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consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for
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have the same parametrization of combinatorial bases and the same presentation P/I.
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1. Introduction

B.L. Feigin and A.V. Stoyanovsky gave in [29] a construction of bases of standard (i.e. integrable highest weight) modules
L(Λ) for affine Lie algebra ĝ of type A(1)1 consisting of semi-infinite monomials. In [26] such a construction is extended toall standard modules for affine Lie algebras of type A(1)

n . The construction starts with choosing a particular Z-gradingof the corresponding simple Lie algebra
g = g−1 + g0 + g1 (1)

and a particular group element e which normalizes the subalgebra ĝ1 = g1⊗C[t, t−1]. Then
L(Λ) = ∞⋃

m=0 e
−mU(ĝ1)vΛ, e−m−1U(ĝ1)vΛ ⊃ e−mU(ĝ1)vΛ,

∗ E-mail: primc@math.hr
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Combinatorial bases of modules for affine Lie algebra B(1)2

and semi-infinite monomials appear by “taking a limit”
lim
m→∞

e−mU(ĝ1)vΛ.
On the other side, for any classical simple Lie algebra g and any possible Z-grading (1) such construction is givenin [27] for the basic ĝ-module L(Λ0). In each of these cases a weight basis of g1 is interpreted as a perfect crystal forthe quantum group Uq(ĝ0) and in a proof of linear independence a crystal base character formula [20] is used, but itwas not clear “why” this proof works and how such an approach could be extended to higher level standard modules.A new understanding came from the works of G. Georgiev [17] and S. Capparelli, J. Lepowsky and A. Milas [5, 6] basedon a general idea of J. Lepowsky to use intertwining vertex operators to build bases of standard modules and obtainRogers–Ramanujan type recursions for their graded dimensions. Their way of using intertwining operators inspired asimpler proof of linear independence for A(1)

n in [28], and new constructions for D(1)4 by I. Baranović in [2] and for A(1)
n byG. Trupčević in [30] for all possible Z-gradings (1).In this paper we use Capparelli–Lepowsky–Milas’ approach to extend the construction of [27] to all standard modules L(Λ)for an affine Lie algebra ĝ of type B(1)2 . In this case we neither have a lattice construction of level 1 modules nor Dong–Lepowsky’s intertwining operators [7], but we manage to construct intertwining operators we need in a proof of linearindependence by using vertex operator algebra theory and results of C. Dong, H. Li and G.Mason [8] on simple currents.Along the way we also obtain a presentation theorem for Feigin–Stoyanovsky type subspaces. The underlying structure ofFeigin–Stoyanovsky type subspaces is parallel to the structure of principal subspaces studied, for example, in [1, 3, 4, 17].Since the list of all possible Z-gradings (1) coincides with the list of all possible level 1 simple currents constructed in [8],the results and methods used in [2, 30] and this paper give hope that the construction in [27] might be extended to allstandard modules of all classical affine Lie algebras by using intertwining operators. In return, one should expect a richand interesting combinatorial structure behind this construction, on one side extending combinatorics of infinite pathsused in [20], and on the other side extending (k, n+1)-admissible configurations – combinatorial objects introduced andstudied in a series of papers [9, 10]. Moreover, it might be that the reason “why” the proof in [27] works can be explainedby some connection of tensor multiplication of vertex operator algebra modules with simple currents, cf. [8, 16, 18], onone side and tensor multiplication of affine crystals with perfect crystals, cf. [20], on the other.Let g be a simple complex Lie algebra of type B2, let h be a Cartan subalgebra of g and

g = g−1 + g0 + g1
a Z-grading of g such that h ⊂ g0. We fix a basis of g1 consisting of root vectors denoted as

x2, x0, x2.
Let ĝ = g⊗C[t, t−1] + Cc + Cd be the associated affine Lie algebra with the canonical central element c. For x ∈ gand n ∈ Z we write x(n) = x⊗tn. Then for integral dominant weight

Λ = k0Λ0 + k1Λ1 + k2Λ2
of level k = k0 + k1 + k2 a basis of standard module L(Λ) can be parametrized by semi-infinite monomials

∏
j∈Z

x2(−j)cj x0(−j)bj x2(−j)aj , cj = bj = aj = 0 for − j � 0, (2)
with quasi-periodic tail with the period of length 6,

( . . . , c−2n, b−2n, a−2n, c−2n−1, b−2n−1, a−2n−1, . . . ) = ( . . . , k1, k2, k1, k0, k2, k0, . . . )
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M. Primc

for n � 0, satisfying for all j ∈ Z the so-called difference conditions
cj+1 + bj+1 + cj ≤ k, bj+1 + aj+1 + cj ≤ k, aj+1 + cj + bj ≤ k, aj+1 + bj + aj ≤ k. (3)

This is Corollary 9.5 of Theorem 9.3. The main technical ingredient in the proof is a construction of monomial bases forFeigin–Stoyanovsky type subspaces defined as
W (Λ) = U(ĝ1)vΛ ⊂ L(Λ),

where ĝ1 = g1⊗C[t, t−1] and vΛ is a highest weight vector in L(Λ). By Theorem 3.1 the constructed basis for level ksubspace W (Λ) consists of finite monomials of the form (2) with −j ≤ −1, satisfying difference conditions (3) and theso-called initial conditions
a1 ≤ k0, b1 + a1 ≤ k0 + k2, c1 + b1 ≤ k0 + k2.

Another consequence of this result is Theorem 10.1 which gives a presentation
W (Λ) ∼= P/IΛ,

where P is a polynomial algebra C [x2(j), x0(j), x2(j) : j ≤ −1] and IΛ is the ideal generated by the set of polynomials
⋃

n≤−k−1U(g0) ·
 ∑

j1,...,jk+1≤−1
j1+···+jk+1=n

x2(j1) . . . x2(jk+1)
 ∪ {x2(−1)k0+1} ∪ U(g0) · x2(−1)k0+k2+1.

By coincidence, W (kΛ0) for B(1)2 and the integrable highest weight module L(kΛ0) for A(1)1 have the same parametrizationof combinatorial bases and the same presentation P/I. Due to this coincidence, E. Feigin’s fermionic formula [12] for
A(1)1 -module L(kΛ0) is also a character formula of Feigin–Stoyanovsky type subspace W (kΛ0) for B(1)2 .As it was already said, in our construction we use simple currents and intertwining operators for vertex operatoralgebra L(Λ0) associated with the affine Lie algebra ĝ at level 1. To be more precise, we use results from [8, 23] to seethe existence of level 1 “simple current operators”

L(Λ0) [ω]−→ L(Λ1) [ω]−→ L(Λ0), L(Λ2) [ω]−→ L(Λ2)
which are linear bijections with the crucial property

x(n) [ω] = [ω]x(n+1) for all x(n) ∈ ĝ1. (4)
From [22] we have fusion rules

dim I( L(Λ2)
L(Λ2) L(Λ0)

) = 1 and dim I( L(Λ1)
L(Λ2) L(Λ2)

) = 1,
from which we deduce that there are coefficients [ω2] and [ω2] of intertwining operators

L(Λ0) [ω2 ]−−→ L(Λ2) [ω2 ]
−−→ L(Λ1), vΛ0 [ω2 ]−−→ vΛ2 [ω2 ]

−−→ vΛ1 , [ω2]w2 = 0,
L(Λ0) [ω2 ]

−−→ L(Λ2) [ω2 ]−−→ L(Λ1), vΛ0 [ω2 ]
−−→ w2 [ω2 ]−−→ vΛ1 , [ω2]vΛ2 = 0
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Combinatorial bases of modules for affine Lie algebra B(1)2

which commute with the action of ĝ1. We consider higher level standard modules as submodules of tensor products oflevel 1 modules
L(Λ) ⊂ L(Λ0)⊗k0⊗L(Λ1)⊗k1⊗L(Λ2)⊗k2 .Behind all combinatorial properties of our construction seems to be relation (13) for [ω]vΛ , written in terms of tensorproducts of level 1 highest weight vectors as

[ω](v⊗k0Λ0 ⊗v⊗k1Λ1 ⊗v⊗k2Λ2
) = ([ω]vΛ0)⊗k0⊗([ω]vΛ1)⊗k1⊗([ω]vΛ2)⊗k2= Cx2(−1)k1x0(−1)k2x2(−1)k1(v⊗k0Λ1 ⊗v⊗k1Λ0 ⊗v⊗k2Λ2

)
.

(5)
In particular, it is this relation that for level 1 modules makes the use of crystal base character formula [20] in [27]possible.Very roughly speaking, we prove linear independence by induction on degree of basis elements in two steps: for monomialvectors x(π)vΛ , which appear with nontrivial coefficients cπ 6= 0 in a linear combination ∑ cπx(π)vΛ = 0, we first useintertwining operators x(π)vΛ → x(π)vΛ′ to be able to apply formula (5) to vectors x(π)vΛ′ and get a combination ofmonomial vectors of the form ∑

cπx(π′)[ω]vΛ′′ . Then, as a second step, we commute [ω] to the left and, by using (4)and induction hypothesis, we get that cπ equals zero  a contradiction. Of course, the actual argument is a bit morecomplicated and, as in [2], we have to use two basis elements of 4-dimensional spinor g-module on the top of L(Λ2) andthe corresponding coefficients [ω2] and [ω2] of intertwining operators.A part of this paper was written while the author was a member of the Erwin Schrödinger Institute in Vienna in Februaryof 2009. He would like to thank J. Schwermer for his hospitality.
2. Affine Lie algebra of type B(1)2
Let g be a complex simple Lie algebra of type B2 and let h be a Cartan subalgebra of g. Let g = h +∑ gα be a rootspace decomposition of g. The corresponding root system R may be realized in R2 with the canonical basis ε1, ε2 as

R = {± (ε1−ε2), ± (ε1+ε2)} ∪ {±ε1, ±ε2}.
We fix simple roots α1 = ε1−ε2 and α2 = ε2 and denote by ω1 = ε1 and ω2 = (ε1+ε2)/2 the corresponding fundamentalweights. Note that θ = ε1 + ε2 is the maximal root. Set

Γ = {ε1−ε2, ε1, ε1+ε2}.
Denote by 〈·, ·〉 the normalized Killing form such that 〈θ, θ〉 = 2. We identify h ∼= h∗ via 〈·, ·〉. We fix ω = ω1 = ε1.Then we have α(ω) = 〈α, ω〉 and Γ = {α ∈ R : α(ω) = 1}.Obviously we have a Z-grading g = g−1 + g0 + g1 for

g0 = h + ∑
α(ω)=0gα = h + Cxε2 + Cx−ε2 , g±1 = ∑

α∈±Γ gα .

