
Josip Babić, Siniša Marijan, Ivan Petrović

Introducing Model-Based Techniques into Development of
Real-Time Embedded Applications

UDK
IFAC

519.6: 681.515
4.0.5 Original scientific paper

This paper investigates the feasibility of integrating legacy software processes and tools into the paradigm of
model-based development of industrial real-time embedded systems. Research has been conducted on the example
of using legacy assembly code for automatic code generation scheme inside MATLAB/Simulink environment. A
sample Simulink model has been presented, code has been generated from it and its correctness has been validated
by back-to-back comparison with the simulation results.

Key words: Model-Based Development, Real-Time Embedded Systems

Uvo�enje tehnika zasnovanih na modelu u razvoj aplikacija za ugradbene sustave s vremenskim
ograničenjima. Ovaj rad ispituje mogućnost integriranja naslije�enih procesa i alata za razvoj programske po-
drške namijenjene industrijskim ugradbenim računalnim sustavima s nametnutim vremenskim ograničenjima u
paradigmu razvoja zasnovanog na modelu. Istraživanje je provedeno na primjeru korištenja naslije�enog asembler-
skog programskog koda pri automatskoj generaciji izvršnog koda unutar MATLAB/Simulink okruženja. Prikazan
je primjer Simulink modela iz kojega je generiran kod čija je ispravnost utvr�ena usporedbom s rezultatima simu-
lacije.

Ključne riječi: razvoj zasnovan na modelu, ugradbeni sustavi s nametnutim vremenskim ograničenjima

1 INTRODUCTION
Embedded systems are used in an ever growing number

of applications, from simplest toys to highly complex in-
dustrial, military and space systems. Along with faster and
more complex hardware, embedded software is gaining
importance and makes up to 85% of the value of the entire
embedded system [1]. Under the market pressure the soft-
ware must be produced quickly and as bug-free as possible.
Driven by these two opposing requests, Model-Based De-
velopment (MBD) has emerged as the design approach of
choice. As stated in [2], MBD is not just application of
graphical domain-specific languages, i.e. "programming
by drawing". A good definition of MBD is given in [3],
and a part of it is reproduced in the following:

In model-based development, the model is the central
artifact and is used and systematically refined through the
entire development process which is literally based on or
centered around it.

When considering MBD of embedded applications it is
necessary to take into account various specific character-
istics of these systems. They are usually reactive, mean-
ing that they interact either with their environment or some
larger system, and can contain continuous and discrete sub-
systems, or both, [3]. Embedded systems control and/or

monitor a specific device or function, they are self-starting
and self-contained. If, besides functional requirements, the
correctness of embedded system operation depends on its
timeliness, they are said to have (soft or hard) real-time
constraints, [4]. Many industrial embedded systems, to
which results of this work are intended to be applied, fall
into hard real-time category with severe timing constraints.

As many industrial embedded systems are safety crit-
ical, it is no wonder that certain resistance towards new
methodologies exists among the development community.
Time tested and proven products and processes are hard
to discard, and should not be neglected lightly. In them,
many man-years of development and testing were invested
and immeasurable amount of knowledge and experience is
condensed. That is why they should be preserved and in-
tegrated into MBD process, to the greatest extent possible.
This issue is addressed in our work by integration of ex-
isting software development process into MBD paradigm.
The existing process is based on the proprietary integrated
development environment (P-IDE) and has been used for
development of applications in rolling stock and power en-
gineering for a number of years, [5–7].

The paper is structured as follows. Second section in-
troduces the existing embedded software development pro-

Online ISSN 1848-3380 , Print ISSN 0005-1144
ATKAFF 52(4), 329–338(2011)

AUTOMATIKA 52(2011) 4, 329–338 329



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

cess and tools, outlines their advantages and drawbacks.
Third section provides overview of works on MBD of em-
bedded applications. Fourth section describes a way to fit
the existing development process into the MBD process,
and constitutes the core of this work. At the end, conclu-
sion and outlooks for future work are given.

2 EXISTING DEVELOPMENT PROCESS

2.1 Integrated development environment

Existing development process evaluated in this work is
based on a proprietary integrated development environ-
ment consisting of: Graphical Application Programming
Tool (GRAP), microcontroller specific project structure
and proprietary RTOS (Real-Time Operating System) and
a PC-based service and debugging application ZZT. The
graphical environment is used for the development of ap-
plication programs (AP) that are to be executed on hard
real-time systems and it supports several different architec-
tures of microprocessors, microcontrollers and signal pro-
cessors, [5–7].

