model accuracypantbrmance analysis were: correlation
coefficient (r), coefficient of determination R root mean square error (RMSE) and sum
of squares (SOS) error function and cross entr@y) (error function for ANN learning
algorithms. To assist with model comparisons, amfce limits (95%) for the regression
parameters and the’Rvalue were calculated for each model. THei®ka measure for
precision and represents proportion of variabiifplained by the model. The RMSE is a
measure of prediction accuracy and represents dbeluals or the average difference
between predicted and observed values. It is datedhby means of cross-validation. The
RMSE was calculated on the original unit basis. B@S error function was used for
assessing neural network performance and represewtslose the ANN predictions are to
the targets. The CE error function showed clasdibo rate using ANN. In addition, the
performance of each model was evaluated by plottiveg predicted values against the
observed values. For classification problems, theegnt of predicted group membership

was calculated for each class.

RMSE=

Whereyi is the predicted value of sampleti is the observed value of sampjen is the
total sample number. Models with the highe$aRd the lowest RMSE were considered as

the best to predict winter wheat variables.

N
Esos= ) (yi-ti)2
i-1

whereyi is the predicted value of sampléi is the observed value of sampla is the total

sample number.

Ece= —ZN:ti In(l_ij

i-1 ti
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5 RESULTS

5.1 Variation of agronomic variables

Mean values of TN content in winter wheat flag lemgampled at stem extension - F8 and
heading — F10.5 growth stage, during vegetatiomsy2808 (cultivar “Fiesta”) and 2010
(cultivar “Lucija”), are shown in Figure 5.1.1. kige 5.1.2 overviews a comparison of
mean values of TN content in winter wheat dry ksdue at both growth stages and grain

tissue between vegetation years 2008 (cultivarstaig and 2010 (cultivar “Lucija”).
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Figure 5.1.1 — Total nitrogen content (TN %) in wirter wheat dry leaf tissue at stem extension
- F8 (left) and heading — F10.5 (right) stage, inegetation years 2008 and 2010.

When analyzing fertilization treatments pattermagflleaf TN content varied across
cultivars/years and growth stages. It was higheingustem extension (F8) stage 2008
compared to the same growth stage at 2010 whichbeaexplained by extreme climatic
conditions during crop development. Higher TN cariations were recorded during 2008
with cultivar “Fiesta”. Differences in leaf TN canit accounted for heading stage between
cultivars and years were negligible because N mevenrom leaves to grain was not

affected by unfavorable climatic conditions.
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Figure 5.1.2 — Total nitrogen content (TN %) in wirer wheat dry leaf tissue at two growth

stages and grain tissue during vegetation years 28@left) and 2010 (right).

Chlorophyll readings, expressed as chlorophyll eohindex values, taken from winter
wheat fresh flag leaf in stem extension - F8 anadivey — F10.5 stage, during vegetation
years 2008 and 2010 with cultivars “Fiesta” andcijai’, respectively, are shown in Figure
5.1.3. Data were averaged across sample set rapfirgsene treatment plot. Figure 5.1.4
shows a comparison of mean values of chlorophyiitert index readings taken from
winter wheat flag leaves at both growth stagesnduviegetation years 2008 and 2010, and
cultivars “Fiesta” and “Lucija”, respectively.
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Figure 5.1.3 — Chlorophyll content index (CCI) reaihgs of winter wheat fresh leaf at stem
extension - F8 (left) and heading — F10.5 (right}age, for vegetation years 2008 and 2010.

Cultivar “Fiesta” (2008) had higher mean valuesGf€l for both stages than cultivar
“Lucija” which can be explained by unfavorable dita properties expressed by water

surplus and lower crop development in 2010. Howgvaitern of differences between stem
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extension (F8) and heading (F10.5) was the samédtr cultivars/years: CCI readings
were higher for F8 then for F10.5 stage.
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Figure 5.1.4 — Chlorophyll content index (CCI) reaiéhgs of winter wheat fresh leaf at two
growth stages during vegetation years 2008 (lefthd 2010 (right).

Differences in mean grain TN content per each waityear are shown in Figure 5.1.5.
Grain TN content followed the same trend when campgawo vegetation years. Average
concentration was lower in 2010 compared to 2008.
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Figure 5.1.5 — Total nitrogen content (TN %) in wirier wheat dry grain tissue in vegetation
years 2008 and 2010.

Figure 5.1.6 represents dependency of nitrogenetfsgency (NUE) and grain yield of

winter wheat on mineral nitrogen fertilization dcwgi two vegetation periods (2008 -
cultivar “Fiesta” and 2010 - cultivar “Lucija”). Enaverage yield for both cultivars and
growing periods and across all N fertilization treants was only 29.2 dt haHowever,

nitrogen was a key factor which defined level ofiter wheat yield. Grain yield had in both
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years increasing trend with higher N fertilizatilmvels, but it was lower in 2008 than in
2010 due to the canopy damages. The maximal avgrelgeper treatment was 44.7 dtha
(2010 — cultivar ,Lucija“) for Nsg level with phospho-gypsum. In 2010, NUE generally
had decreasing trend in response to increasing @sadi fertilizer-N up to treatment VII
after which it decreased again. Moreover, varigiaittern of NUE was recorded in 2008 as

well, except sharp increase was found in treatnddht
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30,0 + T gg,g H‘m
S 250 A - £
5 200 250 =
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Figure 5.1.6 — Effect of mineral N treatments on witer wheat N use efficiency (NUE %) and
yield (dt ha™) during two vegetation periods (2008 and 2010).

The corresponding descriptive statistics of th&lfend laboratory measured winter wheat
variables for nine fertilization treatments, oneaswwement date per two growth stages and
two winter wheat cultivars/years are summarizedlable 5.1.1. The table reports the
minimum value (min), maximum (max), mean and stahddeviation (SD) of the
observations, as well as pooled data for overahsueements and analysis. The absolute
range of analyzed variables varied widely: leaf ddhtent from 0.73 % to 4.27 %; CCI
from 3.0 to 50.0; grain TN content from 1.89 % t672%:; yield from 0.9 dt h&to 50.1 dt
ha'; and nitrogen use efficiency (NUE) from 3.1 % t4%&%.
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Table 5.1.1. Descriptive statistics of the cropiatales for nine fertilizer treatments, two growtges and two winter wheat

cultivars/years.

Crop

Cultivar/Year

Growth stage

N fertilizer treatments

variables Paoled “Fiesta”/2008 “Lucija’/2010 F8 F10.5 | I 11 \Y Vv Vi VII VIl IX

Leaf TN

(%)

Mean 2.37 2.57 2.16 2.74 1.99 1.65 1.43 2.08 2.3845 2 2.83 2.81 2.84 2.81
Spt 0.77 0.84 0.64 0.82 0.50 048 0.46 046 057 05@71 064 066 0.75
Max 4.27 4.27 3.54 4.27 2.94 2.63 230 290 3.6287 3. 4.27 4.20 4.05 4.26
Min 0.73 0.89 0.73 1.11 0.73 1.05 073 134 167651. 18 211 183 1.88
CcClI

Mean 25.8 30.6 21.0 33.3 18.4 13.7 120 23.1 27.3/.6 2 28.8 33.4 345 31.9
SD 13.2 12.4 12.2 11.9 9.7 9.4 7.6 109 11.3 99 41291 129 138
Max 50.0 50.0 49.5 50.0 46.6 356 28.9 425 46.1 .73949.2 469 49.9 50.0
Min 3.0 5.4 3.0 7.2 3.0 3.3 3.0 7.3 9.3 12.0 10.64.71 11.8 10.4
Grain

TN (%)

Mean 2.36 2.47 2.25 - - 214 216 221 234 244442.250 252 249
SD 0.20 0.13 0.21 - - 0.17 021 0.21 0.16 0.10 0.16.09 0.11 0.05
Max 2.67 2.67 2.54 - - 243 242 250 254 259 925259 267 257
Min 1.89 2.22 1.89 - - 193 189 193 208 234 820230 234 241
Yield

(dtha®)

Mean 29.2 23.8 36.0 - - 11.2 100 284 331 37.0.93636.1 40.3 36.2
SD 13.3 12.6 11.2 - - 8.9 6.6 9.9 11.1 7.5 5.8 10.0/.3 5.2
Max 50.1 43.5 50.1 - - 264 18.6 41.7 47.1 49.8 246.50.1 46.2 45.6
Min 0.9 0.9 12.3 - - 2.5 0.9 17.4 15.6 26.7 27.1 .325 23.2 31.2
NUE
(%)

Mean 30.8 32.2 29.4 - - - - 386 356 335 269 926.31.6 224
SD 10.5 8.0 12.6 - - - - 16.7 11.2 7.1 7.1 54 9.74.8
Max 57.4 49.8 57.4 - - - - 574 50.8 429 37.3 37.943.0 26.1
Min 3.1 19.5 3.1 - - - - 3.1 19.1 21.5 16.7 20.9 19.5

1SD, standard deviation
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Table 5.1.2. Mean comparison for leaf nitrogen ¢bitent and chlorophyll content index (CCIl), grilicontent, yield and NUE
between different N fertilizer treatments for twanter wheat cultivars under two growth stages, mur2008 and 2010,
respectively.

Treatment Growth stage Yield variables
Cultivar/Year kg/ha F8 F10.5 - -
Code N rate Leaf TN cal Leaf TN cal Grain TN Y|elq NUE
% % % dtha %
| Control 2.22¢ 27.8c 1.71bc 10.6¢ 2.29d 3.5d -
] NoPK 1.98c 22.0c 1.43c 10.3c 2.34cd 4.3d -
1] N 100PK 2.49c 38.0b 1.53c 18.4bc 2.37cd 20.4c 40.2a
v N 15PK 3.16b 39.8ab 2.08ab 27.7ab 2.46bc 23.6¢c 33.3abc
~Fiesta“/2008 \Y N2goPK 3.17b 38.2b 2.07ab 24.7ab 2.50ab 31.0ab 34.9abc
VI N50PK 3.79ab 43.9ab 2.60a 23.4ab 2.54ab 33.3ab 30.6abc
VI N 25PK+PG 3.77ab 44 5ab 2.27a 30.5a 2.56ab 27.5bc 24.9¢
VIl N ,5PK+D 3.58ab 46.3a 2.15ab 24.7ab 2.6la 37.5a 36.1ab
IX N 300PK 3.87a 46.1a 2.41a 34.1a 2.53ab 33.1ab 25.3bc
| Control 1.43c 11.6d 1.24d 5.0e 2.00c 18.9c -
Il NoPK 1.27c 8.2d 1.05d 7.5de 1.97c 15.8c -
1l N 100PK 2.30b 24.5¢ 2.00c 11.3cde 2.05¢c 36.4b 37.1ab
v N 150PK 2.34b 30.0bc 1.94c 11.9cde 2.21b 42.6ab 37.9a
LLucija“/2010 \Y NogoPK 2.35b 32.0bc 2.22abc 15.7bc 2.37a 43.1ab 32.2ab
VI N,50PK 2.77ab 33.1bc 2.17abc 14.8bcd 2.35ab 40.5ab al23.1
Vil N ,5PK+PG 2.69ab 34.9b 2.51a 23.6a 2.45a 44.7a 28.9ab
VI N 550PK+D 3.20a 45.0a 2.43ab 21.9ab 2.43a 43.1ab 27.0ab
IX N 300PK 2.88ab 33.4bc 2.09bc 14.2cd 2.45a 39.3ab 19.5b

IMeans followed by the same letter within a columneach cultivar/year are not significantly differat the p< 0.05 level by Duncan’s Multiple Range
test
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Table5.1.2. and Table 5.1.3. summarize the results @me®mparison for winter wheat
crop variables: leaf nitrogen (N) content, chlorglpbontent index (CCI), grain N content,
yield, NUE and spectral parameters calculated a®/INEhd RVI between different N
fertilizer treatments for one measurement per twomh stages (F8 — stem extension;
F10.5 — heading), during 2008 — cultivar “Fiestatl 2010 — cultivar “Lucija’. Analysis of
variance of the N fertilization treatment on winteneat variables showed that not all of
nine treatments achieved significant differencesb(@& 5.1.2). The most obvious significant
separation was detected between treatments wittimagen (Control, iy and those with
N excess (Bo, Nagg). In most cases, treatments with 100, 150 andk2ON ha' were not
significantly different between themselves, butytlded differ from treatments with no N
added or with those with 250 and 300 kg N*hBIUE was only significantly different
between the highest and the lowest valuegyo(Mr Niso and Nso or Nsgg) for both

investigated years and cultivars.

Table 5.1.3. Mean comparison for NDVI and RVI betwaelifferent N fertilizer treatments
for cultivar “Lucija” under growth stage F8, duri2@10.