Clearly g1 is an irreducible 3-dimensional g0-module. We shall briefly write
2 = ε1 − ε2, 0 = ε1, 2 = ε1 + ε2,

so that Γ = {2, 0, 2}, a notation as in [2, 27]. For each root α fix a root vector xα . For α = 2, 0, 2 we shall write xαrespectively as
x2, x0, x2.
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These vectors form a basis of g0-module g1.Denote by ĝ the affine Lie algebra of type B(1)2 associated to g,
ĝ = ∑

n∈Z

g⊗tn + Cc + Cd,

with the canonical central element c and the degree element d such that [d, x⊗tn] = nx⊗tn. Set
ĝ<0 =∑

n<0 g⊗t
n, ĝ≤0 = ∑

n≤0 g⊗t
n + Cc + Cd.

Let α0, α1 and α2 be simple roots of ĝ with the root subspaces g−θ⊗t1, gα1⊗t0 and gα2⊗t0 respectively, and let Λ0,Λ1,Λ2be the corresponding fundamental weights of ĝ, cf. [19]. We write
x(n) = x⊗tn

for x ∈ g and n ∈ Z and denote by x(z) = ∑
n∈Z

x(n)z−n−1 a formal Laurent series in formal variable z. For
ĝ0 = ∑

n∈Z

g0⊗tn + Cc + Cd, ĝ±1 =∑
n∈Z

g±1⊗tn

we have Z-grading ĝ = ĝ−1 + ĝ0 + ĝ1. In particular, ĝ1 is a commutative Lie subalgebra of ĝ with a basis
Γ̂ = {x2(n), x0(n), x2(n) : n ∈ Z} = {xγ(n) : γ ∈ Γ, n ∈ Z}.

On Γ̂ we use the linear order
. . . ≺ x2(n−1) ≺ x2(n) ≺ x0(n) ≺ x2(n) ≺ x2(n+1) ≺ . . .

3. Feigin–Stoyanovsky type subspaces W (Λ)
Denote by L(Λ) a standard (i.e. integrable highest weight) ĝ-module with a dominant integral highest weight

Λ = k0Λ0 + k1Λ1 + k2Λ2,
k0, k1, k2 ∈ Z+. Throughout the paper we denote by k = Λ(c) the level of ĝ-module L(Λ),

k = k0 + k1 + k2,
cf. [19]. For each fundamental ĝ-module L(Λi) fix a highest weight vector vΛi . By complete reducibility of tensor productsof standard modules, for level k > 1 we have

L(Λ) ⊂ L(Λ0)⊗k0⊗L(Λ1)⊗k1⊗L(Λ2)⊗k2
with a highest weight vector

vΛ = v⊗k0Λ0 ⊗v⊗k1Λ1 ⊗v⊗k2Λ2 .
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Combinatorial bases of modules for affine Lie algebra B(1)2

Later on we shall also realize L(Λ) in a symmetric algebra
L(Λ) ⊂ Sk(L(Λ0)⊕L(Λ1)⊕L(Λ2)), vΛ = vk0Λ0vk1Λ1vk2Λ2 .

We set dvΛ = 0. Then L(Λ) is Z-graded by the degree operator d,
L(Λ) = L(Λ)0 + L(Λ)−1 + L(Λ)−2 + . . . ,

and we say that g-module L(Λ)0 = U(g)vΛ is the “top” of L(Λ). The top of L(Λ0) is trivial g-module CvΛ0 , the top of L(Λ1)is a 5-dimensional vector representation L(ω1) and the top of L(Λ2) is a 4-dimensional spinor g-module L(ω2).For each integral dominant Λ we have a Feigin–Stoyanovsky type subspace
W (Λ) = U(ĝ1)vΛ ⊂ L(Λ).

Denote by π : {xγ(−j) : γ ∈ Γ, j ≥ 1} → Z+ a “colored partition” for which a finite number of “parts” xγ(−j) (of degree jand color γ) appear π(xγ(−j)) times, and denote by
x(π) = ∏ xγ(−j)π(xγ (−j)) ∈ U(ĝ1) = S(ĝ1)

the corresponding monomials. We can identify π with a sequence
a1, b1, c1, a2, b2, c2, . . .

with finitely many non-zero terms aj = π(x2(−j)), bj = π(x0(−j)), cj = π(x2(−j)) and
x(π) = · · · x2(−j)cj x0(−j)bj x2(−j)aj · · · x2(−1)c1x0(−1)b1x2(−1)a1.

For a monomial x(π) we say that x(π)vΛ ∈ W (Λ) is a monomial vector. The main result of this paper is the following:
Theorem 3.1.
The set of monomial vectors x(π)vΛ satisfying difference conditions

cj+1 + bj+1 + cj ≤ k, bj+1 + aj+1 + cj ≤ k, aj+1 + cj + bj ≤ k, aj+1 + bj + aj ≤ k (6)
for all j ≥ 1, and initial conditions

a1 ≤ k0, b1 + a1 ≤ k0 + k2, c1 + b1 ≤ k0 + k2, (7)
is a basis of level k Feigin–Stoyanovsky type subspace W (Λ).

202

Author c
opy



M. Primc

4. Difference conditions and initial conditions

By Poincaré–Birkhoff–Witt theorem we have a spanning set of monomial vectors x(π)vΛ in Feigin–Stoyanovsky typelevel k subspace W (Λ). To reduce this spanning set to a basis described in Theorem 3.1 we use vertex operator algebrarelations
xθ(z)k+1 =∑

n∈Z

 ∑
j1+···+jk+1=nxθ(j1) · · · xθ(jk+1)

z−n−k−1 = 0 on L(Λ)
and their consequences U(g0) · xθ(z)k+1 = 0, where · denotes the adjoint action of g0 on ĝ1. That is, the adjoint actionof g0 on coefficients of formal Laurent series xθ(z)k+1 gives relations

∑
cµx(µ) = 0 on W (Λ),

where for each relation the sum is over an infinite set of colored partitions µ. By choosing a proper order on the setof monomials, for each sum we can determine the smallest term x(ρ), the so-called leading term, which can be replacedon W (Λ) by a sum of higher (bigger) terms. The list of leading terms is
x2(−j −1)cj+1x0(−j −1)bj+1x2(−j)cj , cj+1 + bj+1 + cj = k + 1,
x0(−j −1)bj+1x2(−j −1)aj+1x2(−j)cj , bj+1 + aj+1 + cj = k + 1,

x2(−j −1)aj+1x2(−j)cj x0(−j)bj , aj+1 + cj + bj = k + 1,
x2(−j −1)aj+1x0(−j)bj x2(−j)aj , aj+1 + bj + aj = k + 1,

(8)

for all j ≥ 1. So by induction we see that W (Λ) is spanned by monomial vectors x(π)vΛ which do not have factors ofthe form (8), i.e., by monomial vectors which satisfy difference conditions (6) (for details of this argument see [21, 25, 27]or [11]).
Lemma 4.1.
x2(−1)vΛ1 = x0(−1)vΛ1 = x2(−1)vΛ1 = 0.

Proof. For α ∈ R denote by sl2(α) ⊂ g a Lie subalgebra generated with xα and x−α and by
ŝl2(α) = ∑

n∈Z

sl2(α)⊗tn + Cc + Cd ⊂ ĝ (9)
denote the corresponding affine Lie algebra of type A(1)1 . Note that for a level one ĝ-module V the restriction to ŝl2(α)is a level one representation if α is a long root, and it is a level two representation if α is a short root. Also note that
U(ŝl2(α))vΛ1 is a standard A(1)1 -module and that its sl2(α)-submodule on the top is a submodule of 5-dimensional vectorrepresentation for B2.In the case α = ε1 − ε2 = 2 we have level one representation on U(ŝl2(α))vΛ1 with 2-dimensional sl2(α)-module on thetop, so it must be the standard A(1)1 -module L(Λ1). Hence xε1−ε2 (−1)vΛ1 = 0. Similarly xα (−1)vΛ1 = 0 for α = ε1 +ε2. Onthe other hand, in the case α = ε1 we have level two representation on U(ŝl2(α))vΛ1 with 3-dimensional sl2(α)-moduleon the top, so it must be the standard A(1)1 -module L(2Λ1). Hence again xα (−1)vΛ1 = 0.
Lemma 4.2.
We have(i) x2(−1)x2(−1)vΛ0 = x2(−1)x2(−1)vΛ0 = 0,
(ii) x0(−1)x2(−1)vΛ0 = x2(−1)x0(−1)vΛ0 = 0,
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(iii) x2(−1)x2(−1)vΛ0 = Cx0(−1)x0(−1)vΛ0 for some C 6= 0,

(iv) x0(−1)3vΛ0 = 0.