GRAP is used for constructing and editing APs and also
for invoking compilation and linking tools. This is a com-
pletely graphical environment, so there is no need for tex-
tual coding. SW components on higher level of complexity
are built by interconnecting basic SW components repre-
sented by graphical symbols, similar to block diagrams.
On a code level, each basic component is a macro pro-
gram, hand-written in assembly language, carefully opti-
mized and thoroughly tested. Macro library, as well as
compilation and linking tool for the given target, are in-
cluded in a project structure. This is a folder structure that
besides library directory contains folders with application
files. Successfully built AP is loaded onto the target, on
which RTOS is running, using ZZT.

2.2 Application development process

Application, as considered in this work, consists of one
or more APs, each executed on a separate microcontroller
based HW module (HWM), that together perform desired
functionality. The development of an application can be
observed in several phases, Fig. 1. Firstly, the project
leader (PL) divides the functionality of the application be-
tween the HWMs, defines interfaces between them and
assigns the development of each application program to
one application engineer (AE). AE divides his AP into
functional modules (FM), defines their interfaces and dis-
tributes their development to module developers (MD). In-
dividual FMs can’t usually be thoroughly tested on their
own so, after more or less partial testing by test engineers
(TE), they are handed to the responsible AE for integration
into AP. When AP is successfully integrated, i.e. all FMs
are compiled and linked, limited amount of testing by TEs

is performed on laboratory equipment. In order to fully test
APs, they need to be integrated into final application by PL
and run on the target hardware.

Depending on the complexity of the project, PL can play
the role of AE, i.e. be responsible for one or more APs, and
AE can play the role of MD, i.e. he can develop some or
all modules of the AP he is responsible for. All through
the development, PL, AEs and MDs are supported by sys-
tem engineers (SE). Their responsibility is the maintenance
of development environments of individual HWMs and the
development of new basic SW components, if requested by
AEs or MDs. The described application development pro-
cess is illustrated by Fig. 1, development roles are depicted
by light grey circles and software artifacts are represented
by dark grey squares.

Parallel to the application development, hardware devel-
opment process is conducted. Proprietary HW platform is
a modular one, so existing modules are used where possi-
ble and new modules are developed if necessary. Hardware
development is not in the scope of this work and will not
be discussed further, but details can be found in [8].

Fig. 1. Existing software development process

2.3 Advantages and drawbacks
Two main characteristics of the P-IDE are graphical

programming language and usage of assembly macros as
basic SW components. The first trait brings higher level of
abstraction, in comparison with textual programming lan-
guages, which enables non-software engineers to imple-
ment their ideas in a target independent manner. Modular-
ity is accomplished through the division of AP into FMs.

AUTOMATIKA 52(2011) 4, 329–338 330



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

As applications are built completely in graphical environ-
ment, without a single line of handwritten code, the pro-
gram can serve as the documentation. Every functionality
and parameter is visible in the block diagram scheme so
that, when the AP is completed, it can simply be printed
and supplemented with minimal additional documentation.

Usage of assembly macros for code generation brings
low-level control of all processes on the target, enables the
creation of highly optimized [9] and thoroughly tested ba-
sic components and introduces another level of modular-
ity. By creating own code generation scheme, substan-
tial knowledge is accumulated and kept in-house. SEs
with such knowledge have shown to be invaluable when
it comes to supporting AEs during AP debugging.

The described existing application development process
is flawed by two major drawbacks: by the absence of
strong link between requirements management (REQM)
and P-IDE and by inability to perform complete functional
tests of FMs before their integration into APs, and of APs
before their deployment into final system. The require-
ments on software artifacts, starting from basic compo-
nents up to full APs, are often informal or semi-formal,
always in prose and in a separate document that has no au-
tomatic link to the respective artifact. This approach might
lead to misunderstandings that result in more development
iterations than necessary.

Algorithmic parts of FMs can be independently tested
by replaying pre-recorded signals at their inputs and
recording and analyzing the results. The drawbacks of this
kind of testing are: FM must be altered (IO parts removed
and signal playback added), closed control loops are bro-
ken and the tests must be performed on the target proces-
sor. Complete target HW configuration often isn’t avail-
able during the initial stages of AP development, so testing
is performed on evaluation boards and laboratory hardware
setups. These resources are scarce and can replicate the fi-
nal system only to a limited extent. All this sums to the
fact that complete and thorough software tests can be per-
formed when most of the HW and SW is available, late in
the development process when bugs are most expensive to
correct.

3 MODEL-BASED DEVELOPMENT

MBD process is illustrated in Fig. 2. It starts with
requirements elicitation and formalization, proceeds with
modeling and code generation. Two-way traceability be-
tween various development artifacts should be ensured –
from requirements through model to code and test cases.
Testing is performed throughout the development: model
is checked against requirements while code, executed on
PC or on the target, is checked against the model.