Treatment Growth stage
Cultivar/Year kg/ha F8
Code N rate NDVI RVI
| Control 0.414¢ 2.420d
Il NoPK 0.386¢ 2.267d
1 N 100PK 0.598b 4.029¢c
v N 150PK 0.643ab 4.616abc
,Lucija“/2010 V N2oPK 0.628ab 4.463bc
VI N2s50PK 0.658a 4.878ab
Vi N 25)PK+PG 0.670a 5.085ab
Vil N ,5PK+D 0.681a 5.264a
IX N 300PK 0.663a 4.959ab

Means followed by the same letter within a columndultivar/year are not significantly differenttae
p < 0.05 level by Duncan’s Multiple Range test
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Overall effect of different N fertilizer treatmentsvo winter wheat cultivars/years and two growtihiges on leaf TN content,
chlorophyll content index (CCI), grain TN contegteld and NUE is reported as mean comparison inleT&ll.4. Mean
differences between groups of N levels, cultivard growth stages were statistically significant éoery crop variable except
NUE between cultivars/years. Although NUE did nifted significantly among two cultivars, mean vadueere slightly higher
for 2008 compared to 2010. According to these tesaieans were later grouped into statisticallfed#nt categories of N rates

[1 (Control, Ny); 1l (N100, N1so, Naoo); 111 (N2so, Naog) (kg ha')] which represented basis for classification analyiis spectral features.

Table 5.1.4. Mean comparison for leaf TN contehlpiphyll content index (CCl), grain TN conteniglg and NUE for overall
effects of different N fertilizer treatments, twanter wheat cultivars/years and two growth stages.

Treatment, kg/ha Le%/];TN CcCl Grain TN % ggﬁ;dl NOL/i E

I. Control 1.65d 13.7e 2.14c 11.2d -

Il. NgPK 1.43d 12.0e 2.16¢ 10.0d -

1. N 1odPK 2.08c 23.1d 2.21c 28.4c 38.6a
IV. Ni5PK 2.38b 27.3c 2.34b 33.1bc 35.6ab
V. N2oPK 2.45b 27.6¢ 2.44a 37.0ab 33.5ab
VI. NosgPK 2.83a 28.8bc 2.44a 36.9ab 26.9bc
VII. NsQPK+PG 2.81a 33.4a 2.50a 36.1ab 26.9bc
VIII. N 25)PK+D 2.84a 34.5a 2.52a 40.3a 31.6abc
IX. N3goPK 2.81a 31.9ab 2.49a 36.2ab 22.4c
Cultivar/Year

“Fiesta”/2008 2.57a 30.6a 2.47a 23.8b 32.2a
“Lucija’/2010 2.16b 21.0b 2.25b 36.0a 29.4a
Growth stage

F8 2.74a 33.3a - - -
F10.5 1.99b 18.4b - - -

"Means followed by the same letter within a columneach treatment, cultivar/year and growth stagenat significantly different at the<0.05 level
by Duncan’s Multiple Range test
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Analysis of variance was performed for all possiefeects including each cultivar/year,
each growth stage and each N fertilization treatmand then for pooled effect of all
factors on winter wheat variables: leaf nitrogen @ontent, chlorophyll content index
(CClI), grain N content, yield, NUE and spectralgraeters calculated as NDVI and RVI
(Table 5.1.5 — 5.1.8). All investigated agronomiutd aspectral variables were strongly
dependent on N application levels and increaseld initreasing N rates. The effect of N

treatments on vegetation indices was statisticidjgificant (p < 0.001).

Table 5.1.5. Analysis of variance for the leaf Mitsmt and CCI for each cultivar/year.

. Results of Leaf TN

Cultivar/Year ANOVA' % CCl
CcVv 14.39 19.30
R? 0.85 0.83
Model 18.41*** 15.09***

,Fiesta“/2008 Error 0.14 34.91
GS 154.97%** 128.48***
Treatment 17.80*** 15.11%**
Treatment x GS 1.95ns 0.90ns
CcVv 14.12 25.01
R? 0.83 0.86
Model 15.29*** 19.36***

,Lucija*/2010 Error 0.09 27.67
GS 30.88*** 129.01%**
Treatment 27.21%** 21.49***
Treatment x GS 1.43ns 3.52**

Are given MSE and F-values for the sources of Wiraconsidered; ns: not significant, level of stital
significance: ***p < 0.001; **p < 0.01; *p < 0.05

Table 5.1.6. Analysis of variance for NDVI and Rfgt cultivar “Lucija”, 2010.

Cultivar/Year Results of ANOVA NDVI - F8 RVI - F8
Ccv 5.81 10.88
2
Lucija®2010 R 0.93 0.88
Model 42 59*** 24.01***
Error 0.001 0.21

Are given MSE and F-values for the sources of viariaconsidered; ns: not significant, level of stital
significance: ***p < 0.001; **p < 0.01; *p < 0.05

Growing conditions and crop genetic propertiesificantly affected harvest variables, leaf
TN content and CCI for each growth stage (Tabler%.1
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Table 5.1.7. Analysis of variance for the leaf Mismt and CCI for each growth stage, and

grain N content, yield and NUE for overall effect.

Growth Results of Leaf TN cal Results of  Grain TN Yield NUE
stage  ANOVA! % ANOVA % dtha’ %
Cv 14.11 15.13
R? 0.83 0.86
Model 15.84***  19.99***
Fs Error 0.15 25.36
Cultivar/Year 69.03***  77.27*** Ccv 3.81 15.75 32.13
Treatment 23.86***  31.21*** g R 0.85 0.91 0.33
Treatmentx 47,0 161ns 8 Model 18.01%*  30.20%*  1.58ns
Cultivar/Year 5
2 Error 0.01 2222 97.76
Ccv 14.25 33.24 K] Cultivar/Year 100.86*** 120.93*** 14ns
R? 0.75 0.70 > Treatment 23.19*** 46.99*** 2.65*
Model Q.57F*  T.4TRH (T:re"%‘tmemx 2.47* 2.26*  0.59ns
ultivar/Year
F10.5 Error 0.08 37.22
Cultivar/Year 1.08ns 36.88***
Treatment 17.09*** 9.5 ***

Treatment X o
Cultivar/Year 311 1.75ns

Are given MSE and F-values for the sources of viariaconsidered; ns: not significant, level of stital
significance: ***p < 0.001; **p < 0.01; *p < 0.05

When analyzing overall effect for laboratory aneldi measured variables acquired at F8

and F10.5 stages, the significant treatment x G&3dntion was recorded due to wide range

of variable responses (Table 5.1.8). Cultivarseadpd similarly to N fertilization levels at

both growth stages according to ANOVA calculateddweerall effect.

Table 5.1.8. Analysis of variance for the leaf Mtamt and CCI for overall effect.

Results of ANOVA Leaf TN

% CClI
Ccv 14.33 21.66
R? 0.85 0.86
Model 18.18%*** 19.51%**
Error 0.11 31.29
GS 172.70*** 256.59**
Treatment 40.30*** 33.91%**
Cultivar/Year 53.39%** 105.66***
Treatment x GS 2.67** 2.70**
Cultivar/Year x GS 36.92*** 0.83ns
Treatment x Cultivar/Year 2.90** 1.95ns
Treatment x Cultivar/Year x GS 0.80ns 1.43ns

Are given MSE and F-values for the sources of viariaconsidered; ns: not significant, level of stital
significance: ***p < 0.001; **p < 0.01; *p < 0.05
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5.2 Visual evaluation of spectral data

Spectral data were visually evaluated before andr ghre-treatment. Pre-processing
methods included normalizing to minimize the vaoia$ due to illumination intensity
changes and distance between the leaf and fiber ppibe. Figure 5.2.1a, 5.2.1b shows
winter wheat leaf reflectance spectra (a) andiits ferivative (b). Mean spectral data of
nine fertilization levels were grouped into threlasses in which the means were
statistically different from one another [I (CoririNo); Il (N1oo, Niso, N2oo); 111 (N 256, Naoo)

(kg ha)]. The greatest spectral differences betweenrtreat classes were in the green to
red and at the red edge region. Compared to wetliZed group of treatments, nitrogen

limitation in group | highly increased red refleat@ and decreased NIR reflectance.

Treatment groups, kg N ha-1
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Figure 5.2.1a — Average raw reflectance factor fowinter wheat flag leaves for three groups of
different N fertilizer levels acquired on May 07, D10 (F8 - “Lucija”) (n=36).
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Figure 5.2.1b — Average first derivative reflectane factor for winter wheat flag leaves for

three groups of different N fertilizer levels acquied on May 07, 2010 (F8 - “Lucija”) (n=36).
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5.3 Correlation analysis between spectral data and cropariables

Correlation coefficients between the leaf nitroddl content, chlorophyll content index
(CClI), grain N content, yield, NUE and spectralgraeters calculated as NDVI and RVI
are summarized in Table 5.3.1. Reported data tefstem extension stage (F8) for leaf
measurements and vegetation year 2010 (cultivacif&l) for harvest results. Very strong
to full significant correlations were found betwdeaf TN content, CCI, grain TN content,
yield, and both vegetation indices. Correlogranwieen winter wheat grain yield and leaf
spectra (single wavelength) in the form of raweethnce (raw), first derivative (dvl) and
second derivative (dv2) of reflectance acquirethatsame time is shown in Figure 5.3.1.
Dash lines on the graph represent the significamtetations at p < 0.05. The first
derivative transformation of spectra showed higharallr values than the corresponding
raw reflectance. Significantly high correlationsttwgrain yield for both reflectance and
two derivatives were obtained in the visible and eglge part of spectrum indicating

chlorophyll optical properties.

Table 5.3.1. Correlation coefficients among winteiheat variables and spectral data
measured during growth stage F8 and harvest, 20lL0c{a” (n = 36).

Variable ~ Means  SD Le%LTN’ ccl TGI\:a'O/rL Z'tf]';' NDVI RV
Leaf TN,%  2.359  0.696 0922 0785 0775 0802  0.787
ccl 28.072 12204 0.927 0.744 0798 0827 0821
Grain TN, %  2.253 0210 0785  0.744 0752  0.748  0.758
Yield, dtha'  36.033 11.247 0775 0798  0.752 0905  0.872
NDVI 0593 0112 0802 0827 0748  0.905 0.986
RVI 4220 1149 0787 0821 0758  0.872  0.986

"Marked correlations are significant at p < 0.05

Ivana Sestak — Doktorski rad: Procjertinkovitosti gnojidbe dusikom spektroskopijom usjgéenice
63



Doctoral thesidse of field spectroscopy for assessment of génouse efficiency in winter wheat

F&-2010
12
— “ield-raw
1.0 — “field-chv
e Bl o e Wigld-clw2
o8 F -=- pctEI,I:IS
06
=
; 0,4
Z
€ o2l
i
LX)
g 7
z ]
E 02 F
=]
L] Y
a4 b
0.6
'D.S L
-1.0
3T S 416 w6 4TE I S SRS P OBDE 635 &35 TIE T4 TTE 206 S35 DES D% BDE DEE IEE 1016 104E
Wavelenght {nmj)

Figure 5.3.1 — Correlogram showing relationship beteen winter wheat yield and leaf raw
spectral reflectance, first derivative (dvl) and seond derivative (dv2) of reflectance acquired

by the field spectroradiometer on May 07, 2010 (F8 stem extension, “Lucija”/2010).

Figures 5.3.2 and 5.3.3 show 1:1 relationships éetwvinter wheat yield and vegetation
indices NDVI and RVI calculated from raw reflectandata measured at leaf level during
stem extension (F8) of vegetation period 2010 withivar “Lucija”. Dash lines on the
graph represent the significant relationships ak @.05. Very strong positive and
significant relationship was achieved between marband spectral indices and winter
wheat yield. Significant but medium positive coatedns were found between NDVI and
RVI and winter wheat yield at heading growth std§&0.5-2010-“Lucija”) (p < 0.05)
(Figure 5.3.4; Figure 5.3.5).
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Grain yield = -18,02 + 91,104 * NDVI

Correlation: r = 0,90535
55 r . :

50 . -
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Grain yield, dtha *
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B “®._95% confidence
10 - : : - - - - -
03 03 040 045 050 055 060 065 070 0,75
NDVI

Figure 5.3.2 — The relationship between winter whegield and NDVI developed from raw
reflectance data acquired at leaf level during groth stage F8 - “Lucija’/2010 (p < 0.05; total

number of samples = 36).

Grain yield =,01601 + 8,5350 * RVI

Correlation: r = 0,87163
55 T T r .

50
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15 20 25 30 35 40 45 50 55 60 65
RVI
Figure 5.3.3 — The relationship between winter whegield and RVI developed from raw

reflectance data acquired at leaf level during groth stage F8 - “Lucija’/2010 (p < 0.05; total

number of samples = 36).
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Grain yield = 9,2100 + 66,584 * NDVI

Correlation: r = 0,46881
55 " . :
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0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60

NDVI
Figure 5.3.4 — The relationship between winter whegield and NDVI developed from raw

reflectance data acquired at leaf level during groth stage F10.5 - “Lucija”/2010 (p < 0.05;

total number of samples = 36).