Proof. Note that xγ(j)vΛ0 = 0 for all j ≥ 0, so the relation xγ(z)2 = 0 on L(Λ0) for a long root γ implies
xγ(−1)2vΛ0 = (xγ(−1)xγ(−1) + 2xγ(−2)xγ(0) + 2xγ(−3)xγ(1) + · · ·)vΛ0 = 0

and (i) follows. Since xε2 (0)vΛ0 = x−ε2 (0)vΛ0 = 0, the action of xε2 (0) or x−ε2 (0) on (i) gives relations (ii) and (iii). Sincefor level one ĝ-module V the restriction to ŝl2(α) is level two representation if α is a short root, on L(Λ0) we have
x0(z)3 = 0 and (iv) follows.
We fix vectors w2 = vΛ2 and w2 with weights

ω2 = ε1 + ε22 and ω2 = ε1 − ε22
in the 4-dimensional spinor g-module on the top of L(Λ2). By using arguments as above we obtain the following:
Lemma 4.3.
We have(i) x2(−1)vΛ2 = 0 and x2(−1)w2 = 0,

(ii) x2(−1)x2(−1)vΛ2 = x2(−1)x0(−1)vΛ2 = x0(−1)x0(−1)vΛ2 = 0.

Lemma 4.4.
The set of monomial vectors x(π)vΛ satisfying difference conditions (6) and initial conditions (7) spans W (Λ).
Proof. We have already mentioned how the relation xθ(z)k+1 = 0 on level k standard module L(Λ) leads to a spanningset of monomial vectors satisfying difference conditions (6). Following an idea from [30] we reduce the problem of initialconditions (7) for level k Feigin–Stoyanovsky type subspace to a problem of difference conditions for level k ′ < kFeigin–Stoyanovsky type subspace: we shall consider ĝ-submodules in tensor products

L(Λ0)⊗k0⊗L(Λ2)⊗k2 and L(Λ1)⊗k1⊗(L(Λ0)⊗k0⊗L(Λ2)⊗k2)
of levels k ′ = k0 + k2 and k = k0 + k1 + k2 generated by highest weight vectors

v⊗k0Λ0 ⊗v⊗k2Λ2 and v⊗k1Λ1 ⊗
(
v⊗k0Λ0 ⊗v⊗k2Λ2

)
.

Assume that for
x(π) = x2(−1)c1x0(−1)b1x2(−1)a1

the monomial vector x(π)vΛ does not satisfy initial conditions (7),
a1 ≤ k0, b1 + a1 ≤ k0 + k2, c1 + b1 ≤ k0 + k2.

By the above lemmas,
x2(−1)vΛ1 = 0, x2(−1)vΛ2 = 0, x2(−1)2vΛ0 = 0,

so in the case when a1 > k0 we have that the vector
x2(−1)a1(v⊗k1Λ1 ⊗v⊗k0Λ0 ⊗v⊗k2Λ2

) = x2(−1)a1−k0(v⊗k1Λ1 ⊗ (x2(−1)vΛ0 )⊗k0⊗v⊗k2Λ2
)
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equals zero and we may remove it from our spanning set of monomial vectors.Now assume that the monomial vector x(π)vΛ does not satisfy the initial conditions because
k ′′ = b1 + a1 > k0 + k2.

Then we have
x2(z)b1+a1 = 0 on L(k0Λ0+k2Λ2) ⊂ L(Λ0)⊗k0⊗L(Λ2)⊗k2 ,

and by the adjoint action of (x−ε2 )b1 we get
x0(z)b1x2(z)a1 + · · ·+ cu,v,t x2(z)ux0(z)vx2(z)t + · · · = 0

with a1 < t. The coefficient of z0 gives us
R = x0(−1)b1x2(−1)a1 + · · ·+ c′u,v,t x2(−1)ux0(−1)vx2(−1)t + · · · = 0

on L(k0Λ0+k2Λ2). The coefficient R is an infinite sum with the leading term
x0(−1)b1x2(−1)a1 . (10)

In R we have monomials of the form xγ1 (j1) · · · xγk′′ (jk ′′ ) with j1 + · · · + jk ′′ = −k ′′, so either j1 = . . . = jk ′′ = −1 or wehave js ≥ 0 for some s. Hence Lemma 4.1 and
xγ(j)vΛi = 0 for all γ ∈ Γ, j ≥ 0, i = 0, 1, 2,

imply
RvΛ = R

(
v⊗k1Λ1 ⊗

(
v⊗k0Λ0 ⊗v⊗k2Λ2

)) = v⊗k1Λ1 ⊗R
(
v⊗k0Λ0 ⊗v⊗k2Λ2

) = 0.
Since the monomial (10) is the leading term of the relation RvΛ = 0, we can express

x0(−1)b1x2(−1)a1vΛ
as a combination of higher monomial vectors and we may remove it from the spanning set. In a similar way we argue inthe case when c1 + b1 > k0 + k2.
5. Simple current operators

Recall that we have fixed a cominimal coweight ω = ω1 = ε1 ∈ h. We shall use simple current operators [ω] on level 1modules, i.e. linear bijections
L(Λ0) [ω]−→ L(Λ1) [ω]−→ L(Λ0), L(Λ2) [ω]−→ L(Λ2)

such that
xα (z)[ω] = [ω]zα(ω)xα (z) for all α ∈ R,

or, written componentwise,
xα (n)[ω] = [ω]xα (n+α(ω)) for all α ∈ R, n ∈ Z. (11)
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Remark 5.1.It is easy to see that, up to a scalar multiple, the linear bijection [ω] between two irreducible modules is uniquelydetermined by (11). We can prove the existence of such a map in several ways.In the ADE case, when the lattice construction of level one ĝ-modules is available, for minimal weight ω we have[ω] ∼ eω, see [5, 17] or [28] for notation and details. For level k modules we consider a tensor product of k level onemodules and we have [ω] ∼ eω⊗ · · ·⊗eω,

so that (11) holds.Haisheng Li pointed out that in general the map [ω] can be interpreted in terms of simple currents. In [8], a module Mfor a vertex operator algebra V is called a simple current if the tensor functor “M � · ” is a bijection on the set ofequivalence classes Irr(V ) of irreducible V -modules. In [8], simple currents M for affine Lie algebras are constructed bydeforming vertex operators YV (·, z) for simple vertex operator algebras V = L(kΛ0) with formal Laurent series
∆(ω, z) = zω exp(−∑

n>0
ω(n)(−z)−n

n

)

so that
YM ( ·, z) = YV (∆(ω, z) ·, z).

To prove the existence of [ω] for B(1)2 we may use a related Dong–Li–Mason’s result that for a representation L(Λ) of ĝon a vector space W , realized by a vertex operator YL(Λ)(·, z), we also have another representation L(Λ′) on the samevector space W , but realized by a deformed vertex operator
YL(Λ′)(·, z) = YL(Λ)(∆(ω, z) ·, z),

cf. [8, 23]. Then [ω] : L(Λ)→ L(Λ′)
can be interpreted as the identity map id : W →W

on the vector space W endowed with two different structures of ĝ-modules, L(Λ) and L(Λ′).We can also prove the existence of [ω] for B(1)2 by following the approach of J. Fuchs [16]: a representation L(Λ) of ĝ ona vector space W , given by
π : ĝ→ EndW,

can be changed to a new representation L(Λ′) on the same vector space W by considering a composition
π ◦σ : ĝ→ EndW

of representation π with an automorphism σ of ĝ defined by
σ (xα (n)) = xα (n+α(ω)) for all α ∈ R, n ∈ Z.

Then again [ω] : L(Λ)→ L(Λ′) can be interpreted as the identity map on W .
Remark 5.2.In our later arguments by induction on degree, we use the map [ω] in essentially the same way as it is used in [5, 17]:we “move” monomial vectors from one space to another and, due to (11), we “lower” their degrees in the process. Forthis reason we use the same notation [ω] for all these different maps on different spaces, including the correspondingmaps on tensor products of level one modules and on the symmetric algebra of level one modules, cf. equation (12) andRemark 7.1 below. It should be noted that [ω] “behaves like a group element”, cf. Remark 9.2 below.
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We fix vΛ0 = 1 in the vertex operator algebra L(Λ0). Then we have
Lemma 5.3.
With properly normalized vΛ1 and x2,(i) [ω]vΛ0 = vΛ1 ,(ii) [ω]vΛ1 = x2(−1)x2(−1)vΛ0 .

Proof. (i) For a level k standard ĝ-module L(Λ) the new module structure YL(Λ′)(·, z) = YL(Λ)(∆(ω, z) ·, z) gives
h(0)[ω]vΛ = [ω](h(0) + 〈ω, h〉k)vΛ for h ∈ h.

In particular, [ω]vΛ0 is a weight vector with level 1 weight Λ1 = Λ0 + 〈ω, ·〉. Relation (11) gives
x−θ(1)[ω]vΛ0 = [ω]x−θ(1−θ(ω))vΛ0 = [ω]x−θ(0)vΛ0 = 0,
xαi (0)[ω]vΛ0 = [ω]xαi (0+αi(ω))vΛ0 = [ω]xαi (δi1)vΛ0 = 0 for i = 1, 2.

Hence [ω]vΛ0 is a highest weight vector and L(Λ′0) = L(Λ1).(ii) Like in (i) we first see that [ω]−1x2(−1)x2(−1)vΛ0 is a weight vector with weight Λ1. By using (11) and Lemma 4.2we obtain
x−θ(1)[ω]−1x2(−1)x2(−1)vΛ0 = [ω]−1x−θ(2)x2(−1)x2(−1)vΛ0 = 0,
xα1 (0)[ω]−1x2(−1)x2(−1)vΛ0 = [ω]−1xα1 (−1)x2(−1)x2(−1)vΛ0 = 0,
xα2 (0)[ω]−1x2(−1)x2(−1)vΛ0 = [ω]−1xα2 (0)x2(−1)x2(−1)vΛ0 = 0.

Hence (ii) holds and L(Λ′1) = L(Λ0).
Lemma 5.4.
With properly normalized [ω], w2 and x0, x2,(i) [ω]vΛ2 = x0(−1)vΛ2 = x2(−1)w2,(ii) [ω]w2 = x0(−1)w2 = x2(−1)vΛ2 .