3.1 Requirements Management
Requirements on embedded systems are specific be-

cause, besides functional requisites, often a number of non-
functional requirements and constraints must be satisfied.
Non-functional requirements can relate to performance,
safety and availability. In [10] requirements traceability is
achieved by defining four links between requirements and
between requirements and other modeling artifacts: derive
represents derivation of requirement from another, refine
indicates that an element is a refinement of a textual re-
quirement, satisfy shows the satisfaction of requirement by
design and verify links requirement with test case that ver-
ifies it.

Stronger link between requirements and testing is pro-
posed in [11], where requirements are formalized by con-
structing Timed Usage Models, out of which tests are auto-
matically generated. Motivation of this approach is to alle-
viate greatest drawbacks of current REQM methodologies:
lack of systematical analysis and informal and ambiguous
requirement description.

Requirements traceability is the focus of DAR-
WIN4Req approach presented in [12]. This is a metamodel
that establishes two-way links between three independent
and heterogeneous models: requirement model, solution
model and verification and validation model.

Tighter integration of REQM and design is achieved by
AutoRAID extension to AutoFOCUS MBD development
environment, [13]. Here, requirements are classified as
use cases and architectural, modal or data type constraints
and their stepwise refinement leads to consistent and com-
plete Requirements Engineering Product Model. Elements
of the design are produced from requirement model us-
ing motivate and associate functions. This approach en-
sures seamless transition from REQM to design and en-
ables requirement analysis; a number of automatic consis-
tency checks are described in the paper.

3.2 Modeling
In context of MBD, system design is performed by mod-

eling. Various approaches to modeling methodology are
available. In already mentioned AutoFOCUS [14] environ-
ment, separation of concerns is achieved by graphical mod-
eling based on views: Data Definition View defines data
types and basic functions as basis for further development,
System Structure View describes system structure includ-
ing components, interfaces and communication channels
and Behavior View captures the behavior of each atomic
component.

In order to generate implementation from the model, it
must either be enriched with platform specific information
or linked to external source of such information. First ap-
proach reduces potential for reuse so in [15] and [16] sep-
arate modeling of functionality and HW/SW architecture

AUTOMATIKA 52(2011) 4, 329–338 331



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

Fig. 2. Model-Based Development Workflow

is proposed. This way, independent and reusable func-
tional and platform models are constructed and a set of
rules, called model compiler, performs mapping between
them. Similar approach called Architecture Driven Devel-
opment presented in [17] consists of the following steps:
1) system architecture definition, 2) functional model con-
struction, 3) HW/SW architecture definition, 4) mapping
of functional architecture to HW/SW architecture, and 5)
code generation.

Desired shift toward higher level of abstraction in MBD
may be missing because many modeling languages (ML)
are based on textual programming language concepts.
With this motivation [18] introduces Model Integrated
Computing methodology where system development starts
with domain specific ML definition, after which neces-
sary tools are constructed and finally system design is con-
ducted. This approach ensures that model artifacts repre-
sent domain elements, and not the code. Model interpreters
that translate domain specific models to simulation, analy-
sis and implementation models are crucial here.

3.3 Model transformations

Model transformations can be conducted by direct
model manipulations, through intermediate representation
or using transformation languages. Direct manipulation of
internal model representation is performed using standard
procedural languages, but they lack abstraction so trans-
formations are difficult to write and maintain. Intermedi-
ate representation for model transformation can be some
standard format, as XML, or a specific formalism, as Syn-
chronous Reactive Model of Computation that enables def-
inition of inherently correct transformations, [19]. Accord-
ing to [20], domain specific languages for model transfor-
mations, e.g. ATLAS (Atlas Transformation Language)
and GReAT (Graph Rewriting and Transformation), rep-
resent the best alternative. GReAT, [18], treats models as
graphs and performs transformations by linking input and
output metamodel into unified metamodel and by defining
transformations on the new metamodel.

3.4 Automatic code generation
A seamless transition from models to executable code is

accomplished by automated code generation (ACG) tech-
niques. Code must be generated from the model consis-
tently with limited use of a subset of the programming lan-
guage that is considered to be safe and with limited use of
well specified control and data structures. It should comply
to specified complexity measures and it must be maintain-
able, testable, stable, changeable and analyzable, [16].

As stated in [4], model-based code generators differ
from conventional compilers in that for them both source
and target language is executable, i.e. it is possible to
compare simulation results with code runs. Another dif-
ference is that ML semantics is often not explicitly defined
but is instead embodied in the interpretation algorithms of
the simulator. Finally, direct transformation of hierarchi-
cal model structure to syntax tree of the target language
is not possible; automatically generated code is based on
a sequence of computation derived by analyzing data de-
pendencies of the model. In the same work, the issue of
confidence in code obtained through ACG is raised, simi-
lar as was for compilers when transition from assembly to
higher languages was taking place. Due to short develop-
ment cycles and limited user base, validation of ACGs by
exploitation is not applicable. By certifying generators, fit-
ness for purpose can be guarantied, but only under strictly
defined conditions of use. Third option is code generator
testing that must be automated to be feasible because of
great number of model variants and frequent new versions.