Grain yield = 10,913 + 10,419 * RVI
Correlation: r = 0,44866

55

Grain yield, dtha *

10 ' ' ' ' ' '
16 18 20 22 24 26 28 30 32 34 36

RVI

“®_95% confidence

Figure 5.3.5 — The relationship between winter whegield and RVI developed from raw
reflectance data acquired at leaf level during groth stage F10.5 - “Lucija”/2010 (p < 0.05;

total number of samples = 36).
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5.4 Multivariate linear and non-linear modeling — regression

To better understand the use of field spectrosgéopyonitoring of crop nutrient status,

Figure 5.4.1 was built to illustrate simplified sche of all activities used to estimate winter
wheat variables from spectral data, including fieléasurements, laboratory analysis,
fitting the model for calibration as well as fuloss-validation by applying spectral data on

the equation.

y

v

Step 2: Plant samples from
studied area (Unknown contents)

|

Step 1: Plant samples from
studied area (Winter wheat leaf)

Laboratory
Acquisition of analysis
spectral data |_+
Determined TN

content in leaf

%  -0,06*PC12+0,01*PC2 content in leaf

4

Development of a calibration and cross-validation modei
fo estimate wheat ieaf TN conlent using data from
reference samples

TN = 2,36-0,05*PC1-0,08*PC10- :
] — Estimated TN

b

P )

Determination of spectral curves

Figure 5.4.1 — lllustration of the modeling activites flow — example of TN content in winter
wheat leaf, F8-2010.

Ivana Sestak — Doktorski rad: Procjertinkovitosti gnojidbe dusikom spektroskopijom usjgéenice
67



/(:f: -\§¢ F‘K"I/;,.

,ﬂ:s_‘;‘ ./}% Doctoral thesidse of field spectroscopy for assessment of génouse efficiency in winter wheat
et eyt

5.4.1 Simple linear regression (SLR), multiple linar regression (MLR)

and partial least squares regression (PLSR)

Results of the multiple linear regression (MLR) rabdalculated using spectral data (PCs)
and winter wheat yield data are shown in Figurelsl4Upper two plots show graphically
the relationship between the predicted and meagynaad yield in the calibration and the
validation sets. Residual vs. predicted yield graptplained deviations between the
observed data values and the model approximatidhose values. Line plot of regression
coefficients (right below) checked the importanée¢he different X-variables (spectra) in
predicting yield. The regression coefficients fdPZs summarized the relationship between
the predictors and the response, as a model witbnfponents approximated it. Model
adequately predicted variations in grain yield wielny strong dependence among variables
(R*=0.89 and R= 0.83 for calibration and validation, respectjyel

50 Predicled ¥ 50 Predicied ¥
4 Elements: 36 4 Elements: 36
1 Slope: 0.894478 1 Slope: 0864266
4 Offset: 3.802294 4 Offset 4.765853

4 Correlation: 0812127
40 = R-Square: 0.830595
1 RMSEP: 4 564525
1 SEP: 4627534
1 Bias: -0.125088

4 Correlation: 0845769
40 - R-Square: 0.894478
] RMSEC: 3.602485
1 SEC: 3.653586
1 Bias: -5.2898e-07

30 - 30 -

20 -
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10 — ° 10 -
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T T T T T T T T T T
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RESULTE, Y-var: Yield RESULTS, Y-var: Yield
10 — Y-residuals 10 4 Regression Coefficients (B)
5 — 0.5 —
- o = L%
0 — = —= 0
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T T T T T T T T T T T T
20 30 40 50 PC1 PC2 PC3 PC4 PCh PCB PCY
RESULTE, Y-var: Yield Yield RESULTE, Y-var: Yield B0 = 36.033333

Figure 5.4.1.1 — Scatter plots for the results ohe MLR model performed using full cross
validation method from 1% derivative of reflectance acquired at growth stagé&8-
“Lucija’/2010 showing relationship between predictel and observed winter wheat yield (dt
ha™) (n=36) e calibration e validation.
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Figure 5.4.1.2 shows scatter plots with calibratod full cross validation results of the
MLR model for predicted (Y axis) and observed (Msyteaf TN content, CCl and grain
TN content. Five principal components of th& derivative of reflectance acquired at
growth stage F8 of cultivar “Lucija” during 2010 meused as independent (predictor)
input data for all observed variables in the mo@ehin TN content estimation model had
the highest coefficient of determination?(R 0.85), followed by CCI (R= 0.72) and leaf
TN content (R = 0.69). The RMSEP were 0.383 %, 6.392 and 0.G8rd%eaf TN content,
CCl and grain TN content, respectively.

Slope Offset RMSE R-Square Slope Offset RM3E R-Square
3.4 — 0.785021 0.509661 0.320856 0.785022 80 08121892 5295104 5279082 0812182
0.744165 0597441 0.383180 0693394 E 0771027 6.175138 6.392379 0.724628
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Figure 5.4.1.2 — Scatter plots of the MLR model péormed using full cross validation method
from 1% derivative of reflectance acquired at growth stag&$ - “Lucija”’/2010 showing
relationship between predicted and observed leaf Tiontent (%), CCl and grain TN content

(%) (n=36) e calibration e validation.
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NUE = -5,233 + 1,2750 * Predicted NUE

Correlation: r = 0,81078
60 . :

50 1

40t

30+

201

Observed NUE, %

10+

- * “&_95% confidence

0 10 20 30 40 50 60
Predicted NUE, %
Figure 5.4.1.3 — Comparison between PLSR model pritied and field observed nitrogen use

efficiency (NUE, %) (n=36).

1:1 relationship between the predicted and obsemiteaen use efficiency in winter wheat
(NUE %) is shown as a scatter plot on Figure 534.As agronomic indicator, NUE was
calculated based on harvest data of “Lucija” caltiduring vegetation period 2010: grain
TN content, yield in form of N uptake, and amouhnhitrogen applied. Predicted NUE was
calculated based on the PLSR full cross validatiesults for harvest data, and then

regressed against the observed values. Very stsaggficant relationship was found
between observed and predicted NUE (r = 0.81).
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Figure 5.4.1.4 and 5.4.1.5 show results of theigdddast square regression (PLSR) model
calibrated to estimate winter wheat yield usingstfiderivative of reflectance (231

wavelength across full spectral range of 350-10%) and yield data (36 samples). Eight
PCs were chosen to represent the main structufedhiation in the spectral dataset. Upper
two plots represent a two dimensional scatter platcores and loadings for two specified
components from PLSR. The score plot gave inforonatibout patterns in the samples.
First two components summarized the most variatiotme data (PC1: 69 % and PC2: 13
%). Loadings for spectral and yield data showedtrdmrtions of each variable to the

meaningful variation in the data, and how well tR& takes into account the variation of

yield variable over the data points.
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Figure 5.4.1.4 — Scatter plots for the results ohe PLSR model performed using full cross
validation method from 1% derivative of reflectance acquired at growth stagé&s -
“Lucija”/2010 showing relationship between predictel and observed winter wheat yield (dt

ha™) (n=36) e calibration e validation.
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Residual validation variance expressed how muclatitan in the yield data remains to be
explained once the current spectral PCs have ba@ntinto account. Full correlation
between the predicted and measured grain yieldhén dalibration and the validation
datasets (r = 0.93 and r = 0.91, respectively)sli@vn in the scatter plot right below
(Figure 5.4.1.4). Figure 5.4.1.5 shows a line pibiX-loading weights for two specified

components from a PLSR analysis important for dietgcwhich spectral variables are
most significant for predicting winter wheat yieMisible part of spectrum (550-670 nm
and 690-710 nm) with red edge region (730-770 nmaewidentified as zones of major
importance for the PLSR model of winter wheat yidkésidual vs. predicted yield graph
(below) explains deviations between the observéea daues and the model approximation
of those values.
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Figure 5.4.1.5 — Loading weights (a) and residua() for the PLSR models calibrated to
estimate winter wheat yield. High numerical value®f regression coefficients indicate high
importance of the spectral band in the PLS analysisSuggested number of components is 2.

e calibration e validation
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5.4.2 Artificial neural networks (ANN) - regression

Predicted vs. observed winter wheat yield relatigmsfor train (calibration) and test
(validation) dataset explained using ANN regressmoadeling was found to have full
correlation: r = 0.95 and r = 0.92, respectivelyg(ife 5.4.2.1). Pattern recognition and
prediction of yield from spectral data was perfodmssing PC scores of'Merivative of

reflectance as input neurons (total of 16 PCs).hDiages on the graph represent the
significant relationships at p < 0.05.
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Figure 5.4.2.1 — Comparison of predicted and obseed winter wheat yield using artificial

neural network model for regression task. Trainingset: 50%, Testing set: 50% of samples.

Input neurons are PCA scores of 1 derivative of reflectance, F8 - “Lucija’/2010.
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Neural network structure and internal parametegssammarized in Table 5.4.2.1. Optimal
back propagation ANN architecture was MLP (Multéayerceptron) 16-9-1 with 1 hidden
layer (16: input PCs; 9: number of hidden unit:ieurons; 1: output winter wheat yield)
and BFGS iterative technique.

Table 5.4.2.1. Summary of optimum ANN regressiondetoarchitecture and internal
parameters (input neurons are PCA scores ®fdgrivative of reflectance, F8 -
“Lucija”/2010).

Net.  Training Test Training Test Training Error Hidden Output

Index name perf. (r) perf. (r) error error algorithm function activation activation
52 | 0950257 0924875 0004831 0011774 BFGS4  SOS  Tahridentity

Summary of multivariate regression and ANN models

Summary of statistical parameters for regressiq@e tyf modeling between spectral data
and crop variables is reported in Table 5.4.2.2foP@ance and model accuracy analysis of
NDVI and RVI in the form of SLR, then MLR, PLSR aAd\N in predicting winter wheat
yield is represented for calibration and validati®&MSE is expressed in original units of
the response variable. ANN model gave the highesfficients of determination @rand
the lowest root mean squared errors (RMSE) tharcdneesponding SLR-VIs, MLR and

PLSR models, in both calibration and validatioriges

Table 5.4.2.2. Summary of calibration and validatiesults of SLR, MLR, PLSR and
ANN models for grain yield of cultivar “Lucija” usg VIs and PCs of spectrd dlerivative
acquired during growth stage F8, 2010.

Full cross-validation

Model NPC Calibration (leave-1-out)

R? RMSEC (dt ha) R? RMSEP (dt hd)
SLR - NDVI - 0.820 4.710 0.800 4.954
SLR - RVI - 0.760 5.436 0.732 5.745
MLR 7 0.894 3.602 0.831 4.565
PLSR 8 0.863 4.103 0.836 4.614
ANN 16 0.903 2.571 0.856 4.406

NPC: optimal number of principal component$; efficient of determination; RMSEC: root meanae
error of calibration; RMSEP: root mean square eofgrediction
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The spatial variability of the winter wheat yieldasvmapped using ArcView geographic
information system (GIS)ESRI, 2006)for both measured and predicted values to visually
express within-field and intra-treatment differe;icen crop productivity needed for
assessing good calibration model. Ordinary kriginggrpolation method was used for
mapping. Figure 5.4.2.2 show the grain yield magsegated from the reference
measurements and from estimates by relationshipelafged using linear and ANN
modeling. Yield maps represent the F8 growth stggectral measurements on cultivar
“Lucija” flag leaves. ANN map was the closest toamared winter wheat yield considering
spatially comparable estimates. Disagreements ynostlurred on treatments VI, VII and
VIII due to the high variability in the yield datéithin the same treatments.

Ivana Sestak — Doktorski rad: Procjertinkovitosti gnojidbe dusikom spektroskopijom usjgéenice
75



Doctoral thesidse of field spectroscopy for assessment of génouse efficiency in winter wheat
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Figure 5.4.2.2 — Grain yield (dt h&) maps for winter wheat cultivar “Lucija”: a) as measured; b) estimated by NDVI; c) estimated
by RVI; d) estimated by MLR; e) estimated by PLSR;f) estimated by ANN. (estimations based on spectrdhta acquired at the stem
extension growth stage - F8)
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5.5 Classification analysis based on spectral signaes

5.5.1 Discriminant analysis

Discriminant analysis (DA) was used to predict #mount of N fertilizer rate applied to
the winter wheat using spectral data. Summary ofvibih statistical parameters important
for the interpretation is presented in Table 515.The basic idea underlying DA was to
determine whether groups of N fertilization leveli$fer with regard to the mean of a
spectral component, and then to use that specttal 8 predict group membership.
Standard statistics reported in the table was tseénote the statistical significance of the
discriminatory power of the current model and ueigeontribution of the respective
spectral PC to the discrimination between N levebugs. Values of the statistical
parameters Wilks lambda and Partial Wilks lambdageal between 0 (perfect
discriminatory power) and 1 (no discriminatory poweNine PCs were marked to have

significant contribution to N levels discriminati¢p<0.05).

Table 5.5.1.1. Discriminant Function Analysis Sumyné@CA scores - °l derivative of
reflectance, F8 - “Lucija”’/2010), Step 15, N of mdnes in model: 15; Grouping:
Treatments (3 groups); Wilks Lambda: 0.00125 appFof80.38) = 34.547, p < 0,0000.

