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1. Introduction

B.L. Feigin and AV. Stoyanovsky gave in [29] a construction of bases of standard (i.e. integrable highest weight) modules
L(A) for affine Lie algebra g of type Ag” consisting of semi-infinite monomials. In [26] such a construction is extended to
all standard modules for affine Lie algebras of type AN The construction starts with choosing a particular Z-grading
of the corresponding simple Lie algebra

g=901+go+ o (1)

and a particular group element e which normalizes the subalgebra g1 = g1® C[t, t~']. Then

LN = eU@)a, e U@)va D e " U@,
m=0

* E-mail: primc@math.hr
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and semi-infinite monomials appear by “taking a limit”

lim e~ U(G1)va.

m—o00

On the other side, for any classical simple Lie algebra g and any possible Z-grading (1) such construction is given
in [27] for the basic g-module L(Ag). In each of these cases a weight basis of g is interpreted as a perfect crystal for
the quantum group Uy (o) and in a proof of linear independence a crystal base character formula [20] is used, but it
was not clear “why” this proof works and how such an approach could be extended to higher level standard modules.
A new understanding came from the works of G.Georgiev [17] and S. Capparelli, J. Lepowsky and A.Milas [5, 6] based
on a general idea of J. Lepowsky to use intertwining vertex operators to build bases of standard modules and obtain
Rogers—Ramanujan type recursions for their graded dimensions. Their way of using intertwining operators inspired a
simpler proof of linear independence for A} in [28], and new constructions for Df‘” by I. Baranovi¢ in [2] and for AN by
G. Trupevi¢ in [30] for all possible Z-gradings (1).

In this paper we use Capparelli-Lepowsky—Milas’ approach to extend the construction of [27] to all standard modules L(A)
for an affine Lie algebra g of type B(;). In this case we neither have a lattice construction of level 1 modules nor Dong—
Lepowsky’s intertwining operators [7], but we manage to construct intertwining operators we need in a proof of linear
independence by using vertex operator algebra theory and results of C. Dong, H.Li and G.Mason [8] on simple currents.
Along the way we also obtain a presentation theorem for Feigin—Stoyanovsky type subspaces. The underlying structure of
Feigin-Stoyanovsky type subspaces is parallel to the structure of principal subspaces studied, for example, in [1, 3, 4, 17].

Since the list of all possible Z-gradings (1) coincides with the list of all possible level 1 simple currents constructed in [8],
the results and methods used in [2, 30] and this paper give hope that the construction in [27] might be extended to all
standard modules of all classical affine Lie algebras by using intertwining operators. In return, one should expect a rich
and interesting combinatorial structure behind this construction, on one side extending combinatorics of infinite paths
used in [20], and on the other side extending (k, n + 1)-admissible configurations — combinatorial objects introduced and
studied in a series of papers [9, 10]. Moreover, it might be that the reason “why” the proof in [27] works can be explained
by some connection of tensor multiplication of vertex operator algebra modules with simple currents, cf. [8, 16, 18], on
one side and tensor multiplication of affine crystals with perfect crystals, cf. [20], on the other.

Let g be a simple complex Lie algebra of type B,, let h be a Cartan subalgebra of g and
g =0-110+ &

a Z-grading of g such that h C go. We fix a basis of g4 consisting of root vectors denoted as
X2, X0, X2.

Let g = g®C[t, t7'] + Cc + Cd be the associated affine Lie algebra with the canonical central element c. For x € g
and n € Z we write x(n) = x®1t". Then for integral dominant weight

N = koo + ki + koo
of level k = ko + k1 + ky a basis of standard module L(A) can be parametrized by semi-infinite monomials

[Tl o= xl=)"  =b=a,=0 for —j<0, @

jez
with quasi-periodic tail with the period of length 6,

(~ e Coonyb_on, a2, C_2n1, b_op1, A 2n 1, . ) = ( ki, ko, ke, ko, ka, ko, - )
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for n > 0, satisfying for all j € Z the so-called difference conditions
C/-+1+b,'+1+CjSk, b,‘+1+0/'+1+(,‘/-§/<, a,-+1+c,-+b,-§k, U,-+1+b/-+0/-Sk. (3)

This is Corollary 9.5 of Theorem 9.3. The main technical ingredient in the proof is a construction of monomial bases for
Feigin—Stoyanovsky type subspaces defined as

W(A) = Ul@)va C L(N),

where g; = g:®C[t,t7"] and v5 is a highest weight vector in L(A). By Theorem 3.1 the constructed basis for level k
subspace W(A) consists of finite monomials of the form (2) with —j < —1, satisfying difference conditions (3) and the
so-called initial conditions

a1 < ko, b1 +a, < ko+ k, ¢+ b1 < ko + k>.