3.5 Model-based testing
It has been reported in [1] that the cost of finding and

fixing defects grows exponentially in the development cy-
cle so it is important to start testing as soon as possible.
According to [21], up to 50% of the development effort
of the critical systems is taken up by the testing process
that can be reduced up to 50% by using model-based test-
ing (MBT) techniques. This term is used to describe all
testing activities in the context of MBD projects. Accord-
ing to [22], MBT is cheaper, faster and almost as effective

AUTOMATIKA 52(2011) 4, 329–338 332



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

in terms of code coverage in comparison with traditional
manual testing.

A generic MBT process can be described in five steps:
system under test (SUT) model creation, definition of test
selection criteria, test case specifications creation, test suite
generation and test case execution, [23]. Because the same
tests are repeated on various integration levels throughout
development process, test automation is crucial. In [24]
six such levels are defined, in the context of automotive
industry: 1) Model-in-the-Loop (MiL), model and its en-
vironment are simulated, 2) Software-in-the-Loop (SiL),
generated code is tested within a simulated environment, 3)
Processor-in-the-Loop (PiL), embedded software runs on a
target processor, 4) Hardware-in-the-Loop (HiL), software
runs on the final hardware while environment is still simu-
lated, 5) test rig, environment consists of physical compo-
nents including special measurement and analysis equip-
ment, and 6) car, finally software is tested in the car.

Requirements on the MBT process are enumerated in
the same work. Testing should be automated due to in-
terdisciplinary and iterative nature of MBD. To facilitate
reuse, tests should be transferable between integration lev-
els and means to compare test results from various lev-
els should be provided. Such comparison is called back-
to-back (B2B) testing. Systematical test design is crucial
to achieve satisfactory coverage without redundancy and
to keep track of hundreds, or possibly thousands, of test
cases. Tests must be readable to allow stakeholders from
different domains to participate in testing process. Closed
loop or reactive testing, where test cases are dependant on
system behavior, is preferable. To enable tests on target
integration levels, timing constraints should be satisfied.

Classification tree method [25–27] is often used in MBT
to generate test cases. It is performed by input domain par-
titioning into equivalent classes based on uniformity hy-
pothesis. Using so obtained classification tree, combina-
tion table is constructed and test cases are designed by
choosing combinations of classes based on various cov-
erage criteria. Systematic, formal and transferable test
design method called Time Partition Testing is presented
in [24]. Functional tests are graphically modeled with state
machines. Variation points enable transparent representa-
tion of a great number of different test cases with single
diagram. In order to evaluate time-dependent signals in
B2B testing of embedded systems, a concept for signal
comparison and accompanying tool MEval are presented
in [28]. Difference-matrix preprocessing algorithm imple-
mented in this work allows independent evaluation of am-
plitude deviations and time shifts. Test design methodol-
ogy during initial phases of design, when no referent sys-
tem responses are available and no B2B testing is possible,
is presented in [1]. Requirements are broken down to sig-
nal features and than a test harness, that consists of test data

generator, SUT, test specification and test control units, is
automatically generated by application of test patterns.

4 INTEGRATION OF EXISTING TOOLS AND
PROCESS INTO MBD

In order to implement processes of the MBD, appropri-
ate tool support is necessary. The in-house development
of entire model-based tool environment would be exceed-
ingly expensive, so integration of legacy tools and pro-
cesses into an off-the-shelf environment has been evalu-
ated. MATLAB tool family by MathWorks has been cho-
sen because

• it is widely used in academia as well as in industry,

• it is easily extensible by a variety of toolboxes,

• Simulink (SL) toolbox enables creation of block dia-
grams and their simulation,

• powerful scripting language enables user-built exten-
sions,

• there exists prior in-house experience with this family
of products,

• in [3] it is shown how MATLAB can be used to create
a complete MBD environment for industrial embed-
ded systems.

To preserve knowledge accumulated in P-IDE basic SW
components, they need to be used for code generation from
SL models. For this work, a proof-of-concept procedure
for generating "P-IDE Code" out of SL models has been
developed. In essence, SL has been used as a replacement
for GRAP in building graphical modules, their compilation
and linking into executable applications. The approach has
been verified for C2000 family of Texas Instruments digital
signal controllers, but can easily be expanded to other P-
IDE supported architectures.