N=36 Wilks Partial F-remove p-level Toler. 1-Toler.
Lambda Lambda (2,19) (R-Sqr.)
Component 1 0.084828 0.014746 634.7222 0.000000 0.140128 0.859872
Component 2 0.008434 0.148317 54.5521  0.000000 0.223463 0.77653
Component 10 0.006062 0.206360 36.5361  0.000000 0.267981 0.23201
Component 3 0.003940 0.317511  20.4202 0.000018 0.397552 0.@244
Component 13 0.002924 0.427846  12.7042  0.000314 0.448277 0.56172
Component 5 0.001915 0.653095 5.0461 0.017469 0.668406 0.331594
Component 8 0.001918 0.652346 5.0628 0.017280 0.686642 0.313358
Component 14 0.001957 0.639188 5.3626 0.014239 0.655655 0.344345
Component 16 0.001777 0.703834 3.9975 0.035561 0.709095 0.290905
Component 4 0.001712 0.730537 3.5041 0.050652 8983 0.246601
Component 6 0.001614 0.774966 2.7586 0.088753 04180 0.219860
Component 11 0.001536 0.814503 2.1636 0.142390 0PE&2 0.179739
Component 15 0.001458 0.858169 1.5701 0.233852 4018 0.135982
Component 7 0.001473 0.849362 1.6849 0.212021 09WH3 0.136810
Component 12 0.001466 0.853402 1.6319 0.221799 7006 0.132900

"Marked correlations are significant at p < 0.05
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Table 5.5.1.2 shows parameters that explain sggmfie of the two selected discriminant

functions (roots). The first function accounted doer 99 % of the explained variance.

Table 5.5.1.2. Chi-Square Tests with SuccessivetR&emoved (PCA scores 1
derivative of reflectance, F8 - “Lucija”/2010).

Canonical  Wilks

Roots removed Eigenvalue R Lambda Chi-Sqr. df p-level
0 73.72191 0.993286 0.001251 173.7810 30 0.000000
1 9.69857 0.952118 0.093470 61.6229 14 0.000000

Figure 5.5.1.1 graphically represents discrimimatietween three groups of N fertilization

levels based on spectral data of winter wheat lgayes. It is a scatterplot of canonical
scores for the two statistically significant disemant functions. Clearly, the winter wheat
leaves under N treatments of group | are plottedmfurther to the right in the scatterplot.

Thus, the first discriminant function mostly disomated between group | and the other
two. The second function showed discrimination leetwthe group Il (which mostly show

positive values for the second canonical functianil the others (which have mostly
negative values).

Discriminant functions
10

Root 2
N

o |
6 m ol
.15 -10 5 0 5 10 15 20 , |,

Root 1
Figure 5.5.1.1 — Sampled winter wheat leaves repmsted as function of discriminant factors

(roots) 1 and 2 based on the PCA scores of dlerivative of reflectance, F8 - “Lucija”/2010.
Samples are labeled according to the N treatment gup: | (Control, Ng); Il (N 100, N1so, N2og);
111 (N 250, N3oo) (kg ha™).
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5.5.2 Clustering

Clusters of the statistically different groups of féltilization levels based on the first
derivative of the reflectance are plotted in FigbrB.2.1. The spectral parameters in the
form of PCs were grouped into K- (3) clusters base@ specific distance measurement, so
that the sum of distances between each samplasantlister centroid was minimized. The
upper two plots represent a two dimensional scpttgrof scores and loadings for two PCs.
Score scatterplot showed almost completely diso@tmn between treatment groups 1
(N2so, Naoo kg ha'), 2 (Nwoo, Niso, Nooo kg ha') and 3 (Control, blkg ha'). The spectra
loadings were comparable to score plot, indicatiogrelation and importance of each
spectral feature for differing N levels. Influenplt showed which variables had a high
influence on the model so that it describes thettehdike 11-1, 1I-3 and V-2. Sample I-1
seemed to be an outlier. Explained variance shdivegroportion of variation in the data

accounted for by the current PCs.
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Figure 5.5.2.1 — Cluster analysis of three statistally different groups of N fertilizer
treatments (3-Control, No; 2-N100, N1so, N2og, 1-Naso, Nago) using PCA scores of 3 derivative of

leaf reflectance, F8 - “Lucija’/2010.
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5.5.3 Artificial neural networks (ANN) - classificaion

Neural networks were also used to tackle classifinaproblem of differing N fertilizer
levels based on leaf spectral reflectance. Themapti ANN classification model
architecture and internal parameters are reportedTable 5.5.3.1. Optimal back
propagation ANN architecture was MLP (Multilayerrgeptron) 16-9-3 with 1 hidden
layer (16: input PCs; 9: number of hidden unitsiearons; 3: output of three N fertilizer
level categories/groups) and BFGS iterative tedmmidBy contrast to regression problems,
a neural network classifier in this case assignkdsc membership to a three input
categories. Classification summary is given in €al#.5.3.2. One variable was
misclassified in group Il representing group llldicating 91 % statistically correct

classified variables in the intermediate treatnggatip I1.

Table 5.5.3.1. Summary of optimum ANN classificatimodel architecture and internal
parameters (input neurons are PCA scores ®fdgrivative of reflectance, F8 -
“Lucija”/2010).

Training Test Training Error Hidden Output

Index  Net. name performance performance lqorith f X o -
" " algorithm unction activation  activation
7 MLP 16-9-3 100.0000 94.44444 BFGS 13 Entropy tiken  Softmax
Table 5.5.3.2. Prediction accuracy of fertilizeeatment group (I, I, 1ll) classification

using artificial neural networks - Classificationnsmary (PCA scores of'Iderivative of
reflectance, F8 - “Lucija’/2010); Samples: Traimest.

| (Control, Ny Il (N 100, Niso, Naog) 11 (N 250, N3oo)
Total 8 12 16
Correct 8 11 16
Incorrect 0 1 0
Correct (%) 100 91 100
Incorrect (%) 0 8 0

Ivana Sestak — Doktorski rad: Procjertinkovitosti gnojidbe dusikom spektroskopijom usjgéenice
80



Doctoral thesidse of field spectroscopy for assessment of génouse efficiency in winter wheat

6 DISCUSSION

Statistical analyses of differences in leaf TN a&@l, grain TN, NUE, yield and two
vegetation indices (NDVI and RVI) according to fiezation treatments for each growth
stage and cultivar/year were computed by analysisgance (ANOVA). The significance
test for overall statistics was performed at pradliigevel of p < 0.05.

The wide range in field measured and laboratoryyaed winter wheat variables resulted
from a large variation in nitrogen fertilizationvids (0 — 300 kg N K5 as defined by
experiment methodology, vegetation years and a2 years; 2 cultivars — one each
year) and sampling dates (2 growth stages per y€abje 5.1.1). This was particular well-
designed experiment situation in order to maketicelabetween winter wheat growth, N
status, and vyield and leaf reflectance as realiahd universal as possible. When
interpreting data pooled for all experiment factmmbination, the absolute range of
analyzed variables varied widely. This was alsaltesf different climatic conditions per
each year (Figure 4.1.3; Figure 4.1.4) and unfdxeraoil properties (Figure 4.1.7). When
analyzing fertilization treatments pattern, flagfl&@ N content varied across cultivars/years
and growth stages (Figure 5.1.1; Figure 5.1.2yvds higher during stem extension (F8)
stage 2008 compared to the same growth stage 8t ZOis can be explained by extreme
climatic conditions during crop development. 2008svproblematic year in terms of lack of
precipitation at critical growth stages of wheat afM Figure 4.1.3) and monthly
temperatures higher than average during stem eateasd heading (Figure 4.1.4). 2010
was, as opposite, unusually wet compared to theageevalues, but still warmer than
average (May and June, Figure 4.1.3). Rainfall athdoubled during summer months and
its inter-annual path showed unusual variabilitynpared to the reference period. Soil
water balance for two extreme years (2008 and 2846yved large difference in seasonal
pattern of water surplus and water deficit (Figdire.5). Beside water deficit during spring
and summer months in 2008, the problem was alsadfan insufficient water supply
during winter period needed for forthcoming inteesievapotranspiration caused by
temperatures much higher then average. Majoritthefadverse climate impact on crop

growth in 2008 was caused by water shortages dumitigal phenophases, followed by
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surface water stagnation during 20Hdgher TN concentrations during 2008 with cultivar
“Fiesta” can be explained by efficient plant uptakley conditions and reduced nitrogen
leaching Kastori, 2005) Differences in leaf TN content accounted for hegdstage
between cultivars and years were negligible (Figbi1) because N movement from
leaves to grain was not affected by unfavorablenafic conditions. Grain TN content
followed the same trend when comparing two vegmtatiears (Figure 5.1.5). Average
concentration was statistically lower in 2010 (29%% compared to 2008 (2.47 %) (Table
5.1.4). It was found that cultivar “Fiesta” (200&d higher mean values of CCI for both
stages than cultivar “Lucija” which can be explaingy unfavorable climate properties
expressed by water surplus and lower crop developme2010 (Figure 5.1.4). However,
pattern of differences between stem extension #A8) heading (F10.5) was the same for
both cultivars/years: CCI readings were statidicaigher for F8 then for F10.5 stage
(Table 5.1.4). Both investigated years were geheraifavorable for achieving optimal
winter wheat yield potential, including synergy thfe other environmental conditions
except climate and water stress, like reducedpddibfter long-year period of fertilization
on Stagnosol, soil compaction due to extreme pitatipns, water retention due to lack of
subsoiling and problems with canopy destructiorwiidlife from Park of Nature Lonjsko
polje (for 2008). The average yield for both cudtiy and growing periods and across all N
fertilization treatments was only 29.2 dt havhich was 34.5 % lower compared to the
national average (45.8 dt hafor the last decade (2000-200d9)ZS, 2010) However,
when consider all external effects, the expectéidence of N fertilization on agronomic
variables was recorded which was important for @atibn of spectral data and modeling.
Nitrogen was a key factor which defined level ohter wheat yield. Grain yield had in
both years significantly increasing trend with hegiN fertilization levels, but it was lower
in 2008 then in 2010 due to the soil water defaitd mentioned canopy damages. The
maximal average yield per treatment was 44.7 dt @810 — cultivar ,Lucija“) for Nso
level. NUE generally had decreasing trend in respdn increasing amounts of fertilizer-N
in both investigated periods (Figure 5.1.6). Theedrend was reported liyuarda et al.
(2004), Bavec (1999) and Vukovic et al. (2008)
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Nitrogen treatments and great within-treatment alility, probably due to variable
residual soil N content, promoted a wide rangeesponses in plant growth and pigment
content(Serrano et al., 20005ignificant differences in mean values of leaf Edhtent,
CCI, TN content in grain, winter wheat yield, NUERdaspectral indicators NDVI and RVI
were obtained for two winter wheat cultivars/yeatso growth stages under nine
fertilization treatments (Table 5.1.2; Table 5.1 Al investigated agronomic and spectral
variables were strongly dependent on N applicdgeels (Table 5.1.5; Table 5.1.6; Table
5.1.7) and increased with increasing N rates (ANQWA 0.001), with consistent patterns
across different cultivars and growth stages. Hmessignificant dependency was reported
by Barraclough et al. (201(&nd Lopez-Bellido and Lopez-Bellido (20Q1According to
ANOVA for both cultivars/years and growth stageésan be seen that three to four groups
can be formed which means are significantly difiérfeom each other (Table 5.1.2). The
reason for that can be natural variability thatsexiin the data set. Assuming that for
significantly different fertilizer treatments this an indication of the induced nitrogen
stress, spectral response was later used in oodgredict nitrogen treatment. Similar
methodology was used ®\chanatis and Schmilovitch (2005)

When consider overall effect of different N fed#dr treatments, two winter wheat
cultivars/years and two growth stages on leaf TNteat, CCl, grain TN content, yield and
NUE, mean differences between groups of N levaldtivars and growth stages were
statistically significant for every crop variablgcept NUE between cultivars/years (Table
5.1.4). Climatic and cultivar differences expresasdactor cultivar/year (one cultivar per
one vegetation year) were statistically significéort leaf and grain TN content, CCI and
yield. For example, when analyzing overall effedt M fertilization factor on mean
differences of leaf TN content, four statisticatlifferent groups can be distinguish: 1)
Control, N;; 2) Nuog, 3) Niso, Nogg 4) three combinations of A Nsgo kg ha'. Results of
ANOVA show significant treatment x growth stage (G&eraction registered only for
CCI for vegetation period with cultivar “Lucija”, mch indicated that CCI responses to N
application during 2010 varied across the two ghowtages (Table 5.1.5). Growing
conditions and crop genetic properties significaraffected harvest variables, leaf TN

content and CCI for each growth stage (Table 5.ABjgnificant treatment x cultivar/year

Ivana Sestak — Doktorski rad: Procjertinkovitosti gnojidbe dusikom spektroskopijom usjgéenice
83



/,* §7¢ ulru[/::‘ ) ) o . .
(@iazes (= )2 _Doctoral thesidse of field spectroscopy for assessment of géinouse efficiency in winter wheat
N g™

interaction was found for yield, grain TN contemdaleaf TN content at heading stage,
which means that climate conditions and cultivaasl lifferent responses of measured
variables under various N fertilization treatments.