Another consequence of this result is Theorem 10.1 which gives a presentation
W(A) Z P[],

where P is a polynomial algebra C[xz(j), xo(j), x2(j) : j < —1] and J, is the ideal generated by the set of polynomials

U Ul | 5wl omlion) | U G- U Ulgo) (-1
n<—k—1 Jtoeerfkpt <=1
it tk=n

By coincidence, W(k/\y) for B(;) and the integrable highest weight module L(k/\) for Ag” have the same parametrization

of combinatorial bases and the same presentation P/J. Due to this coincidence, E.Feigin's fermionic formula [12] for

Agﬂ—module L(k/\o) is also a character formula of Feigin—Stoyanovsky type subspace W(k/\y) for B(;).

As it was already said, in our construction we use simple currents and intertwining operators for vertex operator
algebra L(/\g) associated with the affine Lie algebra g at level 1. To be more precise, we use results from [8, 23] to see
the existence of level 1 “simple current operators”

L) L) 5 LN, L) - ()
which are linear bijections with the crucial property
x(n)[w] = [w]x(n+1) for all x(n) € g. (4)
From [22] we have fusion rules

dlml( (Ma) ):1 and dlml( L) ):1,

L
L(A2) L(No) L(Az) L(A7)

from which we deduce that there are coefficients [w;] and [w;] of intertwining operators

w [wp] w [wp]

LA 5 L) 5 LA, v Dy, By, [wawa =0,
[wp] w [wp] w

L) -5 L) 2 LA, v B wa v, walv, =0

1EE
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which commute with the action of ;. We consider higher level standard modules as submodules of tensor products of
level 1 modules
LN € L(N)®R® L) ® L(A)®*2.

Behind all combinatorial properties of our construction seems to be relation (13) for [w]va, written in terms of tensor
products of level 1 highest weight vectors as

[w](vﬁ)k‘)@vﬁh@v,%kz) = ([w]v/\o)®k°® ([w]va, )®k1® ([a)]v/\z)®k2

= Cxy(—1 )¥1 x0(—1)*2xo (—1)" (vfak”@) v/‘\g;h ® v/(?zkz )

)

In particular, it is this relation that for level 1 modules makes the use of crystal base character formula [20] in [27]
possible.

Very roughly speaking, we prove linear independence by induction on degree of basis elements in two steps: for monomial
vectors x(r)va, which appear with nontrivial coefficients ¢, # 0 in a linear combination }_ ¢ x()va = 0, we first use
intertwining operators x(m)va — x(m)vy to be able to apply formula (5) to vectors x(m)va and get a combination of
monomial vectors of the form ) c x(«')[w]var. Then, as a second step, we commute [w] to the left and, by using (4)
and induction hypothesis, we get that ¢, equals zero — a contradiction. Of course, the actual argument is a bit more
complicated and, as in [2], we have to use two basis elements of 4-dimensional spinor g-module on the top of L(/;) and
the corresponding coefficients [w] and [w;] of intertwining operators.

A part of this paper was written while the author was a member of the Erwin Schrodinger Institute in Vienna in February
of 2009. He would like to thank J. Schwermer for his hospitality.

2. Affine Lie algebra of type B!

Let g be a complex simple Lie algebra of type B, and let h be a Cartan subalgebra of g. Let g = h+ >_ g, be a root
space decomposition of g. The corresponding root system R may be realized in R? with the canonical basis €1, &; as

R={x(e1—e) £(e1+&)} U{xe, £}

We fix simple roots a1 = €1 — &, and o, = €, and denote by wy = & and w, = (&1 + &;)/2 the corresponding fundamental
weights. Note that 8 = & + &; is the maximal root. Set

M= {81 —&2,&1, & +82}~

Denote by (-, -) the normalized Killing form such that (0, 8) = 2. We identify h = h* via (-,-). We fix w = wy = €.
Then we have a(w) = (@, w) and
N={eeR:aw) =1}

Obviously we have a Z-grading g = g_1 + go + g1 for

g0 =b+) go="b+Cx,+Cx, gs1= ) Ga

a(w)=0 ac+l
Clearly g1 is an irreducible 3-dimensional go-module. We shall briefly write
2=¢g — &, 0=¢, 2=¢ + &,

so that ' = {2,0,2}, a notation as in [2, 27]. For each root « fix a root vector x,. For a = 2,0,2 we shall write x,
respectively as
X2, X0, X2.
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These vectors form a basis of go-module g;.