Proof. (i) As in the proof of previous lemma we see that [ω]−1x0(−1)vΛ2 is a weight vector with weight Λ2. Byusing (11) and Lemma 4.3 we obtain
x−θ(1)[ω]−1x0(−1)vΛ2 = [ω]−1x−θ(2)x0(−1)vΛ0 = 0,
xα1 (0)[ω]−1x0(−1)vΛ2 = [ω]−1xα1 (−1)x0(−1)vΛ2 = 0,
xα2 (0)[ω]−1x0(−1)vΛ2 = [ω]−1xα2 (0)x0(−1)vΛ2 = 0.

Hence, with a proper normalization, [ω]−1x0(−1)vΛ2 = vΛ2 . The second equality follows from Lemma 4.3 because
0 = x−α2 (0)0 = x−α2 (0)x2(−1)vΛ2 = C ′x0(−1)vΛ2 + C ′′x2(−1)w2

for some C ′, C ′′ 6= 0.(ii) The first equality follows from (i) by using the fact that w2 is proportional to x−α2 (0)vΛ2 and the fact that x−α2 (0)commutes with [ω]. The second equality follows from Lemma 4.3.
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We define a linear bijection [ω] on a tensor product of k fundamental modules as
[ω]⊗ · · ·⊗ [ω] : k⊗

s=1 L(Λis )→
k⊗
s=1 L(Λi′s ).

It is clear that relation (11) holds for [ω] = [ω]⊗ · · ·⊗ [ω]. In particular,
xγ(n)[ω] = [ω]xγ(n+1) for γ ∈ Γ. (12)

For a colored partition µ we set µ+(xγ(n+1)) = µ(xγ(n)). Then for monomials, relation (12) reads as
Lemma 5.5.
x(µ)[ω] = [ω]x(µ+).
Remark 5.6.For x(µ) = ∏

xγ(n)mγ (n) we have x(µ+) = ∏
xγ(n + 1)mγ (n), so we may say that x(µ+) is obtained from a monomial x(µ)by “shifting degrees of factors” xγ(n) 7→ xγ(n+1). Later on we shall also use the notation µp(xγ(n+p)) = µ(xγ(n)) forany p ∈ Z, and we shall write µ+p when we want to emphasize the shift of degrees of factors.

From Lemmas 5.3, 5.4, 4.1, 4.2 and 4.3 we have
[ω](v⊗k0Λ0 ⊗v⊗k1Λ1 ⊗v⊗k2Λ2

) = ([ω]vΛ0 )⊗k0⊗ ([ω]vΛ1 )⊗k1⊗ ([ω]vΛ2 )⊗k2 = v⊗k0Λ1 ⊗
(
x2(−1)x2(−1)vΛ0)⊗k1⊗(x0(−1)vΛ2)⊗k2= Cx2(−1)k1x0(−1)k2x2(−1)k1(v⊗k0Λ1 ⊗v⊗k1Λ0 ⊗v⊗k2Λ2
)
.

(13)
For Λ = k0Λ0 + k1Λ1 + k2Λ2 set Λ∗ = k1Λ0 + k0Λ1 + k2Λ2. (14)
Then (13) and Lemma 5.5 imply
Proposition 5.7.[ω] : L(Λ)→ L(Λ∗) and [ω] : W (Λ)→W (Λ∗).
This proposition and a construction in [8, 23] show that [ω] = [ω]⊗ · · ·⊗ [ω] is a simple current operator for level kstandard modules.Virasoro algebra operators in a vertex operator algebra are usually denoted by L(n), n ∈ Z. If we set L(0)vΛ = CΛvΛ ,then

d = −L(0) + CΛ on L(Λ).
We have the following:
Lemma 5.8.
For elements h of the Cartan subalgebra h, and the Virasoro algebra element L(0), on level k standard modules we have(i) [ω]−nh(0)[ω]n = h(0) + n〈ω, h〉k for all n ∈ Z, and

(ii) [ω]−nL(0)[ω]n = L(0) + nω(0) + n2〈ω, ω〉k/2 for all n ∈ Z.
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Proof. As it was already said, we can view [ω] as the identity map on L(Λ)→ L(Λ), where the target space is givena new module structure L(Λ′) with a vertex operator
YL(Λ′)(·, z) = YL(Λ)(∆(ω, z) ·, z), ∆(ω, z) = zω exp(−∑

n>0
ω(n)(−z)−n

n

)
. (15)

Then L(0)[ω] is the coefficient of z−2 in the vertex operator
YL(Λ′)(L(−2)1, z) = YL(Λ)(∆(ω, z)L(−2)1, z),

and only three terms in
∆(ω, z) = 1− (ω(1)(−z)−1 + ω(2)(−z)−22 + · · ·)+ 12! (ω(1)(−z)−1 + · · ·)2 + · · ·

give a contribution to this coefficient
L(0)[ω] = [ω](L(0) + ω(0) + 12 〈ω, ω〉k

)
.

Now (ii) follows by induction. Relation (i) is proved in a similar way.
Remark 5.9.In the proofs of Lemmas 5.3, 5.4 and 5.8 (i) we suggested the use of deformed vertex operators (15), but all these statementscan be proved by using formula (11) as well.On the other side, the formula in Lemma 5.8 (ii) written for operator d,

−d[ω]n = [ω]n(−d+ CΛ − CΛ′ + nω(0) + n22 〈ω, ω〉k
) if [ω]nvΛ ∈ L(Λ′),

contains a term CΛ − CΛ′ which in general depends on L(0). When Λ′ = Λ the power [ω]n is a Weyl group translationoperator on L(Λ) (cf. Lemma 9.1 and Remark 9.2) and a formula for d follows from (29).
6. Coefficients of level 1 intertwining operators

Let V be a vertex operator algebra and let W1,W2 and W3 be three V -modules. Then an intertwining operator Y of type( W3
W1 W2

) is a formal series
Y(w, z) =∑

n∈Q

wnz−n−1, w ∈ W1,
with coefficients

wn ∈ Hom(W2,W3) for n ∈ Q,

such that “all the defining properties of a module action that make sense hold”, see [14]. In particular, for v ∈ V wehave a commutator formula
vjwn − wnvj = ∑

i≥0
(
j
i

)(viw)n+j−i,
where vj in vjwn is a coefficient of the vertex operator YW3 (v, z) = ∑ vjz−j−1 for V -module W3, vj in wnvj is a coefficientof the vertex operator YW2 (v, z) = ∑

vjz−j−1 for V -module W2 and vi in viw is a coefficient of the vertex operator
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YW1 (v, z) = ∑
viz−i−1 for V -module W1. The vector space of all intertwining operators of type ( W3

W1 W2
) is denoted by

I
( W3
W1 W2

) and its dimension is called a fusion rule. We have
I
(

W3
W1 W2

)
∼= I
(

W3
W2 W1

)
∼= I
(

W ′2
W1 W ′3

)
,

where for a V -module M we denote by M ′ the contragredient module, see [14]. If W1 is an irreducible V -module, W2 asimple current module and
W3 = W1�W2,

then by [22, Lemma 2.3] the fusion dim I( W3
W1 W2

) = 1.
Lemma 6.1.
Let ĝ be an affine Lie algebra and L(kΛ0) a vacuum level k standard ĝ-module. Let V1, V2, V3 be irreducible modules for
vertex operator algebra V = L(kΛ0). Let Y 6= 0 be an intertwining operator of type

( V3
V1 V2

)
, let W be the top of V1 and

v 6= 0 a vector on the top of V2. Then there is m ∈ Q such that the top of V3 is a g-module

U(g){wmv : w ∈ W}.
Proof. By [7, Proposition 11.9] we have Y(w, z)v 6= 0 for w 6= 0 and, from the definition of intertwining operators,
wnv = 0 for all n large enough. Let

m = max {n ∈ Q : wnv 6= 0 for some w ∈ W}.
Then we have a nonzero subspace

{wmv : w ∈ W} ⊂ V3.
For xj = x(j) in ĝ we have a commutator formula

xjwm − wmxj = ∑
i≥0
(
j
i

)(xiw)m+j−i

which for j > 0 implies
xj (wmv) = wmxjv +∑

i≥0
(
j
i

)(xiw)m+j−iv = (x0w)m+jv = 0
because v and w are vectors on the top of modules and m is maximal such that wnv can be nonzero. Since

U(ĝ≤0){wmv : w ∈ W} ⊂ V3
is a ĝ-invariant subspace of irreducible ĝ-module V3, the space {wmv : w ∈ W} must be a subspace of the top of V3and the lemma follows.
Recall that we have fixed vectors w2 = vΛ2 and w2 with weights ω2 and ω2 in the 4-dimensional spinor g-module on thetop of L(Λ2).
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Proposition 6.2.(i) With proper scalars λ and µ and an intertwining operator Y of type(
L(Λ2)

L(Λ2) L(Λ0)
) (16)

there are coefficients

[ω2] of Y(λw2, z) =∑
n∈Q

(λw2)nz−n−1, [ω2] : L(Λ0)→ L(Λ2),
[ω2] of Y(µw2, z) =∑

n∈Q

(µw2)nz−n−1, [ω2] : L(Λ0)→ L(Λ2),
which commute with the action of ĝ1 and such that

[ω2]vΛ0 = vΛ2 , [ω2]vΛ0 = w2.
(ii) With proper scalars λ and µ and an intertwining operator Y of type(

L(Λ1)
L(Λ2) L(Λ2)

) (17)
there are coefficients

[ω2] of Y(λw2, z) =∑
n∈Q

(λw2)nz−n−1, [ω2] : L(Λ2)→ L(Λ1),
[ω2] of Y(µw2, z) =∑

n∈Q

(µw2)nz−n−1, [ω2] : L(Λ2)→ L(Λ1),
which commute with the action of ĝ1 and such that

[ω2]vΛ2 = 0, [ω2]w2 = vΛ1 , [ω2]vΛ2 = vΛ1 , [ω2]w2 = 0.
Proof. Since L(Λ2) is an L(Λ0)-module, we have