Significant interactions cultivar/year x GS andatraent x cultivar/year were obtained only
for leaf TN content which indicated that growingnddions depended on climate and soil-
water regime, and that N fertilization level hadgnsficant influence on cultivar
performance (Table 5.1.8). The absence of treatreatltivar/year x GS interaction
indicated that leaf TN and CCI responses to diffefd levels observed at two growth
stages were similar for two growing periods/cults;aven though significant variations in
winter wheat variables exists between years. As seeTable 5.1.6, cultivar “Lucija”
achieved specific spectral responses in form oktagn indices RVI and NDVI at stem
extension stage to different N fertilization rat@ke effect of N treatments on VIs was
statistically significant (p < 0.001).

The hyperspectral data obtained by field spectimgsceflected the complex information of
crop growth, so several techniques and methods bese used to minimize spectra noise,
such as derivative spectra and vegetation indiesgd on high correlation coefficients
between spectra and winter wheat variables.

Visual evaluation of reflectance spectra and itst fderivative indicates similar gross
patterns of reflectance typical for vegetation (ffeg5.2.1a)(Zhu et al., 2008) Chosen
spectra that best discriminated between treatmeate acquired at stem extension stage
from flag leaf of ,Lucija“ cultivar. However, diffences between three fertilization
categories are obvious. Reflectance was incredseebainfrared region (NIR) (> 740 nm)
and decreased at red region (660 — 690 nm) forpghtdo and No Nguyen and Lee
(2006) reported the same spectral changes in rice leafdisThe reason for that is higher
water content in leaves and increased CCI andTlidatontent which was also reported by
Hansen and Schjoerring (200&8roup with Noo, N1so and Ngo showed similar pattern in
green and red part of spectrum, but had lower cifiee in NIR region. Nitrogen
limitation in group with Control and f\highly increased red reflectance and decreased NIR
reflectance, which was also found Bgrrano et al. (2000)/ho estimated winter wheat

yield under different N supplies. The greatest spédifferences between treatments were
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in the visible and at the red edge region. That @maphasized by changes in the position
and amplitude of the first derivative of the retltce (Figure 5.2.1b). Leaves without N
fertilization showed a red edge shift to a showerelength. The same pattern was found
by Penuelas et al. (1994nhdZhao et al. (2005)This has the effect of broadening the green
reflectance peak (normally located near 550 nmatd® longer wavelengths, increasing
visible reflectanc€Adams et al., 1999)and causing the tissues to appear chlorotic. Unde
low chlorophyll and TN content in the leaf (e.g.edto drought or crop senescence)
sensitivity is greater in absorption peaks (45@ 6ih). In contrast, for leaves with greater
CCl/leaf TN content, these absorption peaks beceatarated, and the most sensitive
spectral bands are placed around 550 (Renuelas et al., 1994Changes in spectral
signatures were captured between growth stageselis(see APPENDIX: Figure 9.2).
Stem extension (F8) showed higher mean reflectamaée NIR region and decreased
mean reflectance in the red region compared to ihga@d10.5). Explanation for this
pattern lies in lower chlorophyll content in leaksing latter growth stage. Absorbance of
winter wheat flag leaves for both measurementsndu2010 with cultivar ,Lucija“ showed
differences among N fertilization treatments andficon earlier defined spectral regions
sensitive on N supply (see APPENDIX: Figure 9.3jufeé 9.5). Absorbance measured at
heading stage clearly distinguished among diffeketrieatments according to the range of
values for agronomic variables obtained accordmghe treatments (highest values at
treatment VII) (Table 5.1.2). During stem extensgage, treatments without N strongly
differ from the rest, probably due to fast planv&lepment which required N supply and
thus respond with higher chlorophyll content invies Figure 9.4 (see APPENDIX)
showed that differences between growth stages laggest at higher N fertilization rates.
Comparison of treatment IX @) among cultivars/years indicates better discrirtnomaof
GS in 2008, probably due to unfavorable climatinditbons in term of drought during stem
extension which was reflected in further weakernpldevelopment and maturation.
Following the goals of this study, it can be codeld that the overall level of spectral
reflectance was directly influenced by differentféttilization treatments as proved by

Hansen and Schjoerring (200®)creased N supply and growth stage F8 causedased
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greenness, thus, reflecting high values of reftemtafactor in the NIR region and low
values in the red part of spectrum.

Dynamic patterns of flag leaf reflectance underadaN fertilization levels with two winter
wheat cultivars provided basis for the analysissehsitive wavelengths and VIs and
deriving quantitative relationships of crop variebto spectral features of reflectance.

Data pooled from measurements acquired at stermsate during 2010 with cultivar
.Lucija® were used to perform correlation analysietween agronomic variables and
spectral features.

From Table 5.3.1a very strong to full correlation between leaf ¢dbhtent, CCI, grain TN
content, yield, NDVI and RVI is evident. Particlarcorrelations between leaf TN content
and CCI (r = 0.922), and NDVI and yield (r = 0.9@a)n be emphasized. Significantly high
correlation between Chl readings and N conteneaf dry matter was found during stem
extension and heading stage in winter wh&detlla et al., 1995Fox et al., 1994; Evans,
1983) Blackmer et al. (1994)eported good correlations between leaf refle@ancthe
visible part of the spectrum using chlorophyll meteadings, with leaf N and grain yield.
Therefore, no attempts were made to study sepprdeh of the biochemical winter wheat
variables. Yield was the selected variable forlfertregression and classification modeling.
Wavelength dependence of correlation coefficienb@tween winter wheat yield, leaf TN
content, CCI, grain TN content and leaf spectrdlectance, I and 2 derivative of
reflectance acquired by the field spectroradiomatestem extension during 2010 is shown
in Figure 5.3.1 and Figure 9.6abc (see APPENDIXgechal features of raw reflectance at
specific wavelengths in the ranges 764-800 nm sHowigh positive correlation, and in
ranges 510-662 nm and 689-731 nm high negativeeledion with winter wheat yield.
Significantly high positive correlation with yielachieved wavelengths in the ranges 560-
677 nm and 719-767 nm, while negative correlati@s Wound in the ranges 488-554 nm,
683-710 nm and in NIR region from 785 up to 100Q wien analyzing first derivative of
reflectance Abdel-Rahman et al. (2010), Penuelas et al. (1994B)lla et al. (1995), Read
et al. (2002)and Zhao et al. (2003yeported similar spectral regions significant for
predicting N status in crops. Most of these wavglles are in the visible and red edge part

of spectrum indicating chlorophyll optical propesi Leaf optical properties in a relatively
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narrow spectral band in the far red are crucialdi@nt nitrogen stress detection and the
estimation of leaf chlorophyll concentratifinichtenthaler et al., 1996lose relationship
between spectral and agronomic variables in winteeat was found when leaves were
green (F8). The relationship was weaker during imgadtage (F10.5) (data not shown).
When discussing correlogram for single wavelengthraov reflectance, the maximum
correlation coefficient for leaf TN content was abed at 557 nm and 716 nm (r = -0.78),
for CCI at 713 nm (r = -0.82), for grain TN contextt767 nm (r = 0.71) and for yield at
557 nm (r = -0.90). Correlation analysis for fidgrivative of reflectance showed maximum
r for leaf TN content at 602 nm and 671 nm (r = .83 CCI at 602 nm (r = 0.86), for
grain TN content at 896 nm (r = -0.89) and for ¢iat 587 nm (r = 0.93Wei et al. (2008)
also found a very close relationship between letbgen accumulation in winter wheat
and red edge position.

Leaf TN content, CCI, grain TN content and yieldwsied very similar patterns which can
be explained by high correlation coefficients betwethese four variables. The first
derivative transformation showed higher ovenalvalues than the corresponding raw
reflectance. The values for correlations of investigated agronowadables and the first
derivative of reflectance can be found in the failog order: CCI > leaf TN > yield > grain
TN.

Furthermore, the highest correlation coefficierds Wwinter wheat yield in the red to red
edge and NIR region indicated spectral bands ftautstion of common Vis (NDVI and
RVI) (algorithms shown in Table 4.5.3.1.1). Accaorglito theJordan (1969andRouse et
al. (1974)who used red and NIR bands for VIs combination gade basis for spectral
ratios application in estimating plant variable\W and RVI were calculated from 704
nm (rep) and 785 nm Nyr). These two wavelengths exhibited the highest Ising
wavelength correlation coefficient in each of thstidct high correlation spectral regions
(red to NIR). The ratio and difference based Vishvgimilar spectral features were found
by Carter (1994), Barnes et al. (2000), Moges et200%) and Stone et al. (1996Wwho
reported high correlations with crop chlorophylhtent, N status and grain yiel@arpley

et al. (2000)ound that ratios between red-edge (700 or 716 aimd) near-infrared (755—

900 and 1000 nm) provided the best correlation Wetdf N concentrations in cotton.
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Osbourne et al. (2002pncluded that NIR region was crucial for estimatad grain yield.
Using these results, a simple linear regressionetnads derived for wheat yield estimate
and forecast based on NDVI integration during theeat stem extension stage. The same
statistical approach was usedBgnedetti and Rossini (1993Fjigures 5.3.2 and 5.3.3 show
very strong positive and significant relationshigtween narrow band spectral indices and
winter wheat yield (F8-2010-“Lucija”) (p < 0.05).o0@elation between grain yield and
NDVI and RVI achieved r = 0.91 and r = 0.87, respety. It can be seen that treatments
with no N added (Control andgNare scattered in separate cluster (lower valuesnd
fitted line). Obtained results agree wiGirma et al. (2006who found that both the
correlation and regression analysis suggested eades (F5, F7 and F10) NDVI, among
Chl content and total N uptake, as good predictariater wheat grain yield. NDVI and
RVI values increased with N fertilizer level as mauby Lukina et al. (2000)data not
shown). A high correlation (r = 0.75) was obserbetiveen NDVI and grain yield bgoel

et al. (2003)as well. Significant but medium positive corredas were found between the
same NDVI and RVI and winter wheat yield (r = 0ahtl r = 0.45, respectively) at heading
growth stage (F10.5-2010-“Lucija”) (p < 0.05) (Rigu5.3.4; Figure 5.3.5). Lower
correlations between VIs and grain yield in thiowph stage could be result of N
translocation to grain as well as influence of mmtensive green color and higher leaf
water content in stem extension. The obvious grostéige dependence of calculated Vis
could be an advantage for precision farming appéioa.

The next objective of this study was to compareptteglictive ability of different statistical
methods and algorithms used to estimate winter whadables. Parametric empirical
models — SLR, MLR and PLSR - and non-parametricpegational models - ANN — were
calibrated, tested and compared to predict yietiblsbe from flag leaf spectral data in the
form of first derivative of reflectance captured stem extension stage from cultivar
.Lucija“. MLR models were tested for all measurenserall forms of spectral data and all
crop variables. First derivative of reflectanceufte= in an improved relationship between
leaf reflectance and winter wheat agronomic vaegthan did raw reflectance and second
derivative spectraZhao et al. (2005)fecognized first derivative of spectra as best

transformation which revealed wavelength featurgsificant for prediction of winter
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wheat grain protein content. Whereas yield MLR mati®wed the best performance, this
variable was selected for further analysis as inpuibove mentioned models. The main
concept of modeling process is shown on Figurel5.Batterns of the spectral and
biophysical data were modeled and calibrated tafgmtied to future data in order to predict
the condition of winter wheat. PCA of the first dative of reflectance resulted in 16
uncorrelated significant principal components (PGRctor scores acquired from the
calculated PCs were used as predictor variablasMi.tR and ANN modeling. 97.92 % of
sum of squares has been explained by all the ¢ettacomponents. First principal
component (PC1) captured 62.98 % of the variabilityhe spectral data and 12.33 % of
the variance was explained by PC2. However, teisdrdecreased with more components
added to the model (see APPENDIX: Figure 9.7). Pids provided statistical measures
whereas VIs required priori knowledge of the relations between spectra andpleeific
biophysical variables.