Denote by g the affine Lie algebra of type B(;) associated to g,

g=) g®t"+Cc+Cd,

nez

with the canonical central element ¢ and the degree element d such that [d, x®t"] = nx®1t". Set

Go=) g®t",  Fo=) g®t"+Cc+Cd.

n<0 n<0

Let ap, a4 and a; be simple roots of g with the root subspaces g_o®t', g4, ® t° and g.,® t° respectively, and let Ag, A1, A
be the corresponding fundamental weights of g, cf. [19]. We write

x(n)=xat"

for x € g and n € Z and denote by x(z) = Y_ x(n)z~"~" a formal Laurent series in formal variable z. For
nez

Go=) g®t"+Cc+Cd, G =) gu®t"

nez nez

we have Z-grading g = g_1 + go + g1. In particular, g1 is a commutative Lie subalgebra of g with a basis
r= {xa(n), xo(n), x2(n) : n € Z} = {xy(n):y €T, n € Z}.
On T we use the linear order

o< xa(n—=1) < xa(n) < xo(n) < x2(n) < x2(n+1) < ...

3. Feigin-Stoyanovsky type subspaces W (/\)
Denote by L(A\) a standard (i.e. integrable highest weight) g-module with a dominant integral highest weight
N = koMo + ki\y + ka/\y,
ko, ki, ko € Z,. Throughout the paper we denote by k = A(c) the level of g-module L(A),
k =ko+ ki + k,

cf. [19]. For each fundamental g-module L(A;) fix a highest weight vector vs,. By complete reducibility of tensor products
of standard modules, for level kK > 1 we have

LA) C© L(N)®® LIA)®R @ L(A)®k

with a highest weight vector

®ko o | Ok1 o | B
VA = Vpy @V ®Vp T

201




Combinatorial bases of modules for affine Lie algebra B‘z”

202

Later on we shall also realize L(A) in a symmetric algebra
LN € S (L)@ LB LIN)),  va = vidvalva.
We set dva = 0. Then L(A\) is Z-graded by the degree operator d,
L(A) = L(N)o + LN =1 + LN 2+ ...,
and we say that g-module L(A)o = U(g)va is the “top” of L(A). The top of L(/Ag) is trivial g-module Cv,,, the top of L(/\1)
is a 5-dimensional vector representation L(wq) and the top of L(/\;) is a 4-dimensional spinor g-module L(w,).
For each integral dominant A we have a Feigin—Stoyanovsky type subspace

W(A) = Ulgi)va C LIN).

Denote by : {x,(—j): vy €T, j>1} - Z, a “colored partition” for which a finite number of “parts” x,(—j) (of degree j
and color y) appear m(x,(—/)) times, and denote by

x(m) = [ (=)™ e Ulg) = S(@)
the corresponding monomials. We can identify  with a sequence
ai, by, cr,az,b2,02,. ..
with finitely many non-zero terms a; = 7(x2(—j)), b; = 7(xo(—J)), ¢; = 7m(x2(—j)) and
X() = - xa=)Tx0(=)) =) - xa(=1) N x0(=1) " xa(—1)°.
For a monomial x(7r) we say that x(;r)va € W(/) is a monomial vector. The main result of this paper is the following:

Theorem 3.1.
The set of monomial vectors x(mt)vp satisfying difference conditions

Cj+1+bj+1+Cj£k, bj+1+(lj+1+fj§k, Gj+1+Cj+b/Sk, aj+1+bj+a/-§k (6)
for all j > 1, and initial conditions
a1 < ko, b1+ a1 < ko + kz, ¢+ by < ko + ko, (7)

is a basis of level k Feigin-Stoyanovsky type subspace W (/).
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-
4. Difference conditions and initial conditions