I
(

L(Λ2)
L(Λ2) L(Λ0)

)
∼= I
(

L(Λ2)
L(Λ0) L(Λ2)

)
and the space of intertwining operators of this type is 1-dimensional. Since L(Λ1) is a simple current module such that

L(Λ1)�L(Λ2) = L(Λ2),
see [22, 23] or [8], and since both L(Λ1) and L(Λ2) are self-dual, we have

I
(

L(Λ1)
L(Λ2) L(Λ2)

)
∼= I
(

L(Λ2)
L(Λ2) L(Λ1)

)
and the space of intertwining operators of this type is 1-dimensional.Let Y 6= 0 be an intertwining operator of type (16) and v = vΛ0 on the top of L(Λ0). By Lemma 6.1 there is a vector won the top of L(Λ2) and an integer m such that wmv is proportional to vΛ2 . It is clear that w is proportional to vΛ2 and

211

Author c
opy



Combinatorial bases of modules for affine Lie algebra B(1)2

we denote by [ω2] = wm the corresponding coefficient of the formal series Y(vΛ2 , z). Obviously, for proper normalizationof w we have [ω2]vΛ0 = vΛ2 .On the other hand, if we take w = w2 and the corresponding coefficient [ω2] = wm of the formal series Y(w2, z), withproper normalization we have [ω2]vΛ0 = w2.
Now let Y 6= 0 be an intertwining operator of type (17) and v = vΛ2 on the top of L(Λ2). By Lemma 6.1 there is a vector won the top of L(Λ2) and an integer m such that vector wmv generates the irreducible 5-dimensional g-module on the topof L(Λ1). Since the top of L(Λ2) is a 4-dimensional spinor g-module, h-weight vectors of the form wmv can have weights

ε1 − ε22 + ε1 + ε22 , −ε1 − ε22 + ε1 + ε22 , −ε1 + ε22 + ε1 + ε22 .

In the first case w is proportional to w2 and wmv = CvΛ1 for some scalar C 6= 0. Vectors in the second and third casecan be transformed to the vector w ′mv = CvΛ1 of the first case by acting with Lie algebra g elements xε1−ε2 and xε1respectively. So if we take w = w2 and the corresponding coefficient [ω2] = wm of the formal series Y(w2, z) with propernormalization, we have [ω2]vΛ2 = v1.
Inspection of h-weights in 5-dimensional g-module on the top of L(Λ1) shows that [ω2]w2 = 0. In a similar way we seethat for w = vΛ2 and the properly normalized corresponding coefficient [ω2] = wm of the formal series Y(vΛ2 , z) we have

[ω2]w2 = vΛ1 and [ω2]vΛ2 = 0.
In each of the above cases [ω2] and [ω2] are coefficients of Y(w, z) with w such that

x(i)w = 0 for all x ∈ g1, i ≥ 0.
Hence the commutation relations for intertwining operators imply

x(j)wm − wmx(j) =∑
i≥0
(
j
i

)(x(i)w)m+j−i = 0 for all x(j) ∈ ĝ1.

Remark 6.3.In Introduction we gave a very rough idea how coefficients of intertwining operators can be used in the proof of linearindependence of the monomial basis given by Theorem 3.1: with these operators we “move” monomial vectors x(π)vΛ 7→
x(π)vΛ′ from one space to another until we get vectors of the form x(π′)[ω]vΛ′′ . Since these operators commute with all
x(π), the only thing that matters is how these operators “move” the highest weight vectors vΛ 7→ vΛ′ . In our case it is

vΛ0 [ω2 ]−−→ vΛ2 [ω2 ]
−−→ vΛ1 , [ω2]w2 = 0,

vΛ0 [ω2 ]
−−→ w2 [ω2 ]−−→ vΛ1 , [ω2]vΛ2 = 0.

For this reason it is convenient to use for different operators the same symbol [ω2] which reminds us only that theyare obtained as some coefficients of different series Y(w2, z), associated with the “same” vector w2, or, to be precise,associated with the same weight subspace of weight ω2 of the top of L(Λ2).
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7. Proof of linear independence

By Lemma 4.4 the set of monomial vectors
x(π)vΛ = · · · x2(−j)cj x0(−j)bj x2(−j)aj · · · x2(−1)c1 x0(−1)b1 x2(−1)a1vΛ

satisfying difference conditions (6) and initial conditions (7) spans W (Λ). We prove linear independence of this set byinduction on degree
−n = ∑

γ∈Γ, j≥1−j · π(xγ(−j)) = −(1a1 + 1b1 + 1c1 + · · ·+ jaj + jbj + jcj + · · · )
of monomials x(π), considering in a proof all level k modules simultaneously. In the proof we shall briefly write DC fordifference conditions (6) and IC for initial conditions (7).
Step 1. The idea of proof is illustrated most clearly in a proof of linear independence of vectors x(π)vkΛ1 of degree −n.As induction hypothesis we assume that vectors x(µ)vkΛ0 of degree greater than −n are linearly independent. Assumethat ∑

cπx(π)vkΛ1 = 0. (18)
By Lemma 5.3 we have vΛ1 = [ω]vΛ0 and hence vkΛ1 = [ω]vkΛ0 . By Lemma 5.5,

∑
cπx(π)vkΛ1 =∑ cπx(π)[ω]vkΛ0 = [ω]∑ cπx(π+)vkΛ0

and injectivity of [ω] implies ∑
cπx(π+)vkΛ0 = 0. (19)

Monomials x(π) in (18) satisfy difference conditions, so, obviously, “shifted by degree” monomials x(π+) in (19) satisfydifference conditions as well. Monomials x(π) in (18) satisfy initial conditions for kΛ1, i.e., contain no part of the form
xα (−1). But then monomials x(π+) in (19) contain parts of the form xα (−j), j ≥ 1, and hence satisfy initial conditionsfor kΛ0. Since monomials x(π+) in (19) have degrees greater than −n, the induction hypothesis implies that all cπ = 0.Hence we proved linear independence of monomial basis vectors for W (kΛ1) of degree −n.
Step 2. For A = (c1, b1, a1) write

x(−1)A = x2(−1)c1x0(−1)b1x2(−1)a1.
Later on it will be convenient to write a monomial x(µ) as a product

· · · x2(−j)cj x0(−j)bj x2(−j)aj · · · x2(−1)c1 x0(−1)b1 x2(−1)a1 = x(µ2)x(−1)Aµ.

We define a partial order on the set of level k integral dominant weights:
Λ′ = k ′0Λ0 + k ′1Λ1 + k ′2Λ2 ≤ Λ = k0Λ0 + k1Λ1 + k2Λ2

if and only if
k ′0 ≤ k0, k ′0 + k ′2 ≤ k0 + k2.

Clearly, kΛ1 is the smallest element and kΛ0 is the largest element in the set of level k integral dominant weights.Now we proceed with a proof of linear independence. We assume that vectors x(µ)vΛ′ of degree greater than or equalto −n satisfying DC and IC are linearly independent for some set of Λ′ ≥ kΛ1. Let Λ be a minimal level k integral weight
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for which we need to prove linear independence of monomial vectors of degree greater than or equal to −n satisfyingDC and IC. Let ∑
cπx(π)vΛ = 0. (20)Assume that cµ 6= 0 for some x(µ) = x(µ2)x(−1)Aµ for

Aµ = (c1, b1, a1), a1 < k0,
and that a1 is the smallest power of x2(−1) appearing in such Aµ . Since [ω2] : L(Λ0)→ L(Λ2), we have the operator

1⊗a1⊗ [ω2]⊗(k0−a1)⊗1⊗(k2+k1) : L(Λ)→ L(Λ′), v⊗k0Λ0 ⊗v⊗k2Λ2 ⊗v⊗k1Λ1 7→ v⊗a1Λ0 ⊗v⊗(k2+k0−a1)Λ2 ⊗v⊗k1Λ1 ,

which commutes with the action of ĝ1. Note that Λ > Λ′ so that we may use the induction hypothesis for correspondingmonomial vectors. If we apply this operator on the sum (20) we get∑
cπx(π)vΛ′ = 0. (21)

By Lemmas 4.1, 4.3, 4.2 we have x2(−1)vΛ2 = 0, x2(−1)vΛ1 = 0, x2(−1)2vΛ0 = 0, so for any monomial x(π) = x(π′)x2(−1)awith a > a1 we have
x(π)vΛ′ = x(π′)x2(−1)a(v⊗a1Λ0 ⊗v⊗(k2+k0−a1)Λ2 ⊗v⊗k1Λ1

) = 0.On the other hand, vectors like x(µ)vΛ′ besides DC satisfy IC as well, i.e.,
a1 ≤ k ′0 = a1, b1 + a1 ≤ k ′0 + k ′2 = k0 + k2, c1 + b1 ≤ k ′0 + k ′2 = k0 + k2,

so by induction hypothesis the coefficient cµ in linear combination (21) must be zero, a contradiction.So in (20) we need to consider only monomials with a1 = k0, i.e., monomials of the form
x(π) = x(π′)x2(−1)k0 .

Assume that cµ 6= 0 for some x(µ) = x(µ2)x(−1)Aµ for
Aµ = (c1, b1, a1), a1 = k0, b1 + a1 < k0 + k2, c1 + b1 < k0 + k2.