Detailed results of MLR model quantifying relatibifs between spectra and winter wheat
yield represented on Figure 5.4.1.1 show very gtrdependence among variables. Based
on the 7 PCs which account for the most of theatian in spectral data, validation model
(scatterplot upper right) which yielded a minimumotr mean square of prediction
(RMSEP) and the highest coefficient of determima(i?) was built. The root mean square
of calibration (RMSEC) was 3.60 dt hawhile the linear regression coefficient BRetween
the measured and predicted grain yield was 0.8@. fHspective Rfor the full cross
validation was R = 0.83 with RMSEP = 4.56 dt Ha Model adequately predicted
variations in grain yield, so noted residual vaoias should be due to noise only. Few
samples with larger residuals than the others diddisturb the model to a large extent. It
can be concluded that residuals were generally orahd distributed. Line plot of
regression coefficients checked the importancehef different spectral components in
predicting yield (PC1, PC2 and PC7). MLR modelsedasn 5 PCs were performed for leaf
TN content, CCI and grain TN content as well using same data acquired at the same
date (F8 — cultivar ,Lucija“) to show which variglmodel had the highest accuracy
performance. The reported results are similar (f€idu4.1.2). Among all four winter wheat

variables, grain TN content estimation model haal lifghest coefficient of determination
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(R* = 0.85), followed by vyield (R= 0.83), CCI (R = 0.72) and leaf TN content {R-
0.69), indicating that harvest variables had thet bgredictive power from spectral
measurements at stem extension stage. The RMSEPQO&83 %, 6.392 and 0.08 % for
leaf TN content, CCl and grain TN content, respedyi. The results of the models
evaluation showed that using hyperspectral dataicpkarly first derivative of reflectance
produced very high accuracy. Estimation models tf same winter wheat variables
measured at the heading stage (F10.5) of cultitarcija“ (2010) were less accurate
compared to predictions modeled using spectra amhbles acquired at F8 stage (see
APPENDIX: Figure 9.10). Obtained results proved the level of greenness captured by
the spectral response during the largest wheatl@awent was the best predictor of the
potential harvest variables, which was also coresfuldyWright et al. (2004) During the
heading stage, CClI estimation models were the gbawzording to the beginning of the N
translocation from leaf to grain, which limited théility of leaf reflectance to properly
track changes in productivity. The? Ralues for full cross validated models were 0.67,
0.61, 0.56 and 0.54 for leaf TN content, grain djegrain TN content and CClI,
respectively. In early or middle growth stages,ca modeling is useful for determining
adequate nitrogen rate to achieve desired cropl.yieladvanced and late growth stages,
crop leaf/canopy spectral reflectance measurentamde used to monitor crop health and
forecasting yield(Strachan et al., 2002Compared to the measurements acquired from
cultivar ,Lucija“ during 2010, model performancerfestimating the same four winter
wheat variables from cultivar ,Fiesta“ during 20@&s less accurate (see APPENDIX:
Figure 9.8; Figure 9.9). The reason for that caridoed in weaker crop development in
2008 due to the damages caused by water defistiirduring stem extension and wildlife
destructions which altogether resulted in redudeltlyand earlier senescence, especially on
N-stressed treatments. Correlations between peztliahd measured values of leaf TN
content, CCI, grain TN content and yield for vatida model were strong to very strong
(R? from 0.53 to 0.65) and medium to strond {®m 0.17 to 0.38) for stem extension (F8)
and heading (F10.5) stage, respectively.

Very strong relationship was found between obsewed predicted NUE (r = 0.81; p <
0.05) (Figure 5.4.1.3). NUE, as agronomic indicatas calculated using measured data of
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grain TN content and yield of cultivar ,Lucija“. €halgorithm was reported in subheading
4.5.3.2. Predicted NUE was calculated based orPLt&R full cross validation results for
harvest data, and then regressed against the edsealues. This relationship is the most
encouraging result due to the high predictive gbdf the models based on spectral data to
accurately estimate winter wheat harvest variables.

The PLSR results showed that it is possible toiptegtain yield using hyperspectral field
spectroscopy datdensen et al. (2007gund very highcorrelations between predicted and
measured values for the calibrated and validatetpkss (r= 0.97 for winter wheat yield
and grain protein models). Full correlation betwpeadicted and measured values for the
calibrated and validated samples was r = 0.93 and® 91, respectively (Figure 5.4.1.4).
An 8 factor PLSR model was found to yield a RMSEGIA0 dt hd. Validation of the
model with in-field acquired data showed that winideat yield can be predicted with a
RMSEP of 4.61 dt h& Score plot showed indication of clustering in get of spectral
samples which means that samples within each @etltusters are similar. Spectral
features projected right from the center are paditilinked to winter wheat yield (green
and red edge region). Wavelengths projected iroghposite direction had a negative link
(blue and the NIR region).

Wavelengths with large loading weight values werpartant for the prediction of the
winter wheat yield (Figure 5.4.1.5). Visible paftspectrum from approximately 550 nm to
670 nm and 690 nm to 710 nm with red edge regiomfi730 nm to 770 nm were
identified as zones of major importance for the RuBodel of winter wheat yield. Visible
wavelengths were directly associated with chlordiplabsorption. High degree of
coincidence was found between the selected wavislegr the best NDVI and RVI index,
correlations between each single wavelength and,yaed the size of the numerical PLSR
regression coefficients. The similar conclusionsenagbtained byHansen and Schjoerring
(2003) Model adequately predicted variations in graieldj so residual variations shown
in Figure 5.4.1.5 should be due to noise only. RReds were generally randomly
distributed although they formed two ,clouds” due differences in winter wheat yield
values. Small formation of residuals (left) repreaseamples with no N applied (Control

and N, treatments) which achieved reduced yields.
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Despite being an empirical approach, the modelilndtbby PLSR calibration was able to
integrate physiological information from number ggectral bands in order to estimate
winter wheat yieldFerrio et al., 2005)Jsing PC explanatory analysis and PL&®yon et

al. (2007) among others, agreed that VNIR reflectance spgobpy is a suitable method to
assess nitrogen status in fresh winter wheat sample

The next statistical method to quantitatively estiengrain yield from spectral data was
back propagation neural network model, a kind tfiaial neuron network (ANN) as non-
linear technique. Predicted vs. observed winter avhgield relationship for train
(calibration) and test (validation) dataset exmdirusing ANN regression modeling was
found to have full correlation: r = 0.95 and r 9. respectively (Figure 5.4.2.1, Table
5.4.2.1), which indicated a good learning perforagaModel performance was assessed by
SOS error function which showed how closed the Abildictions were to the measured
yield. Training and testing data sets were spltiveen themselves in ratio 50:50 which
resulted in a good random distribution of wide o yield values, and achieved excellent
target estimation. Predictions of winter wheatdiil train and test samples had the largest
residuals for treatments 1ll-1, VI-4 and I-3 ant2| respectively (Table 9.4 and 9.5). This
could be simply explained by natural and expectadations in sampled yield per each
treatment, and partly due to the model error.

The most interesting review of obtained resultanalysis of the overall success of winter
wheat yield prediction, assessed by different no@€&hble 5.4.2.2). Results showed that
optimal ANN model gave the highest coefficientslefermination (B and the lowest root
mean squared errors (RMSE) than the correspondiRy\8s, MLR and PLSR models, in
both calibration and validation test€hen et al. (2007)pbtained similar results of
comparison between regression models and ANN wisémating rice pigment content
from hyperspectral data. The highest RMSE of pteticwas found for simple linear
regression model of RVI and yield (RMSEC = 5.44hdt and RMSEP = 5.75 dt Ha
Accuracy was reduced for cca. 23 % (validation sethpared to the ANN estimation. The
next best performance was achieved by MLR moded. ddiresponding RMSE for the both
calibration and validation was 3.60 dt‘hand 4.57 dt Ha Differences between MLR and

PLSR regression parameters were negligible acopridirthe purpose of yield prediction
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and in-season N rate optimization. PerformancehefRLSR model indicated the highest
consistency because of the small difference bet&ISEC (4.10 dt HY and RMSEP
(4.61 dt hd) besides high prediction ability (validatiorf R0.84). PLSR makes full use of
the rich hyperspectral information while being tetaly insensitive to sensor noise
(Atzberger et al., 2010)The PLSR model performed better (up to 20 %) cmexb to the
best of the selected VIs based on linear curvimdittshowing that PLSR is a potentially
useful explorative tool which was also proved irsules reported byHansen and
Schjoerring (2003)The values obtained for calibration and validaty both models are
comparable which indicates that both models wele @blearn and generalize. Comparing
MLR, PLSR and ANN, the latter model outperformed fiist two. This might be resulted
from the strong capacity for nonlinear mapping auwbd robustness of ANN, which
maximized the sensitivity to the yield data of firet derivative of reflectance. Owing to
the simple topological structure, the learning &t corresponds to the solution of a
linear problem, and therefore, the training of tiedwork is less time-consumirfiyang et
al., 2009) The ability of ANN to associate complicated spacinformation with target
attributes without any constraints for sample istion make them ideal for describing the
intricate and complex non-linear relationships whexist between canopy-level spectral
signatures and various crop conditioff@mes et al., 1998)Given the complexity of
estimating crop yield and harvest variables basedsmectral data, the above RMSEP
values can be considered very small as statddioyet al. (2005)Considering coefficients
of determination, performance of two vegetationexwtbased models could not reach the
accuracy of the multivariate regression modelspitesatter required empirical calibration.
The same relation in model performance was proyeldorio et al. (2005and Atzberger

et al. (2010) Still, NDVI and RVI reached a very strong relatship with yield when look
on the cross-validation results? R 0.80 and R= 0.73, respectively. Ordinary kriging
results shown on Figure 5.4.2.2 indicate similesitbetween the maps generated from the
equations and the one generated from field measuresywhich is in agreement with high
portion of yield variability explained by spectrdata (p < 0.05). Disagreements mostly
occurred on treatments VI, VII and VIII due to thigh variability in the yield data within

the same treatments. Maps generated from all madkelspt PLSR had smaller areas of
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high yield. Yield was over-estimated by MLR, PLSRJan small portion by ANN model.
NDVI and RVI estimates were considerably lower thia@ measured grain yield and had
the highest disagreements in spatial distributiaih wieasured values according to higher
prediction errors (Table 5.4.2.2). ANN map wasc¢losest to measured winter wheat yield
considering spatially comparable estimates.

Under the diverse experimental conditions includdifferent N fertilization levels and
combinations, it can be concluded that the methagkd in this study can be used to
provide in-season estimates of winter wheat yi¢l@ dield scale using remotely-sensed
observations. Results showed that VIs and botisstail and ANN methods could be used
to estimate the in-field variation of yield poteaiti Moreover, MLR showed very high
correlations with the rest of agronomic and bioclwaiwinter wheat variables (leaf and
grain TN content, CClI).

Classifying crops by nitrogen stress is of gre&rigst in precision agriculture. Following
that assumption, classification analysis basedpestsal features of fresh winter wheat flag
leaves were computed as well. Discriminant funcéolysis (DA), clustering and ANN
classification task were initiated and processedind N level membership. Standard
statistics reported in the Table 5.5.1.1 was ueatkhote the statistical significance of the
discriminatory power of the current model and ueigeontribution of the respective
spectral PC to the discrimination between threeigsoof N fertilization levels. Nine PCs
were marked to have significant contribution to éVdls discrimination (p < 0.05). Two
statistically significant discriminant functionso@ts) were selected after computing
canonical analysis (Table 5.5.1.2). The first fisctaccounted for over 99 % of the
explained variance which means that 99 % of altrd@ignatory power was explained by
this function. Apparently, the first discriminantriction discriminated mostly between the
group | (Control, Nkg ha') and the other N treatments categorized in graupsd IlI
(Table 9.1). The second discriminant function dgtished mostly between the group I
(N100,N1s0 Nago kg ha') and the other N treatments in groups | and Ibwdver, based on
the review of the eigenvalues in the Table 5.5.th& magnitude of the discrimination was
much smaller. The plot on Figure 5.5.1.1 confirnibd interpretation so far. The first

discriminant function mostly discriminated betwegroup | and the other two, while
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second function showed discrimination between treug Il and the others. Table 9.2
shows prediction accuracy of N treatment groupsifigation using DA. All samples were
correctly classified in each group by the currelatssification functions. However, the
interpretation of these results in terms of predectiscriminatory power is possible only
with validation of the discriminant function analysesults with new additional data. In
general, in many cases where there are naturaluroog groups that could be
discriminated, this technique is appropriate. Thessults indicated that hyperspectral
measurements are best at detecting where N isetimither than where it is in excess
during the fast vegetation development (F8), whicds also reported byensen et al.
(2007) who estimated wheat harvest variables under diitei fertilization levels. The
similar results were reported IS8trachan et al. (2002¥ho concluded that these findings
are of great interest in precision agriculture Bgveing supplemental nutrient application,
identifying stress patterns and aid in yield fosgicey. Early in the growing season, N could
still be applied in accordance with plant's needsder such a precision agriculture —
variable rate application strategy, remotely senséormation would be combined with
other characteristics of the field (topography,imige patterns, soil pH etc.) in the
management decision to determine the potential @oanbenefit to any N application.
Karimi et al. (2005)also used discriminant analysis of hyperspectedh dor assessing
water and nitrogen stresses in corn and reportadtteatments were correctly classified
with more than 95 % accuracy based on specifiomawavebands from different portions
of the spectrum.