By Poincaré-Birkhoff-Witt theorem we have a spanning set of monomial vectors x(m)va in Feigin—Stoyanovsky type
level k subspace W(A). To reduce this spanning set to a basis described in Theorem 3.1 we use vertex operator algebra
relations

xo(2) =3 [ Y xeli) e Xeliksr) | 2" =0 on L(A)

n€Z \ j1ttjkg1=n

and their consequences U(gg) - xo(z)**" = 0, where - denotes the adjoint action of go on g;. That is, the adjoint action
of go on coefficients of formal Laurent series xg(z)**" gives relations

Y ax(w)=0 on W),

where for each relation the sum is over an infinite set of colored partitions p. By choosing a proper order on the set
of monomials, for each sum we can determine the smallest term x(p), the so-called leading term, which can be replaced
on W(A) by a sum of higher (bigger) terms. The list of leading terms is

xa(—j =) xo(—j = 1)+ xa (=), cje1 + bjpr + =k +1,
Xo(—j = 1)t xp(—j = 1)+ xp (=), biy1+aj+c=k+1, )
Xo(—f = 1)+ xo(— )T x0(— )", ajy1 +¢j+bj=k+1,
xo(—f— 1) xo(— /) ixa(—f), ajy1 +bj+a;=k+1,

for all j > 1. So by induction we see that W(A) is spanned by monomial vectors x(;r)va which do not have factors of
the form (8), L.e., by monomial vectors which satisfy difference conditions (6) (for details of this argument see [21, 25, 27]
or [11)).

Lemma 4.1.
Xz(—’I)V/\1 = X()(—/I)V/\1 = X;(—A])V/\1 =0.

Proof. For a € R denote by sh(a) C g a Lie subalgebra generated with x, and x_, and by

sh(a) = ) sh(a)®t" +Cc+Cd C § (9)

nez

denote the corresponding affine Lie algebra of type Ag”. Note that for a level one g-module V the restriction to ;[2(0()
is a level one representation if a is a long root, and it is a level two representation if @ is a short root. Also note that
U(:'TIZ(O())V/\1 is a standard Ag”—module and that its sl;(a)-submodule on the top is a submodule of 5-dimensional vector
representation for B,.

In the case a = € — &, = 2 we have level one representation on U(f?[z(oz))v/\1 with 2-dimensional sl;(a)-module on the
top, so it must be the standard Ag”—module L(A1). Hence x¢,—¢,(—1)va, = 0. Similarly xo(—1)va, =0 for a = &1+ &,. On
the other hand, in the case a = & we have level two representation on U(sA[z(O())v/\1 with 3-dimensional sl;(a)-module
on the top, so it must be the standard Ag”—module L(2/\1). Hence again xq(—1)vp, = 0. O

Lemma 4.2.
We have

() x(=T)xa(=1vy = x(=1)x(=1)vw, =0,

(i) xo(=1)x2(="1)vay = x2(=1)x0(=1)vp, =0,
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(iit) x2(=T)x2(=1)vpr, = Cxo(=1)xo(—=1)vn, for some C # 0,
(iv) xo(—1)%vp, = 0.
Proof. Note that x,(j)va, = 0 for all j > 0, so the relation x,(z)> = 0 on L(/A) for a long root y implies

X (=120 = (=13 (=1) + 26,(=2)x,(0) + 26,(=3)x,(1) + - ) vp, = 0
and (i) follows. Since x,(0)va, = x_,(0)vp, = 0, the action of x,(0) or x_,(0) on (i) gives relations (ii) and (iii). Since
for level one g-module V the restriction to sl(a) is level two representation if @ is a short root, on L(/\g) we have
x0(z)®> = 0 and (iv) follows. O
We fix vectors wy = vj, and w, with weights

&1+ & & — &
wy = 5 and wy; = >

N
I

in the 4-dimensional spinor g-module on the top of L(/\;). By using arguments as above we obtain the following:

Lemma 4.3.
We have

) xa(=T)va, = 0 and xy(~1)wy = O,

(LI.) XZ(_1)XZ(_1)V/\2 = X;(—1)X0(—1)VA2 = X()(—II)X()(—Il)V/\2 = 0

Lemma 4.4.
The set of monomial vectors x(m)va satisfying difference conditions (6) and initial conditions (7) spans W(A).