4.1 P-IDE code generation

Generation of executable code from graphical applica-
tion program in P-IDE is illustrated in Fig. 3. Firstly, the
graphical application program is built using basic SW com-
ponent symbols from a graphical library. Application can
be divided into an arbitrary number of FMs, which can then
be reused. Each FM has its own .mdl file, accidentally
the same extension as for SL model files, but these two file
types are not compatible.

From graphical FMs, .src source files are created. For
every basic component symbol in a FM, a macro call with
all the necessary arguments is placed in the source file. In

AUTOMATIKA 52(2011) 4, 329–338 333



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

Fig. 3. P-IDE code generation

the compilation step, these macro calls are expanded us-
ing macro library resulting in a complete assembly listing
of each FM. By executing assembler on these files, COFF
(Common Object File Format) object files are generated
that can be linked into executable .hex files.

Instead of graphical programming and code generation
in GRAP, SL and MATLAB can be used as shown in Fig. 3.
SL is used to create P-IDE compatible model and a set of
M-functions enables its conversion into .src files. Fur-
ther code generation is performed by calling the same tools
as was case with GRAP, only here they are called from
within MATLAB environment. The crucial step in this
process is creation of source files appropriate for code gen-
eration from SL model, i.e. conversion of SL models into
FMs. Assembled object files corresponding to FMs de-
signed in both GRAP and SL can be linked together. This
way, algorithmically intense parts of AP can be developed
in MATLAB environment and linked to HW dependant in-
put/output FMs or legacy FMs developed in GRAP.

The greatest advantage of using SL for AP creation is
its simulation capability. Built-in SL components are sim-
ulated in usual fashion, while P-IDE specific components
are modeled in a way to closely emulate their assembly

counterparts so model of the AP should during simulation
behave much the same as the generated code during execu-
tion on the HWM. Besides simulation, SL provides access
to various other MATLAB features like REQM and model
checking tools.

4.2 Simulink to P-IDE conversion
For a SL model to be convertible into P-IDE applica-

tion, a number of restrictions must be obeyed. For ex-
ample, only supported components, grouped into block-
sets named by HWMs, can be used for model construction.
Further, fixed-step discrete solver must be used and a few
naming conventions are introduced: block and line names
must not contain space characters and should be eight or
less characters long, Outport-Inport block pairs that pass
signals between subsystems must be named and have the
same name.

The conversion utility consists of the main M-function
that calls additional M-functions to perform conversion
tasks. The tasks are: obtain data on all components in the
model, remove redundant components like Scope and Ter-
minator from the list, group remaining components into
modules, resolve SL line (i.e. GRAP signal) names, con-
struct macro calls, write source and application files, com-
pile and link application. Name resolution is necessary
because signals in P-IDE are passed between assembly
macros by their names. If a signal in an AP is not named,
GRAP assigns it a generic name. SL, on the other hand,
connects components using tree-like line structure with
branches and numerical designators. A SL line with all
its branches is translated to a signal that is named based on
source block name, parent line name or parent line desig-
nator.

4.3 Proof-of-concept implementation
Proof-of-concept code generation system has been de-

veloped for a HWM based on TMS320F28335 digital sig-
nal controller from TI’s C2000 microcontroller family. Ini-
tial HWM Simulink blockset, Fig. 4, consists of seven
built-in SL components and seven user-defined compo-
nents.

To each built-in component a conversion M-function
that deals with its specific properties has been assigned.
For example, Add SL component is converted into one or
into a combination of various P-IDE basic components, de-
pending on number of inputs and List of signs parameter
value. User defined components can be implemented with
a masked subsystem consisting of built-in components, as
is the case with IIR2C shown in Fig. 4, or they can be im-
plemented by masked M-file S-function blocks. The two
approaches were validated by comparing subsystem-type
components MEMPLAY and RECORDER, and their func-
tional M-file S-function counterparts MEMPLAYS and

AUTOMATIKA 52(2011) 4, 329–338 334



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

Fig. 4. Initial HWM SL blockset

RECORDERS. Although writing M-file component from
scratch offers greater freedom in design, subsystem-type
components have shown to be much faster during simula-
tion so this was the preferred choice. Custom SL compo-
nents are easier to convert than the built-in ones, because
there exists injective mapping between them and P-IDE ba-
sic components.

Besides AP generation, tool support for communication
between simulation environment and target is necessary.

Microcontroller used for presented evaluation implemen-
tation enables real-time communication through JTAG em-
ulation port using TI’s Real-Time Data Exchange technol-
ogy, [29]. This option however was not pursued, because
the goal was universal solution applicable to HWMs based
on microcontrollers of different architectures. All target
HWMs posses service serial RS232 port, so M-file func-
tions were developed that allow MATLAB to interact with
a target using this communication channel. They can be
used for loading AP onto target or retrieving HWMs mem-
ory content.