The next classification methods used for detediirgiatus of winter wheat was clustering.
ANOVA showed that nine fertilization treatments bfiorm three groups in which the
means of winter wheat variables (cultivar “Lucij@2Q10) are significantly different (Table
5.1.2). According to that separation of N levekaflspectral response (PCs of the first
derivative of reflectance) acquired at stem extan&010 was used in order to cluster the
data by fertilizer treatment group. Results (Figir&.2.1) showed almost completely
discrimination between treatment groups %sNNsgo kg ha), 2 (Nwoo, Niso, Nooo kg hal)
and 3 (Control, kg ha'), similarly to the results of the discriminationadysis. Part of

the observed variability is due to the natural afaitity that exists in the data set (different
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levels of winter wheat variables in the same Ntiregt) and part due to the model error
(Alchanatis and Schmilovitch, 2005)wo intermediate treatments (V-2, V-4 - groupma)
into group 1, and one sample from group 1 (IV-45wkpse to group 2. The reason for that
is a wide range of N-non-limited yield values. Loeys location in the PC space
corresponds to cluster pattern on the score ptotekample, N limited treatments (group
3) can be distinguished from other groups mostieldeon the blue, green and the red edge
region due to the changes in chlorophyll contertected in these particular regions.
Sample I-1 seemed to be an outlier. However, atipdas were spread in one wide “cloud”
and that particular variable is not so far from ttenter. Analyzing overall success of
cluster analysis, it can be concluded that stetilyi different groups of N treatments were
separable based on the spectral data. Multivad&teriminant analysis and clustering
based on the spectral PCs clearly separated wiviteat leaves of different N status.
Discriminant scores could be used to predict phggioal conditions from leaf
hyperspectral measurements, and similar approadd be tested at canopy or large-scale
levels(Penuelas et al., 1994)

As a last statistical analysis, ANN was trained texied to solve classification problem of
discriminating different N fertilizer levels based the leaf hyperspectral reflectance. By
contrast to regression problems, a neural netwtakstier in this case assigned class
membership to a three above selected input catesgdr{Control, N), Il (N100, N150, N20g)
and 111 (Naso, Nagg) (kg ha'). ANN type was MLP, also used for regression taskivation
functions were identity and softmax, usually usedciassification analysis (Table 5.5.3.1).
Prediction accuracy of ANN is reported in Table.3.% and Table 9.3. Only one variable
was misclassified in group Il representing group (NV-1, test set) indicating 91 %
statistically correct classified variables in th@ermediate treatment group Il. Correct
classification of samples 1l1I-2, IV-2, V-2, and V3 the test data sets was not statistically
significant (Table 9.3). As mentioned above, intedmte treatments (group Il) had the
highest variability in both laboratory measuredpck@riables and spectral data. As both
DA and cluster analysis, ANN accurately classifiifferent levels of N fertilization
treatments in form of three statistically differegroups. However, type of classification

performed in this study was more explanatory amdl lof pre-analysis. DA would need
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validation of obtained functions with a new datdNM needs much more samples in the
model to avoid over-fitting. Clustering gives rewvien spectral data pattern like PCA. But,
this similar and enough accurate performance imelcpotential of hyperspectral sensing to
detect N limited and N excessed winter wheat caytst Extreme groups were completely
separable (I and Ill), and the small proportionvafiability in intermediate N non-limited
treatments (II) was probably result of some addélofactors during the growing season
like water stress and low soil pH.

Although the present study was carried out on tvwtter wheat cultivars of two growing
seasons, the monitoring models for N status in dispue based on hyperspectral
reflectance were established and tested in the samm@onment. Key hyperspectral
parameters, regression and classification modéiseséd to be verified in other ecological
conditions involving different climate propertiesils, cultivars and production systems,
and remain to be refined for accurate estimatiod @otential application in field
management. Also, additional attempts should beemadintegrate the air-borne and
satellite remote sensing information and the preseaonitoring models from field
spectroscopy data obtained in this study. This ddwélp to extract spectral information
related to monitoring and diagnosis of N statusvireat crop at larger scale, and further
construct a potential platform for dynamic manageinoé N fertilization (implementation
of spectral model estimates into VRT applicator) arecise prediction of productivity for
large spatial scale wheat production.

A comprehensive evaluation of thousands of simpléorand difference based spectral
indices constructed as all possible wavelength @oations would be required to
determine consistent wavebands that provide thé ibésmation for developing more
accurate monitoring models with wider applicabilifywinter wheat N status estimation. In
further research extension in domain of hyperspedtta quantification, it is necessary to
increase the amount, complexity and representaticsamples so that the derived model
can be applied under varied conditions. Accordinglyoper N monitoring models in
practical use could be flexibly selected accordimghe specific growth stages of winter

wheat.
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As stated byCarver (2009)in the chapter “Nitrogen use efficiency as a drieérnew
technology”, creating quantifiable methodologiesl&dermine optimal rates of soil nutrient
inputs that can be used both in intensive, largdeshigh-technology production systems
and in developing world single-hectare farms isaarding task. But, first, efforts must be
taken to reach the producers by simplifying scfenbiased decision making algorithms.
The results obtained in this doctoral thesis camfthe high information potential and
feasibility of field spectroscopy for estimation afinter wheat conditions during
development and harvest because they are scalatblapplicable in high range of N stress
and non-N-limited environments. Key spectral feasuand algorithms should help to
support non-destructive and real-time monitorindNodtatus in wheat production by using
hyperspectral remote sensing. Developed modelgsept basis for optimization of N use.
This potential will only be realized when sensomsl aadiometric corrections would be
optimized for agriculture (low cost, simplified algthms, real-time and incorporated
within VRT). Alternatively, the results of the sgtdistribution of the in-season and
harvest parameters could be used to change andvmpnanagement practices in the
following crops(Jensen et al., 2007owever, it should be remembered that any nitnoge
strategy should also take climatic conditions, aasllvas crop and soil history into

consideration.
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7/ CONCLUSIONS

This doctoral study explored the potential of fiblgberspectral measurements to develop
in-season field-scale prediction of winter wheatriallles and confirmed appointed
hypothesis and recent scientific achievements.

1. Nitrogen treatments and great within-treatmentalkility promoted a wide range of
responses in plant growth and biochemical constitueontent. Considering all
external effects, the expected influence of N ligdiion on agronomic variables was
recorded which was important for evaluation of $g@¢data and modeling. Significant
differences in mean values of leaf TN content, CKN, content in grain, winter wheat
yield, NUE and spectral indicators NDVI and RVI webtained for two winter wheat
cultivars/years, two growth stages under nine ligation treatments. All investigated
agronomic and spectral variables were strongly ad@et on N application levels and
increased with increasing N rates with consistatitepns between cultivars and growth
stages. The absence of treatment x cultivar/ygasnteraction indicated that leaf TN
and CCI responses to different N levels observadiatgrowth stages were similar for
two growing periods/cultivars, even though sigrfit variations in winter wheat
variables exists between years. Cultivars resposdeiliarly to N fertilization levels at
both growth stages according to ANOVA calculated dwerall effect. Results of
ANOVA showed the absence of treatment x cultivaarfyenteraction for leaf TN
content measured at F8 stage which indicates plitysfbr spectral sensing of winter
wheat in stem extension stage regardless of culdifierences.

2. The overall results on winter wheat variables iatBd that varied N fertilization rates
affected radiation reflection by crop leaf underffadent N treatments. The
hyperspectral data obtained by field spectroscefigated the complex information of
winter wheat growth. The treatment differences werdhanced by the different
cultivars and growing conditions and created a walee of variation in leaf N status
and thus leaf spectral reflectance, so the quémgtaelationships found should be
applicable to diverse N nutrition levels. The gesatspectral differences between N

fertilization treatments were found in the visilaled the red edge region. Reflectance
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from samples without N fertilization showed a reftye shift to a shorter wavelength.
Due to the changes in chlorophyll content in leaVesf reflectance acquired at stem
extension (F8) showed higher mean values in the Migton and decreased mean
values in the red region compared to heading (F10tte same pattern was recognized
in the case of the higher N supply. The NIR and neftectance contributed most to
development of principal components which carriee most of variation in spectral
data into the prediction analysis, and had thedsghorrelations with the winter wheat
agronomic variables.

. Correlation analysis between winter wheat agronowacdables and spectral data
resulted in very strong to full relationships betwdeaf TN content, CClI, grain TN
content, yield, NDVI and RVI [r (NDVI : yield) = 91]. High and robust correlations
between spectral indices calculated from reflecahat was acquired at F8-“Lucija”,
and all crop variables among each other for theespariod were enough reason to
choose yield variable as input to different pradittmodels development. Selection of
stem extension stage for yield prediction gives copymity for optimization of
additional N topdressing for late maturing cultsvaOf course, further investigation
should be focused on yield prediction based ontsgesensing at earlier winter wheat
development stage like tillering.

According to the singlé correlation analysis, close relationship betwesecsal and
agronomic variables was found when leaves weretagesof increased vegetative
growth (F8). Leaf TN content, CCI, grain TN contemtd yield showed very similar
patterns which can be explained by high correlatioefficients between these four
variables. The first derivative transformation skeowhigher overalt values than the
corresponding raw reflectance. The highest cormglatoefficients for winter wheat
yield in the red to red edge and NIR region indidaspectral bands for calculation of
common VIs. NDVI and RVI were calculated from 70 \rep) and 785 nmiyr).
Very strong positive and significant relationshipsadetermined between narrow band
spectral indices and winter wheat yield (F8-2010€ia”) (p < 0.05). Correlation
between grain yield and NDVI and RVI achieved r.910and r = 0.87, respectively.

Growth stage dependence of calculated VIs indiddiféerent wavelength selection.
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4. Statistical (SLR, MLR, PLSR) and ANN approachesevadopted to develop winter
wheat variables prediction models from flag leaéctpal data in the form of the®'l
derivative of reflectance. The regression equatioetsveen spectral features and leaf
TN content, CCI, grain TN content, yield and NUEreveestablished. Factor scores
acquired from the calculated PCs were used asqtoediariables in a MLR and ANN
modeling. First principal component (PC1) captué@d98 % of the variability in the
spectral data and 12.33 % of the variance was megulaby PC2. Multiple linear
regression identified a 7 PCs leaf reflectance maldat explained 83 % of the
variability in winter wheat yield, and accounted folarge variance in leaf and grain
biochemical concentration {R~ 0.8, P < 0.05) (F8 — cultivar ,Lucija“). Harvest
variables had the best predictive power from spécteasurements at stem extension
stage. Model evaluation showed that using hypetsgeciata, particularly first
derivative of reflectance produced very high accyr&esults proved that the level of
greenness and the higher leaf TN and Chl contgntuced by the spectral response
during the largest wheat development is the bestlipior of the potential harvest
variables. During the heading stage, CCI estimatiaalels were the poorest according
to the beginning of the leaf senescence which dichihe ability of leaf reflectance to
properly track changes in productivity. Thé Rilues of full cross validated models for
variables acquired at heading stage were 0.67, 0.66 and 0.54 for leaf TN content,
grain yield, grain TN content and CCI, respectivélyeaker crop development during
2008 caused by water deficit in soil during stenteegion and wildlife destructions
resulted with less accurate predictive models @ifvar ,Fiesta” variables.

5. An 8 factor PLSR model results showed that it isgilde to predict grain yield using
hyperspectral field spectroscopy data. Full coti@iabetween predicted and measured
values for the calibrated and validated samplesrwa.93 and r = 0.91, respectively.
Visible part of spectrum from approximately 550 tov670 nm and 690 nm to 710 nm
with red edge region from 730 nm to 770 nm werentified as zones of major
importance for the PLSR model of winter wheat. Baene regions were found after
single wavelength and yield correlation analysiesjiite being an empirical approach,

the model obtained by PC explanatory analysis ab8RPcalibration was able to

Ivana Sestak — Doktorski rad: Procjertinkovitosti gnojidbe dusikom spektroskopijom usjgéenice
101



Doctoral thesidse of field spectroscopy for assessment of génouse efficiency in winter wheat

integrate physiological information from numberspiectral bands in order to estimate
winter wheat yield. Results obtained for F8 stagend) cultivar ,Lucija“ development
impose conclusion that forecasting the NUE by gréh content and yield data
estimated by field spectroscopy (using PLSR) isifda ¢ for observed vs. predicted
NUE was 0.81, p < 0.05).

ANN models were the most efficient in capturing twmplex link between yield and
leaf reflectance spectra (train and test datagbtve 0.95 and r = 0.92, RMSEC = 2.57
dt ha' and RMSEP = 4.41 dt Harespectively) compared to corresponding SLR-VIs,
MLR and PLSR models, indicating good learning peniance. This might be result of
the strong capacity for nonlinear mapping and geoolustness of ANN, which
maximized the sensitivity to the yield data of finst derivative of reflectance.
Performance of the PLSR model indicated the higbessistency because of the small
difference between RMSEC (4.10 dt'haand RMSEP (4.61 dt Hj besides high
prediction ability (validation R=0.84). The PLSR model performed up to 20 % better
compared to the best of the selected VIs basednearl curve fitting, showing that
PLSR is a potentially useful explorative tool. IStNDVI and RVI reached a very
strong relationship with yield due to the crossidation results: R= 0.80 and R=
0.73, respectively.

6. Classification analysis of N stress in winter whbased on hyperspectral data (PCs)
was performed using discriminant function analysigstering and ANN. According to
the ANOVA results and mean comparison for varialheEsasured in 2010 (“Lucija”),
fertilization treatments were grouped into threatistically different categories of N
rates which represented basis for classificaticslyais of spectral features. The first
discriminant function mostly discriminated betweagoup | (Control, ) and the other
two (group I1: Nigo, Niso, Naog group HI: Nos, Noso + amendments, 9 (kg N ha).
The second function showed discrimination betwédwngroup Il and the others. All
samples were correctly classified in each grouphieycurrent classification functions.
Results indicated that hyperspectral measuremeastd@st at detecting where N is

limited rather than where it is in excess during fast vegetation development (F8)
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which is of great interest in precision agricultuby allowing N top-dressing,
identifying stress patterns and aid in yield fosticay.