Since [ω2] : L(Λ2)→ L(Λ1), we have the operator
1⊗(k0+k2−1)⊗ [ω2]⊗1⊗k1 : L(Λ)→ L(Λ′), v⊗k0Λ0 ⊗v⊗k2Λ2 ⊗v⊗k1Λ1 7→ v⊗k0Λ0 ⊗v⊗(k2−1)Λ2 ⊗v⊗(k1+1)Λ1 ,

which commutes with the action of ĝ1. Note that Λ > Λ′ so that we may use the induction hypothesis for correspondingmonomial vectors. If we apply this operator on the sum (20) we get∑
cπx(π)vΛ′ = 0. (22)

By Lemmas 4.1, 4.3, 4.2 we have x2(−1)vΛ2 = 0, x2(−1)vΛ1 = 0, x2(−1)2vΛ0 = 0, so for any monomial x(π) = x(π′)x2(−1)k0we have
x(π)vΛ′ = x(π′)x2(−1)k0(v⊗k0Λ0 ⊗v⊗(k2−1)Λ2 ⊗v⊗(k1+1)Λ1

) = Cx(π′)((x2(−1)vΛ0 )⊗k0⊗v⊗(k2−1)Λ2 ⊗v⊗(k1+1)Λ1
)

for some C 6= 0. If for such x(π) = x(π2)x(−1)Aπ we have
b1 + a1 = k0 + k2 or c1 + b1 = k0 + k2,

then by Lemma 4.3, x2(−1)2vΛ2 = x2(−1)x0(−1)vΛ2 = x0(−1)2vΛ2 = 0 and by Lemma 4.2, x2(−1)x0(−1)vΛ0 = 0, so in eithercase at least one of x0(−1) or x2(−1) must act on one copy of vΛ1 . Hence, by Lemma 4.1, for such x(π) there must be
x(π)vΛ′ = 0.

So in (22) we have only vectors like x(µ)vΛ′ which besides DC satisfy IC as well, and by induction hypothesis thecoefficient cµ in linear combination (22) must be zero, a contradiction.
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Remark 7.1.For the rest of the proof it will be convenient to realize L(Λ) of level k in a k th component of a symmetric algebra
L(Λ) ⊂ Sk (V ), V = L(Λ0)⊕L(Λ1)⊕L(Λ2).

The operator [ω] = S([ω]) acts as “a group element” on S(V ). On the other hand, operators A and B on V in Lemmas 7.2and 7.3 below act as derivations on S(V ).
Step 3. By the previous step, in the linear combination (20) we need to consider only monomials x(π) = x(π2)x(−1)Aπwith a1 = k0 for Aπ = (c1, b1, a1) and

b1 + a1 = k0 + k2 or c1 + b1 = k0 + k2.
Assume first we have a monomial vector x(π)vΛ such that a1 = k0, b1 + a1 = k0 + k2 and c1 + b1 ≤ k0 + k2. This impliesthat

a1 = k0, b1 = k2, c1 ≤ k0. (23)
As above, Lemmas 4.1, 4.3 and 4.2 imply that

x(−1)Aπ vΛ = x2(−1)c1x0(−1)k2x2(−1)k0(vk1Λ1vk2Λ2vk0Λ0
) = Cx2(−1)c1(vk1Λ1 (x0(−1)vΛ2 )k2 (x2(−1)vΛ0 )k0)= C ′vk1Λ1

(
x0(−1)vΛ2)k2(x2(−1)vΛ0)k0−c1(x2(−1)x2(−1)vΛ0)c1 .

Let A : V → V be a linear operator
A�L(Λ0) = [ω2] : L(Λ0)→ L(Λ2), A�L(Λ1)⊕L(Λ2) = 0,

and let A act as a derivation on S(V ). By Proposition 6.2, derivation A commutes with the action of ĝ1 on thesymmetric algebra S(V ). Note that AvΛ0 = [ω2]vΛ0 = w2 by Proposition 6.2 and x2(−1)w2 = 0 by Lemma 4.3, so
A(x2(−1)x2(−1)vΛ0 ) = 0. Hence, by Lemmas 5.3 and 5.4, we have

Ak0−c1x(−1)Aπ vΛ = C ′′vk1Λ1 (x0(−1)vΛ2 )k2 (x2(−1)w2)k0−c1 (x2(−1)x2(−1)vΛ0 )c1= C ′′ ([ω]vΛ0 )k1 ([ω]vΛ2 )k2 ([ω]vΛ2 )k0−c1 ([ω]vΛ1 )c1 = C ′′ [ω](vk1Λ0vk2Λ2vk0−c1Λ2 vc1Λ1
) = C ′′ [ω](vk1Λ0vk2+k0−c1Λ2 vc1Λ1

)
.

Since A commutes with the action of ĝ1, we have
Ak0−c1 x(π)vΛ = x(π2)Ax(−1)Aπ vΛ = C ′′x(π2)[ω](vk1Λ0vk2+k0−c1Λ2 vc1Λ1

)
= C ′′ [ω]x(π+2 )(vk1Λ0vk2+k0−c1Λ2 vc1Λ1

) = C ′′ [ω]x(π+2 )vΛ′
for some C ′′ 6= 0. It is clear that “truncated and shifted by degree” monomial x(π+2 ) satisfies DC, and IC for x(π+2 )vΛ′read

a2 ≤ k1 = k − b1 − a1, b2 + a2 ≤ k1 + k2 + k0 − c1, c2 + b2 ≤ k1 + k2 + k0 − c1 = k − c1.
But these are just three difference condition relations which hold for x(π)vΛ:

a2 + b1 + a1 ≤ k, b2 + a2 + c1 ≤ k, c2 + b2 + c1 ≤ k.
Hence we have proved the following:
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Lemma 7.2.
In the case when (23) holds, the monomial vector

x(π+2 )vΛ′ = (C ′′ [ω])−1Ak0−c1x(π)vΛ
satisfies difference conditions (6) and initial conditions (7).
Assume now that we have a monomial vector x(π)vΛ such that a1 = k0 and b1 +a1 ≤ k0 + k2 and c1 +b1 = k0 + k2. Thisimplies that

a1 = k0, b1 ≤ k2, c1 + b1 = k0 + k2. (24)
Like before, Lemmas 4.1, 4.3 and 4.2 imply that

x(−1)Aπ vΛ = x2(−1)c1x0(−1)b1x2(−1)k0(vk1Λ1vk2Λ2vk0Λ0
) = Cx2(−1)c1(vk1Λ1vk2−b1Λ2 (x0(−1)vΛ2 )b1 (x2(−1)vΛ0 )k0)= C ′vk1Λ1

(
x2(−1)vΛ2)k2−b1(x0(−1)vΛ2)b1(x2(−1)x2(−1)vΛ0)k0.

By Lemmas 5.3 and 5.4 we further have
x(−1)Aπ vΛ = C ′ ([ω]vΛ0 )k1 ([ω]w2)k2−b1 ([ω]vΛ2 )b1 ([ω]vΛ1 )k0 = C ′ [ω](vk1Λ0wk2−b12 vb1Λ2 vk0Λ1

)
.

Hence we have
x(π)vΛ = x(π2)x(−1)Aπ vΛ = C ′x(π2)[ω](vk1Λ0wk2−b12 vb1Λ2 vk0Λ1

) = C ′ [ω]x(π+2 )(vk1Λ0wk2−b12 vb1Λ2 vk0Λ1
)
.

Let B : V → V be a linear operator
B�L(Λ2) = [ω2] : L(Λ2)→ L(Λ1), B�L(Λ0)⊕L(Λ1) = 0,

and let B act as a derivation on S(V ). By Proposition 6.2, the derivation B commutes with the action of ĝ1 on thesymmetric algebra S(V ), Bw2 = [ω2]w2 = vΛ1 and BvΛ2 = [ω2]vΛ2 = 0. Hence
Bk2−b1 : vk1Λ0wk2−b12 vb1Λ2 vk0Λ1 7→ C ′′vΛ′ = C ′′vk1Λ0vk0+k2−b1Λ1 vb1Λ2 .

Lemma 7.3.
In the case when (24) holds, the monomial vector

x(π+2 )vΛ′ = Bk2−b1 (C ′′C ′ [ω])−1x(π)vΛ
satisfies difference conditions (6) and initial conditions (7).
Proof. It is clear that “truncated and shifted by degree” monomial x(π+2 ) satisfies DC, and IC for x(π+2 )vΛ′ read

a2 ≤ k1 = k − c1 − b1, b2 + a2 ≤ k1 + b1, c2 + b2 ≤ k1 + b1 = k1 + k0 + k2 − c1 = k − c1.
But these are just three difference condition relations which hold for x(π)vΛ:

a2 + c1 + b1 ≤ k, b2 + a2 + c1 ≤ k, c2 + b2 + c1 ≤ k.
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Now we proceed with the proof of linear independence. As already noted, in the linear combination (20) we need toconsider only
0 = ∑

a1=k0, b1+a1=k0+k2>c1+b1or
a1=k0, b1+a1≤k0+k2=c1+b1

C...c1b1a1 · · · x2(−1)c1x0(−1)b1x2(−1)k0(vk1Λ1vk2Λ2vk0Λ0
)

= ∑
c1<k0

C...c1k2k0 · · · x2(−1)c1x0(−1)k2x2(−1)k0(vk1Λ1vk2Λ2vk0Λ0
) + ∑

b1≤k2, c1+b1=k0+k2C...c1b1k0 · · · x2(−1)c1x0(−1)b1x2(−1)k0(vk1Λ1vk2Λ2vk0Λ0
)
.