Generic PiL test harness, that can be implemented us-
ing presented tools, is shown in Fig. 5. It consists of
Input Generation that generates test vectors, Application
Model which represents SUT, Code Execution that refers
to generated code executed on the target and Output Eval-
uation part that performs B2B comparison of simulation
and code execution results. After model has been de-
signed and satisfactory simulation results obtained, exe-
cutable code can be generated and loaded onto target using
described procedures. Code execution results are recorded
to HWMs memory and retrieved through RS232 commu-
nication. Test results can be analyzed and evaluated when
both simulation and execution results are available.

Fig. 5. PiL setup with RS232 communication

4.4 Experimental results

Validation of the approach has been conducted using
test model in Fig. 6. It consists of MEMPLAY component,
that reproduces signals from workspace (or from mem-
ory when executed on target), two IIR2C and two Integra-
tor components, that together perform double integration
of high-pass filtered signal, and RECORDER with auxil-
iary components, Constant, RateTransition and OutPorts.
RECORDER stores signals at its inputs to workspace,
when simulated, or to HWMs memory, when executed on
target. Input signals for MEMPLAY have been recorded

AUTOMATIKA 52(2011) 4, 329–338 335



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

Fig. 6. Simulink test model

Fig. 7. Recording real-world signals

using laboratory model shown in Fig. 7. Signal recording
setup consists of signal generator, vibrator with its ampli-
fier, three accelerometers, each with one amplifier, and ac-
quisition device. Accelerometer amplifiers can filter and
integrate input signals, so this was used to record accel-
eration, velocity and displacement. Model in Fig. 6 is in-
tended to emulate HW filtration and integration, that is to
produce velocity and displacement from recorded acceler-
ation signal.

High pass filters have been designed in MATLAB envi-
ronment and simulated to compare results with recorded
referent signals. After satisfactory results were accom-
plished, the block diagram has been converted to P-IDE
application, the executable file was loaded onto the target,
recorded signals have been retrieved and compared to the
signals obtained by SL model simulation. This compar-
ison is presented in Fig. 8. Recorded referent signals in
the figure are in full lines, simulation results are in dashed
lines and signals from microcontroller program execution
are in dotted lines. A perfect match of simulation and code
execution signals can be observed, thus proving the cor-
rectness of SL to P-IDE conversion. Also it can be seen

Fig. 8. Comparison of test signals generated by SL simu-
lation and by µC program execution

that, after filter transients have passed, these two signal sets
closely approach referent signals.

5 CONCLUSION AND FUTURE WORK
By using prototypical tools developed inside MAT-

LAB/Simulink environment, it has been shown how legacy
artifacts, in this case assembly macro routines and code
generation procedure, can be successfully integrated into
MBD toolchain. Sample SL model has been constructed
using built-in and user-defined components and executable
code has been generated from it. Signals resulting from
simulation have been verified to be the same as signals pro-
duced by microcontroller code execution.

For an integral MBD environment, three major chal-
lenges remain. Firstly, efficient and coherent REQM sys-
tem must support all stages of development. One approach
is to integrate requirements into the model while the other
is their separate handling. In the first case model trans-
parency must be preserved, e.g. by defining views of the
model, and in the second tracing of the requirements to the
model, and vice versa, must be ensured.

For a productive MBD environment not only legacy ar-
tifacts are sufficient, it must be modular and extensible. A
framework for integration of newly generated code, e.g. C
code generated by RealTime Workshop, into existing soft-
ware platform should be developed. This means that a mix-
ture of legacy assembly code and automatically generated
C code, an application produced by the new MBD envi-
ronment, must successfully execute on the target running
proprietary RTOS.

The importance of testing is unquestionable so test pro-
cedures must be defined for each stage of the development,

AUTOMATIKA 52(2011) 4, 329–338 336



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

starting from testing of basic components, through testing
of functional modules, application programs and finally
testing of entire systems. For the back-to-back tests ap-
propriate signal comparison algorithms should be imple-
mented. As high as possible automation level in test con-
struction and execution is desirable.

ACKNOWLEDGMENT

The authors would like to thank Marijan Bogut, head of
the Noise and vibration laboratory at Končar – Electrical
Engineering Institute, Inc. for his help in the experimental
part of the presented work.

REFERENCES

[1] J. Zander-Nowicka, Model-based Testing of Real-Time Em-
bedded Systems in the Automotive Domain. PhD thesis,
Technischen Universität Berlin, 2009.

[2] B. Schätz, A. Pretschner, F. Huber, and J. Philipps, “Model-
Based Development of Embedded Systems,” tech. rep.,
Technische Universität München, 2002.