Cluster analysis found almost completely discrirmora between the same treatment
groups, similarly to the results of DA. Part of thleserved variability was due to the
natural variability that exists in the data set gragt due to the model error. Spectra
loadings showed that N limited treatments can Istirgjuished from other groups
mostly based on the blue, green and the red edgenrelue to the changes in
chlorophyll content.

Utilizing ANN classification analysis, 91 % variasl in the intermediate treatment
group Il was correctly classified (p < 0.05), inaiog the highest variability in both
laboratory measured crop variables and spectral idathat specific category. As both
DA and cluster analysis, ANN clearly separated arinvheat leaves of different N
status in form of three statistically different gps.

Classification task performed in this study repnesgpe of pre-analysis. Irrespective of
this statement, enough accurate performance imdicgbtential of hyperspectral
sensing to detect N limited and N excessed winteeat conditions. Extreme groups
were completely separable (I and Ill), and the $mpabportion of variability in
intermediate N non-limited treatments (II) was m@bly result of some additional

factors during the growing season.
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9 APPENDIX
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Figure 9.1 — Average reflectance spectra of wintevheat flag leaves for different N
fertilization levels acquired on May 07, 2010 (F8 “Lucija”) and June 05, 2010 (F10.5 -

“Lucija”) (n=36; reflectance expressed as reflectace factor).
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Figure 9.2 — Average reflectance spectra of wintevheat flag leaves representing two growth
stages of cultivar “Lucija”, acquired at May 07, 2QL0 (F8 — stem extension) and June 05, 2010

(F10.5 - heading) (n=36; reflectance expressed aflectance factor).

Ivana Sestak — Doktorski rad: Procjertinkovitosti gnojidbe dusikom spektroskopijom usjgéenice
114



Doctoral thesidse of field spectroscopy for assessment of génouse efficiency in winter wheat

Treatments, kg N ha-1

— — I [=——] — I I === [—
| 1} 1 v 1X v Vi Vil Vil

0,0150 -
00125 |
0,0100 |-
0,0075 -

0,0050 -i-

Reflectance

0,0025 |-
-0,0000 |

-0,0025 -

Wavelength F8-2010-dv1

Treatments, kg N ha-1

— — — — — i I == —
| 1 1l v 1X Vi Vi Vil Vil

0,100 -{-
0,075 -
0,050
0,025 -

0,000 -{-

Reflectance[e-2]

-0,025 |-

-0,050 |-

400 500 600 700 500 900 1000
Wavelengih F8-2010-dv2
Treatments, kg N ha-1

125 -+

1,00 -+

0,75 -+

0,50 -+

0,25 -

0100::::3::::3::;:511:;3:::;3::::3::::3:’:'::
400 500 600 700 800 900 1000

Wavelength F8-2010-abs

Figure 9.3 — Average of first and second derivativef leaf reflectance, and absorbance (log
(1/R)) for different N fertilization levels acquired on May 07, 2010 (F8 - “Lucija”) (n=36).
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Figure 9.4 — Average leaf reflectance spectra repsenting two growth stages of cultivar
“Lucija”, acquired at May 07, 2010 (F8 — stem extesion) and June 05, 2010 (F10.5 - heading)
for each N treatment (a-i) (n=36; reflectance expresed as reflectance factor). (j) reflectance

acquired at May 08, 2008 and June 10, 2008, treatmiel X.
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Figure 9.5 — Average of first and second derivativef leaf reflectance, and absorbance (log

(1/R)) for different N fertilization levels acquired on June 05, 2010 (F10.5 - “Lucija”) (n=36).
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Figure 9.6 — Single wavelength dependence of coratibn coefficient (r) between winter wheat
leaf TN content (a), CCI (b), grain TN content (cland leaf spectral reflectance, fand 2
derivative of reflectance acquired by the field spetroradiometer on May 07, 2010 (F8 — stem
extension, “Lucija”/2010) (A n0.=231, range 356-1046 nm).
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Figure 9.7 — Scree plot with eigenvalues showingttd variance of spectral data in form of the

1* derivative of reflectance acquired at growth stag&8 - “Lucija”’/2010 (. = 231).
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Figure 9.8 — Scatter plots of the MLR model perforned using full cross validation method
from 1% derivative of reflectance acquired at growth stag&$ - “Fiesta”/2008 showing
relationship between predicted and observed wintewheat leaf TN content (%), CClI, grain

TN content (%) and grain yield (dt ha') (n=36). e calibration e validation
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Figure 9.9 — Scatter plots of the MLR model perforned using full cross validation method
from 1% derivative of reflectance acquired at growth stag&10.5 - “Fiesta’/2008 showing
relationship between predicted and observed wintewheat leaf TN content (%), CCI, grain

TN content (%) and grain yield (dt ha') (n=36). e calibration e validation
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Figure 9.10 — Scatter plots of the MLR model perfamed using full cross validation method

from 1% derivative of reflectance acquired at growth stag€&10.5 - “Lucija’/2010 showing

relationship between predicted and observed wintewheat leaf TN content (%), CCl, grain

TN content (%) and grain yield (dt ha') (n=36). e calibration e validation
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Table 9.1. Means of Canonical Variables (PCA scer&Sderivative of reflectance, F8 -
“Lucija’/2010).

Group (N applied, kg h9 Root 1 Root 2
I (Control, Ny) 14.64000 -1.70876
11 (N 100, N1so, N2og) -0.88575 4.20446
(N 250, N3go) -6.65569 -2.29897

Table 9.2. Prediction accuracy of fertilizer treatrhgroup classification using canonical
discriminant analysis - Classification Matrix (PGAores - T derivative of reflectance) for
growth stage F8, “Lucija’/2010.

Group (N applied, kg H3 Predicted group membership

Percent | Il 1]
I (Control, No) 100 8 0 0
11 (N 100, Nisor Naog) 100 0 12 0
1 (N 250, Nago) 100 0 0 16
Total 100 8 12 16

Rows: Observed classifications; Columns: Predictasisification
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Table 9.3. Predictions spreadsheet for fertilizaratment group (PCA scores of'1
derivative of reflectance, F8 - “Lucija’/2010); Sples: Train, Test.

Case Treatments Treatments - Trgatments - Tr(_eatments -
name Sample Target Output MLP 16- Residuals MLP  Confidence levels
9-3 16-9-3 MLP 16-9-3
-1 Test | | Correct 0.999974
-2 Train | I Correct 1.000000
-3 Test | | Correct 1.000000
I-4 Train | I Correct 1.000000
-1 Train | I Correct 1.000000
I1-2 Test I | Correct 1.000000
-3 Test | | Correct 0.999995
-4 Test | | Correct 1.000000
-1 Train Il Il Correct 0.999687
-2 Test ] I Correct 0.510032
-3 Train Il Il Correct 0.999401
-4 Train 1] 1] Correct 0.999575
V-1 Train 1] 1] Correct 0.999049
V-2 Test ] I Correct 0.829865
V-3 Test I I Correct 0.997949
IV-4 Train Il 1] Correct 0.999504
IX-1 Test 1 1l Correct 0.999996
IX-2 Train 1l 1] Correct 1.000000
IX-3 Train 1l 1] Correct 1.000000
IX-4 Train 1l " Correct 1.000000
V-1 Test ] 1] Incorrect 0.968977
V-2 Test ] I Correct 0.625872
V-3 Test ] I Correct 0.528182
V-4 Train Il Il Correct 0.996440
VI-1 Test 1 1l Correct 0.983992
VI-2 Test 1 1l Correct 0.999862
VI-3 Train 1l 1] Correct 0.998637
VI-4 Train 1l 1] Correct 0.999973
VII-1 Test 1 1l Correct 1.000000
VII-2 Train i i Correct 1.000000
VII- 3 Test 1 1l Correct 0.972595
Vil-4 Train i i Correct 0.998991
Vill-1 Train 1l " Correct 0.999995
VIlI- 2 Test 1 1l Correct 0.984583
VIlI- 3 Test 1 1l Correct 0.937130
VIII- 4 Train 1] 1] Correct 0.998212
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Table 9.4. Predictions spreadsheet for winter wiyedtl (PCA scores of*iderivative of
reflectance, F8 - “Lucija’/2010); Samples: Train.

Case . Yield - Output Yie_Id - Yield_- Std. Yield_- Abs. Yield - _Squared
name Yield Target MLP 16-9-1 Residuals Residuals Residuals Residuals
MLP 16-9-1 MLP 16-9-1 MLP 16-9-1 MLP 16-9-1

-2 17.40000 14.85208 -2.54792 -0.68572 2.547921 601919
I-4 16.50000 17.01091 0.51091 0.13750 0.510907 0.26103
-1 16.50000 15.58659 -0.91341 -0.24582 0.913408 08343
-1 39.90000 46.38529 6.48529 1.74537 6.485292 42.05901
-3 27.00000 26.45244 -0.54756 -0.14736 0.547563 02998
-4 41.70000 38.83673 -2.86327 -0.77059 2.863271 82983
V-1 47.10000 45.30099 -1.79901 -0.48416 1.799012 34364
V-4 43.80000 46.57078 2.77078 0.74569 2.770784 7.67724
IX-2 41.40000 41.89910 0.49910 0.13432 0.499100 0.24910
IX-3 39.00000 43.20463 4.20463 1.13158 4.204633 17.67894
IX-4 31.20000 33.01021 1.81021 0.48718 1.810209 3.27686
V-4 41.40000 40.39111 -1.00889 -0.27152 1.008890 1178
VI-3 39.90000 40.82709 0.92709 0.24951 0.927092 0.85950
VI-4 38.70000 45.28365 6.58365 1.77184 6.583647 43.34440
VII-2 38.10000 38.16624 0.06624 0.01783 0.066238 0.00439
VIl-4 50.10000 45.11299 -4.98701 -1.34214 4.987007 22870
VII-1 46.20000 44.03507 -2.16493 -0.58264 2.164934 446869
VIII- 4 45.30000 39.70414 -5.59586 -1.50600 5.595864 36B13

Table 9.5. Predictions spreadsheet for winter wiyedtl (PCA scores of°iderivative of
reflectance, F8 - “Lucija’/2010); Samples: Test.

Case _ Yield - Yie_Id - Yield_- Std. Yield_- Abs. Yield-
name Yield Target Output Residuals Residuals Residuals Squared Res.
MLP 16-9-1 MLP 16-9-1 MLP 16-9-1 MLP 16-9-1 MLP 16-9-1

-1 15.30000 21.73654 6.4365 1.73225 6.43654 40429
I-3 26.40000 16.03876 -10.3612 -2.78850 10.36124 163.35
-2 12.30000 13.79135 1.4914 0.40136 1.49135 2.2241
-3 15.60000 14.83309 -0.7669 -0.20640 0.76691 0.5882
-4 18.60000 14.18644 -4.4136 -1.18781 4.41356 19.4795
-2 36.90000 27.75060 -9.1494 -2.46236 9.14940 83.7116
V-2 42.60000 39.05473 -3.5453 -0.95413 3.564527 12.5689
IV-3 36.90000 34.28486 -2.6151 -0.70381 2.61514 6.8390
IX-1 45.60000 39.49571 -6.1043 -1.64283 6.10429 37.2624
V-1 49.80000 43.67770 -6.1223 -1.64768 6.12230 37.4826
V-2 41.40000 37.54815 -3.8519 -1.03664 3.85185 14.8368
V-3 39.60000 40.75205 1.1521 0.31005 1.15205 1.3272
VI-1 46.20000 39.45636 -6.7436 -1.81490 6.74364 45.4767
VI-2 37.20000 42.52719 5.3272 1.43370 5.32719 28.3790
Vil-1 43.20000 39.04960 -4.1504 -1.11699 4.15040 17.2259
VII-3 47.40000 46.69356 -0.7064 -0.19012 0.70644 0.4991
VIII- 2 39.30000 41.59979 2.2998 0.61894 2.29979 5.2890
VIII- 3 41.70000 37.63390 -4.0661 -1.09430 4.06610 16.5332
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ANN - Artificial neural networks

ANOVA - Analysis of variance

CA — Correlation analysis

CCI — Chlorophyll content index

Chl = Chlorophyll

CLA — Cluster analysis

CV — Cross validation

DA - Discriminant analysis

EM — Electromagnetic (spectra)

F8 — Stem extension (Feekes’ scale)

F10.5- Heading (Feekes™ scale)

MLR - Multiple linear regression

N — Nitrogen

NDVI — Normalized difference vegetation index
NUE —Nitrogen use efficiency

PCA - Principal component analysis

PC/PCs— Principal components

PLSR - Partial least square regression

r — Correlation coefficient

R - Reflectance

RMSEC - Root mean square error of calibration
RMSEP - Root mean square error of prediction
RS- Remote sensing

RVI — Simple ratio vegetation index

R? — Coefficient of determination

SLR - Simple linear regression

TN — Total nitrogen

VI/VIs — Vegetation index/indices

A —Wavelength
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