Note that in the first sum we have vectors of the form
x(π2)(vk1Λ1 (x0(−1)vΛ2 )k2 (x2(−1)vΛ0 )k0−c1 (x2(−1)x2(−1)vΛ0 )c1), (25)

k0 − c1 = 1, . . . , k0, and that in the second sum we have vectors of the form
x(π2)(vk1Λ1 (x2(−1)vΛ2 )k2−b1 (x0(−1)vΛ2 )b1 (x2(−1)x2(−1)vΛ0 )k0), (26)

k2 − b1 = 0, . . . , k2. In particular, in (25) we see a factor(
x2(−1)vΛ0)k0−c1(x2(−1)x2(−1)vΛ0)c1 for c1 = 0, . . . , k0 − 1,

and in (26) we see a factor (x2(−1)x2(−1)vΛ0 )k0 . Hence the operator Ak0 annihilates all these terms except the ones with
c1 = 0 and the action on linear combination (20) gives

0 = Ak0 ∑ cπx(π)vΛ = [ω] ∑
Aπ=(0,k2,k0)cπC

′′x(π+2 )vΛ′ .
Now Lemma 7.2 and the induction hypothesis imply that cπ = 0 whenever Aπ = (0, k2, k0). In turn this implies that inthe first sum of (20) it is enough to consider vectors (25) for c1 = 1, . . . , k0 − 1. Then we apply operator Ak0−1 whichannihilates all these terms except the ones with c1 = 1 and the action on linear combination (20) gives

0 = Ak0 ∑ cπx(π)vΛ = [ω] ∑
Aπ=(1,k2,k0)cπC

′′x(π+2 )vΛ′ .
Now Lemma 7.2 and the induction hypothesis imply that cπ = 0 whenever Aπ = (1, k2, k0). By proceeding in this waywe see that all the coefficients cπ = C...c1b1a1 for c1 < k0 in the first sum are equal to zero.So we are left with the second sum∑

cπx(π)vΛ = [ω] ∑
b1≤k2

c1+b1=k0+k2
cπC ′x(π+2 )(vk1Λ0wk2−b12 vb1Λ2 vk0Λ1

) = 0. (27)
This implies ∑

b1≤k2
c1+b1=k0+k2

cπC ′x(π+2 )(vk1Λ0wk2−b12 vb1Λ2 vk0Λ1
) = 0. (28)

In (28) we see factors
wk2−b12 vb1Λ2 for b1 = 0, . . . , k2.The operator Bk0 will annihilate all these terms except the ones with b1 = 0 and the action on linear combination (28)gives ∑

b1=0
c1+b1=k0+k2

cπC ′C ′′x(π+2 )(vk1Λ0vk0+k2−b1Λ1 vb1Λ2
) = 0.

Now Lemma 7.3 and the induction hypothesis imply that cπ = 0 whenever Aπ = (k0+k2, 0, k0). In turn this implies thatin (28) it is enough to consider vectors for b1 = 1, . . . , k0. So next we apply Bk0−1 and conclude that cπ = 0 whenever
Aπ = (k0+k2−1, 1, k0). By proceeding in this way we see that all the coefficients cπ in the second sum of (27) are equalto zero and our proof of linear independence is complete.
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8. Vertex operator formula

For a root α we denote by α∨ ∈ h a dual root, α∨ = 2α/〈α, α〉. In this section for each α ∈ R we choose xα ∈ gα sothat [xα , x−α ] = −α∨ and define on L(Λ) a “Weyl group translation” operator eα by
sα = exp xα (0) exp x−α (0) exp xα (0), sδ−α = exp x−α (1) exp xα (−1) exp x−α (1), eα = sδ−α sα .

Then on a standard ĝ-module L(Λ) we have
eαce−1

α = c, eαde−1
α = d+ α∨ − 12 〈α∨, α∨〉c, eαhe−1

α = h − 〈α∨, h〉c,

eαh(j)e−1
α = h(j) for j 6= 0, eαxγ(j)e−1

α = (−1)γ(α∨)xγ(j −γ(α∨)) (29)
for h ∈ h, γ ∈ R and j ∈ Z. These formulas are a consequence of the adjoint action of the group element eα on ĝ. Themap α∨ 7→ eα extends from the dual root system R∨ to a projective representation of the root lattice Q(R∨), cf. [13, 15, 19].Let α ∈ R . Then ŝl2(α) defined by (9) is of the type A(1)1 with the canonical central element

cα = 〈xα , −x−α〉c = 2c
〈α, α〉 .

For a standard ĝ-module L(Λ) of level Λ(c) = k , the restriction to ŝl2(α) is of level kα = Λ(cα ) = k if 〈α, α〉 = 2 (i.e. if αis a long root) and of level kα = 2k if 〈α, α〉 = 1 (i.e. if α is a short root). Recall that zxα (z) = ∑ xα (n)z−n is a formalLaurent series in an indeterminate z with coefficients in End L(Λ). We also define a formal Laurent series zcα+α∨ by
zcα+α∨vµ = vµzkα+µ(α∨)

whenever vµ ∈ L(Λ) is a vector of h-weight µ. Set
E±(α, z) = exp(∑

i>0 α
∨(±i) z∓i±i

)
.

Since xα (z)kα+1 = 0 on L(Λ), the exponential exp(zxα (z)) = exp(∑ xα (n)z−n) is well defined and we have a generalizationof the Frenkel–Kac vertex operator formula, cf. [21, Theorem 5.6], [26, Theorem 6.4] or [27, Section 3], for all standardmodules: exp(zxα (z)) = E−(−α, z) exp (−zx−α (z))E+(−α, z)eαzcα+α∨. (30)By (29) the h-weight components of the vertex operator formula (30) on level k module L(Λ) give relations
1
p! (z xα (z))p = 1

q! E−(−α, z)(−zx−α (z))qE+(−α, z)eαzkα+α∨ (31)
for p, q ≥ 0, p+ q = kα . In the level k = 1 case, for a long root α and p = 1, 0 we have

zxα (z) = E−(−α, z)E+(−α, z)eαz1+α , 1 = E−(−α, z)(−z x−α (z))E+(−α, z)eαz1+α . (32)
Since in this case eαe−α = −1, relations (32) are simply the Frenkel–Kac vertex operator formulas

xα (z) = E−(−α, z)E+(−α, z)eαzα , x−α (z) = E−(α, z)E+(α, z)e−αz−α ,
see [13, 15]. In fact, the Frenkel–Kac vertex operator formulas for level 1 standard ŝl2(α)-modules imply xα (z)2 = x−α (z)2 =0 and the relation (30), and for higher level k modules we prove (30) simply by applying the “exponentials of Lie algebraelements” on both sides of (30) to tensor product of k copies of level 1 modules.Denote by 〈eα : α ∈ Γ〉 a group of operators on L(Λ) generated by all operators eα , α ∈ Γ. Then we have
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Lemma 8.1.
L(Λ) = 〈eα : α ∈ Γ〉U(ĝ1)vΛ .

Proof. First notice that the Lie algebra g is generated by g1 ∪ g−1. In particular, spanΓ∨ = h. Similarly, [ĝ, ĝ] isgenerated by ĝ1 ∪ ĝ−1, so we have
L(Λ) = {

x1 · · · xsvΛ : s > 0, xi ∈ ĝ1 ∪ ĝ−1}.
By using the vertex operator formula (31) for α ∈ (−Γ) and p = 1, we may replace each xi ∈ ĝ−1 with a product ofelements from

{eα : α ∈ (−Γ)} ∪ s ∪ ĝ1,where s denotes the Heisenberg subalgebra
s = ∑

j∈Z\{0}h⊗t
j + Cc, s− =∑

j<0 h⊗tj .

Since both group elements eα and Lie algebra elements from the Heisenberg subalgebra s normalize ĝ1, we get
L(Λ0) = 〈eα : α ∈ Γ〉U(ĝ1)U(s−)vΛ.

Now notice that U(s−) is generated by the coefficients of E−(−α, z) for α ∈ Γ. So, using the vertex operator formula(31) for α ∈ Γ and q = 0, we may replace elements in U(s−)vΛ by elements in 〈eα : α ∈ Γ〉U(ĝ1)vΛ .
As in [27, Section 5] we set

e = eε1−ε2eε1eε1+ε2 = ∏
α∈Γ eα . (33)

Proposition 8.2.
Let L(Λ)µ be a weight subspace of L(Λ). Then there exists an integer m0 such that for any fixed m 6 m0 the set of vectors

emxβ1 (j1) · · · xβs (js)vΛ ∈ L(Λ)µ,
where s > 0, β1, . . . , βs ∈ Γ, j1, . . . , js ∈ Z, is a spanning set of L(Λ)µ . In particular,

L(Λ) = 〈e〉W (Λ).
Proof. Since dim L(Λ)µ < ∞, by Lemma 8.1 we may choose a finite spanning set of vectors of the form

(∏
α∈Γ eα

)m∏
α∈Γ e

pα
α xβ1 (j1) · · · xβr (jr)vΛ,

r > 0, xβi (ji) ∈ ĝ1, m fixed for all vectors. Clearly there exists m0 such that if we choose m 6 m0, then all pα > 0 for allvectors. Since eα normalize ĝ1, we have a spanning set of vectors of the form
emxβ1 (j ′1) · · · xβr (j ′r) ∏

α∈Γ e
pα
α vΛ.

Now in a finite number of steps we replace each eαvΛ by an element from U(ĝ1)vΛ using coefficients of zkα+Λ(α∨) in thevertex operator formula (31) for α ∈ Γ and q = 0.
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9. Bases consisting of semi-infinite monomials

In (14) we have set Λ∗ = k1Λ0 + k0Λ1 + k2Λ2 for Λ = k0Λ0 + k1Λ1 + k2Λ2. Note that Λ∗∗ = Λ. The relation (13) appliedtwice together with Lemma 5.5 gives
[ω]2vΛ = [ω]2(v⊗k0Λ0 ⊗v⊗k1Λ1 ⊗v⊗k2Λ2

) = C ′ [ω]x2(−1)k1x0(−1)k2x2(−1)k1(v⊗k0Λ1 ⊗v⊗k1Λ0 ⊗v⊗k2Λ2
)

= C ′x2(−2)k1x0(−2)k2x2(−2)k1 [ω](v⊗k0Λ1 ⊗v⊗k1Λ0 ⊗v⊗k2Λ2
)

= Cx2(−2)k1x0(−2)k2x2(−2)k1x2(−1)k0x0(−1)k2x2(−1)k0vΛ (34)
for some C = CΛ 6= 0. If we set

x(κΛ) = x2(−2)k1x0(−2)k2x2(−2)k1x2(−1)k0x0(−1)k2x2(−1)k0,
then (34) reads [ω]2vΛ = CΛx(κΛ)vΛ. (35)
This relation and Lemma 5.5 imply

[ω]2 : L(Λ)→ L(Λ) and [ω]2 : W (Λ)→W (Λ).
Lemma 9.1.
e = C [ω]4 for some C 6= 0.