[3] A. Rau, Model-Based Development of Embedded Automo-
tive Control Systems. PhD thesis, University of Tübingen,
2002.

[4] I. Stürmer, Systematic Testing of Code Generation Tools
A Test Suite-oriented Approach for Safeguarding Model-
based Code Generation. PhD thesis, Technischen
Universität Berlin, 2006.

[5] S. Marijan, “Control electronics of TMK2200 type tramcar
for the City of Zagreb,” in Proc. International Symposium
on Industrial Electronics, ISIE 2005, (Dubrovnik, Croatia),
pp. 1617–1622, June 2005.

[6] S. Marijan, “Vehicle control unit for the light rail applica-
tions,” in Proc. 13th International Conference on Electrical
Drives and Power Electronics, EDPE 2005, (Dubrovnik,
Croatia), September 2005.

[7] S. Marijan and I. Petrović, “Platform based development of
embedded systems for traction and power engineering ap-
plications – experiences and challenges,” in Proc. 5th IEEE
International Conference on Industrial Informatics, INDIN
2007, (Vienna, Austria), July 2007.

[8] S. Marijan, Sustainability of embedded control systems for
rail vehicles and power generation units. PhD thesis, Uni-
versity of Zagreb, 2011.

[9] J. Babić, S. Marijan, and I. Petrović, “The comparison
of MATLAB/Simulink and proprietary code generator ef-
ficiency,” in Proceedings of the International Conference
on Electrical Drives and Power Electronics, EDPE 2009,
(Dubrovnik, Croatia), pp. 12–14, October 2009.

[10] J.-L. Boulanger and V. Q. Ðao, “Requirements engineering
in a model-based methodology for embedded automotive
software,” in IEEE International Conference on Research,
Innovation and Vision for the Future, RIVF 2008., (Ho Chi
Minh City, China), pp. 263–268, July 2008.

[11] S. Siegl, K.-S. Hielscher, and R. German, “Model Based
Requirements Analysis and Testing of Automotive Systems
with Timed Usage Models,” in 18th IEEE International Re-
quirements Engineering Conference, (Sydney, Australia),
pp. 345–350, September 2010.

[12] H. Dubois, M.-A. Peraldi-Frati, and F. Lakhal, “A model for
requirements traceability in a heterogeneous model-based
design process: Application to automotive embedded sys-
tems,” in 15th IEEE International Conference on Engineer-
ing of Complex Computer Systems, (Oxford , UK), pp. 233–
242, March 2010.

[13] E. Geisberger, J. Grünbauer, and B. Schätz, “A Model-
Based Approach To Requirements Analysis,” in Methods
for Modelling Software Systems, MMOSS, (Dagstuhl, Ger-
many), pp. 1862–4405, August 2007.

[14] D. Wild, “AutoFOCUS 2: The Picture Book,” tech. rep.,
Technische Universität München, 2006.

[15] A. Gambuzza and D. Koert, “A Concept for Improving the
Reusability of Mechatronic System Models,” in In Proc.
of the Workshop on Object-oriente Modeling of Embed-
ded Real-Time Systems, OMER3, (Paderborn, Germany),
pp. 43–48, October 2005.

[16] A. J. Mellor and T. Ulber, “Executable and Translatable
UML,” in 3rd Workshop on Object-oriented Modeling of
Embedded Real-Time Systems, OMER3, (Paderborn, Ger-
many), pp. 69–72, October 2005.

[17] G. Raghav, S. Gopalswamy, K. Radhakrishnan, J. Hugues,
and J. Delange, “Model based code generation for dis-
tributed embedded systems,” in European Congress on
Embedded Real-Time Software,ERTS 2010, (Toulouse,
France), pp. 1–9, May 2010.

[18] A. Agrawal, G. Karsai, and F. Shi, “A UML-based graph
transformation approach for implementing domain-specific
model transformations,” International Journal on Software
and Systems Modeling, pp. 1–19, 2003.

[19] M. Baleani, A. Ferrari, L. Mangeruca, A. L. Sangiovanni-
Vincentelli, U. Freund, and H. J. W. E. Schlenker, “Correct-
by-Construction Transformations across Design Environ-
ments for Model-Based Embedded Software Develop-
ment,” in Proceedings of the conference on Design, Au-
tomation and Test in Europe, DATE05, (Munich, Germany),
pp. 1044–1049, March 2005.

[20] S. Sendall and W. Kozaczynski, “Model transformation:
the heart and soul of model-driven software development,”
IEEE Software, vol. 20, no. 5, pp. 42–45, 2003.