Proof. Since (ε1−ε2)∨ + ε∨1 + (ε1+ε2)∨ = 4ε1, relations (29) and (11) imply
ex±γ(j)e−1 = xγ(j ∓ 4) and [ω]4x±γ(j)[ω]−4 = xγ(j ∓ 4)

for all γ ∈ Γ. So e[ω]−4 commutes with the action of ĝ and must be proportional to the identity operator on L(Λ).
Remark 9.2.Roughly speaking, the above lemma states that the simple current operator [ω] is a “fourth root” of inner automorphism e.By choosing e = ∏

α∈Γ eα we follow the notation in [27], but our arguments would work in the same way if we havechosen the inner automorphism e to be
eε1−ε2eε1+ε2 = C ′eε1 = C [ω]2

for some C ′, C 6= 0.
Theorem 9.3.
Let L(Λ)µ be a weight subspace of a level k standard B(1)2 -module L(Λ). Then there exists an integer m0 such that for
any fixed m ≤ m0 the set of vectors

C−mΛ [ω]2mx(π)vΛ ∈ L(Λ)µ,
such that monomial vectors x(π)vΛ ∈ W (Λ) satisfy difference conditions (6) and initial conditions (7), is a basis of L(Λ)µ .
Moreover, for two choices of m1, m2 ≤ m0 the corresponding two bases are equal.

Proof. By Proposition 8.2 vectors of the form
emx(π)vΛ ∈ L(Λ)µ
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span L(Λ)µ for a given small enough m, so, by Theorem 3.1, monomial vectors satisfying DC and IC will form a basis. ByLemma 9.1 we can replace em with [ω]4m. Note that by Lemma 5.5, the notation from Remark 5.6 and (35)
C−mΛ [ω]2mx(π)vΛ = [ω]2m−2x(π−2)[ω]2vΛ = C−m+1Λ [ω]2(m−1)x(π−2)x(κΛ)vΛ (36)

and the monomial vector x(π)vΛ satisfies DC and IC if and only if the monomial vector x(π−2)x(κΛ)vΛ satisfies DC and IC.We can iterate this process:
C−mΛ [ω]2mx(π)vΛ = . . . = C−m+2Λ [ω]2(m−2)x(π−4)x(κ−2Λ )x(κΛ)vΛ = . . .

Hence for different choices of integers m,m − 1, m − 2, . . . we always get the same basis vector (36), only written in adifferent way.
Remark 9.4.One may think of Theorem 9.3 as a vertex operator construction for an arbitrary standard ĝ-module L(Λ). And while thebasis constructed by using an inner automorphism and three commutative currents is relatively simple, the action of ĝis given by a complicated implicit use of the vertex operator formula (30).
In the level k = 1 case, linear independence in this theorem is proved in [27] for the basic representation L(Λ0) bywriting basis elements as semi-infinite monomials and then “counting” them by using crystal base character formula [20].Such semi-infinite monomials interpretation is possible for all standard B(1)2 -modules, like in [29] for A(1)1 : for fixed Λ and
m ∈ Z set

v−m = CmΛ [ω]−2mvΛ.From Lemma 5.8 we see that the h-weight of v−m is Λ|h−2mkε1 and the degree of v−m is 2mΛ(ε1) − 2m2k . By usingLemma 5.5 and (35), as in (36) we get
v−m = x

(
κ+2(m+1)Λ )

v−m−1 = x
(
κ+2(m+1)Λ )

x
(
κ+2(m+2)Λ )

v−m−2 = . . . (37)
So by “taking a limit” we see that the vector v−m can be represented by a semi-infinite quasi-periodic monomial

v−m ∼ x
(
κ+2(m+1)Λ )

x
(
κ+2(m+2)Λ )

· · · = ∞∏
p=1 x

(
κ+2(m+p)Λ )

,

or written in more detail,
v−m ∼ x2(2m)k1x0(2m)k2x2(2m)k1x2(2m+1)k0x0(2m+1)k2x2(2m+1)k0

x2(2m+2)k1x0(2m+2)k2x2(2m+2)k1x2(2m+3)k0x0(2m+3)k2x2(2m+3)k0 · · ·
Now we can write basis elements of L(Λ)µ given by Theorem 9.3 as

CmΛ [ω]−2mx(π)vΛ = x(π+2m)CmΛ [ω]−2mvΛ = x(π+2m)v−m. (38)
Then (37) implies

x(π+2m)v−m = x(π+2m)x(κ+2(m+1)Λ )
v−m−1 = x(π+2m)x(κ+2(m+1)Λ )

x
(
κ+2(m+2)Λ )

v−m−2 = . . .

and we see that our basis vector (38) can be represented by a semi-infinite monomial with quasi-periodic tail
x(π+2m)v−m ∼ x(π+2m)x(κ+2(m+1)Λ )

x
(
κ+2(m+2)Λ )

x
(
κ+2(m+3)Λ )

· · ·

Hence we have
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Corollary 9.5.
We can parametrize a basis of level k standard B(1)2 -module L(Λ),

Λ = Λ0k0 + Λ1k1 + Λ2k2, k = k0 + k1 + k2,
by semi-infinite monomials

∏
j∈Z

x2(−j)cj x0(−j)bj x2(−j)aj , cj = bj = aj = 0 for −j � 0,
with quasi-periodic tail with the period of length 6,

( . . . , c−2n, b−2n, a−2n, c−2n−1, b−2n−1, a−2n−1, . . . ) = ( . . . , k1, k2, k1, k0, k2, k0, . . . ),
n � 0, satisfying for all j ∈ Z difference conditions

cj+1 + bj+1 + cj ≤ k, bj+1 + aj+1 + cj ≤ k, aj+1 + cj + bj ≤ k, aj+1 + bj + aj ≤ k.

Note that for semi-infinite monomials the initial conditions follow from the form of quasi-periodic tail and the differenceconditions.
10. Presentation of W (Λ)
Theorem 10.1.
Let Λ = k0Λ0 + k1Λ1 + k2Λ2 and k = k0 + k1 + k2. Let

P = C [x2(j), x0(j), x2(j) : j ≤ −1]
and let IΛ be the ideal in the polynomial algebra P generated by the set of polynomials

⋃
n≤−k−1U(g0) ·

 ∑
j1,...,jk+1≤−1
j1+···+jk+1=n

x2(j1) · · · x2(jk+1)
 ∪ {x2(−1)k0+1} ∪ U(g0) · x2(−1)k0+k2+1,

where · denotes the adjoint action of g0 on P. Then, as vector spaces,

W (Λ) ∼= P/IΛ.
Proof. Since P ⊂ S(ĝ1) = U(ĝ1), we have a linear map

f : P→W (Λ), f : x(π) 7→ x(π)vΛ.
Since x(j)vΛ = 0 for x ∈ g1 and j ≥ 0, relations U(g0) · xθ(z)k+1 = 0 on L(Λ) imply

⋃
n≤−k−1U(g0) ·

 ∑
j1,...,jk+1≤−1
j1+···+jk+1=n

x2(j1) · · · x2(jk+1)
 ⊂ ker f.
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From the proof of Lemma 4.4 we see that
{x2(−1)k0+1} ∪ U(g0) · x2(−1)k0+k2+1 ⊂ ker f.

Hence we have a surjective linear map
g : P/IΛ →W (Λ).On the quotient P/IΛ we have relations

U(g0) ·
 ∑

j1,...,jk+1≤−1
j1+···+jk+1=n

x2(j1) · · · x2(jk+1)
 = 0 for all n ≤ −k − 1,

x2(−1)k0+1 = 0 and U(g0) · x2(−1)k0+k2+1 = 0.
As in the proof of Lemma 4.4 we see that monomials x(π) ∈ P satisfying DC and IC span the quotient P/IΛ . Since gmaps this spanning set to a basis of W (Λ), monomials x(π) ∈ P satisfying DC and IC are a basis of P/IΛ and g is anisomorphism.
11. A connection with monomial bases of standard A(1)1 -modules

Let now g = sl(2,C) with the standard basis e, h, f . Then we have monomial bases of standard ĝ-modules constructedin [11, 24, 25]:
For integral dominant Λ = k0Λ0 + k1Λ1 of level k = k0 + k1 the set of finite monomial vectors

x(π)vΛ = · · · f(−j)cjh(−j)bje(−j)aj · · · f(−1)c1h(−1)b1e(−1)a1 f(0)c0vΛ
satisfying difference conditions

cj+1 + bj+1 + cj ≤ k, bj+1 + aj+1 + cj ≤ k, aj+1 + cj + bj ≤ k, aj+1 + bj + aj ≤ k

for all j ≥ 0, and initial conditions a1 ≤ k0 and c0 ≤ k1, is a basis of standard ĝ-module L(Λ).These difference and initial conditions for A(1)1 -module L(kΛ0) coincide with difference conditions (6) and initial condi-tions (7) for B(1)2 subspace W (kΛ0). Moreover, the result of E. Feigin [12, Theorem 3.1] implies that W (kΛ0) for B(1)2 and
L(kΛ0) for A(1)1 have the same presentation:
Let k be a positive integer. Let

P = C [f(j), h(j), e(j) : j ≤ −1]
and let IkΛ0 be the ideal in the polynomial algebra P generated by polynomials

⋃
n≤−k−1U(g) ·

 ∑
j1,...,jk+1≤−1
j1+···+jk+1=n

e(j1) · · · e(jk+1)


(here · denotes the adjoint action of g on P). Then, as Z-graded vector spaces and g-modules,

L(kΛ0) ∼= P/IkΛ0 .

Due to this coincidence, E. Feigin’s fermionic formula [12, Theorem 3.2] for A(1)1 -module L(kΛ0) is also a character formulaof Feigin–Stoyanovsky type subspace W (kΛ0) for B(1)2 .
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