[21] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda,
and D. Ratiu, “Seamless Model-based Development: from
Isolated Tools to Integrated Model Engineering Envi-
ronments,” Proceedings of the IEEE, Special Issue on
Aerospace and Automotive Software, vol. 98, no. 4,
pp. 526–545, 2010.

[22] M. A. Mäkinen, “Model Based Approach to Software Test-
ing,” Master’s thesis, Helsinki University of Technology,
2007.

AUTOMATIKA 52(2011) 4, 329–338 337



Introducing Model-Based Techniques into Development of Real-Time Embedded Applications J. Babić, S. Marijan, I. Petrović

[23] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy
of model-based testing,” tech. rep., University of Waikato,
2006.

[24] E. Bringmann and A. Kramer, “Model-Based Testing of
Automotive Systems,” in 1st International Conference on
Software Testing, Verification, and Validation, (Lilleham-
mer, Norway), pp. 485–493, April 2008.

[25] K. Lamberg, M. Beine, M. Eschmann, R. Otterbach,
M. Conrad, and I. Fey, “Model-based testing of embedded
automotive software using MTest,” in SAE World Congress
2004, (Detroit, USA), March 2004.

[26] M. Conrad, “A Systematic Approach to Testing Automotive
Control Software,” in Proc. of Convergence 2004, (Detroit,
USA), October 2004.

[27] M. Conrad and I. Fey, “Systematic Model-Based Testing of
Embedded Automotive Software,” Electronic Notes in The-
oretical Computer Science, vol. 111, pp. 13–26, 2005.

[28] M. Conrad, S. Sadeghipour, and H. W. Wiesbrock, “Au-
tomatic Evaluation of ECU Software Tests,” in SAE 2005
World Congress, (Detroit, USA), April 2005.

[29] D. Keil, “Real-Time Data Exchange,” tech. rep., Texas In-
struments, 1998.

Josip Babić Josip Babić received B.Sc. degree in
2006 from the Faculty of Electrical Engineering,
University of Zagreb. Since 2007 he has been
with Section for Embedded Systems of Power
Electronics and Control Department at Končar -
Electrical Engineering Institute in Zagreb, where
he is currently employed. He is responsible for
research and development of embedded systems
based on digital signal microcontrollers. His
main research interests are: model based devel-

opment in the field of embedded real-time systems.

Siniša Marijan Siniša Marijan was born in 1960.
He received B.Sc. and Ph.D. degrees from the
Faculty of Electrical Engineering, University of
Zagreb. He is involved in the research and devel-
opment of proprietary modular HW and SW plat-
forms and strategic decisions related to the dis-
tributed real-time control systems. So far, he was
responsible for research and development in the
fields of embedded systems for power engineer-
ing and rail vehicles. This enabled the production

of several significant and complex proprietary products: embedded con-
trol systems for digital voltage regulators, locomotive main control sys-
tems, tramcar vehicle control unit, main control units for diesel and elec-
trical trains, wind turbine control systems, HW/SW of tramcar and train
traction converters, train heating converters, multi-system converters for
passenger coaches, auxiliary power supplies for locomotives, trains and
trams.

Ivan Petrović received B.Sc. degree in 1983,
M.Sc. degree in 1989 and Ph.D. degree in 1998,
all in Electrical Engineering from the Faculty of
Electrical Engineering and Computing (FER Za-
greb), University of Zagreb, Croatia. He had
been employed as an R&D engineer at the In-
stitute of Electrical Engineering of the KonÄŤar
Corporation in Zagreb from 1985 to 1994. Since
1994 he has been with FER Zagreb, where he is
currently a full professor and the head of the De-
partment of Control and Computer Engineering.

He teaches a number of undergraduate and graduate courses in the field
of control systems and mobile robotics. His research interests include
various advanced control strategies and their applications to control of
complex systems and mobile robots navigation. Results of his research
effort have been implemented in several industrial products. He is a mem-
ber of IEEE, IFAC – TC on Robotics and FIRA – Executive committee.
He is a collaborating member of the Croatian Academy of Engineering.

AUTHORS’ ADDRESSES
Josip Babić, B.Sc.
Sinša Marijan, Ph.D.
Končar - Electrical Engineering Institute, Inc.,
Fallerovo šetalište 22 , HR-10000, Zagreb, Croatia
email: jbabic@koncar-institut.hr, smar@koncar-institut.hr
Prof. Ivan Petrović, Ph.D.
Department of Control and Computer Engineering,
University of Zagreb,
Faculty of Electrical Engineering and Computing,
Unska 3, HR-10000, Zagreb, Croatia
email: ivan.petrovic@fer.hr

Received: 2011-05-24
Accepted: 2011-10-21

AUTOMATIKA 52(2011) 4, 329–338 338