Proof. We have already mentioned how the relation xg(z)**’

= 0 on level k standard module L(A) leads to a spanning
set of monomial vectors satisfying difference conditions (6). Following an idea from [30] we reduce the problem of initial
conditions (7) for level k Feigin—Stoyanovsky type subspace to a problem of difference conditions for level k' < k

Feigin-Stoyanovsky type subspace: we shall consider g-submodules in tensor products
LMo)®o® L)% and  L(A)PM® (L(No)®R® L(N)®*2)

of levels k" = ko + k; and k = kg + ki + k> generated by highest weight vectors

vf\aok(’@) V,Q\azk2 and V,Qah ® (vﬁ)k‘)@; vf’zkz).
Assume that for
X(71) = xo(=1) N x0(=1)" xa (= 1)
the monomial vector x(;r)va does not satisfy initial conditions (7),
a1 < ko, b1+ a4 < ko + k>, ¢+ b1 < ko + k.

By the above lemmas,
Xz(—‘l)V/\1 = 0, Xz(—'I)V/\2 = 0, Xz(—1)zv/\0 = O’

so in the case when a; > kg we have that the vector

xo(=1)" (RIRVRIBVRE) = xa(=1)"1 70 (518 (o =1 v )0 @ V)
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equals zero and we may remove it from our spanning set of monomial vectors.

Now assume that the monomial vector x(;r)va does not satisfy the initial conditions because
k" = by + a1 > ko + k>.

Then we have
2P =0 on  L(keNo+ka/\z) C L(A)®R® L(A)®R,

and by the adjoint action of (x_,)"" we get
x0(2)P1%2(2) + -+ Cuvix2(2) x0(2) X2(2) + - = 0
with a1 < t. The coefficient of 2% gives us
R = xo(—1)"o(—1)" + -+ + ¢, o x2(—1)"x0(— 1) x2(—1) + -+ = 0

on L(koNo+ ka/\z). The coefficient R is an infinite sum with the leading term

xo(—=1)P1xa(—=1)1. (10)
In R we have monomials of the form xy, (j1) - - xy,, (k) with ji + -+ + jir = —K”, so either ji = ... = jir = =1 or we
have j; > 0 for some s. Hence Lemma 4.1 and
Xy(f)va, =0 forall yel, j>0, i=01,2

imply
Rvp = R(Vﬁk1®(v/€)k°®v,‘ik2)) = vf:h@R(v/ikO@vgz) = 0.

Since the monomial (10) is the leading term of the relation Rvy = 0, we can express

Xo(=1)2 X2 (= 1) vp

as a combination of higher monomial vectors and we may remove it from the spanning set. In a similar way we argue in
the case when ¢y + by > ko + k. O

5. Simple current operators

Recall that we have fixed a cominimal coweight w = w; = &1 € h. We shall use simple current operators [w] on level 1
modules, i.e. linear bijections

LA - Ln) 2 1n), L(h) 2 L)
such that
Xa(2)[w] = [w]2°@Wx,(2) forall a€R,
or, written componentwise,
Xo(n)[w] = [w]Xe(n + a(w)) forall ae€R, nelZ. (11)
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Remark 5.1.

It is easy to see that, up to a scalar multiple, the linear bijection [w] between two irreducible modules is uniquely
determined by (11). We can prove the existence of such a map in several ways.

In the ADE case, when the lattice construction of level one §—modules is available, for minimal weight w we have
[w] ~ e, see [, 17] or [28] for notation and details. For level k modules we consider a tensor product of k level one
modules and we have

[w] ~ e“®---®e*,
so that (11) holds.

Haisheng Li pointed out that in general the map [w] can be interpreted in terms of simple currents. In [8], a module M
for a vertex operator algebra V is called a simple current if the tensor functor “M X -” is a bijection on the set of
equivalence classes Irr(V) of irreducible V-modules. In [8], simple currents M for affine Lie algebras are constructed by
deforming vertex operators Y\/(-, z) for simple vertex operator algebras V = L(k/\o) with formal Laurent series

Alw, z) :z“’exp(—Zw(n)(n_Z)_n)

n>0

so that
Yum(- z) = Yv(A(w, 2) -, 2).

To prove the existence of [w] for BQ) we may use a related Dong—Li-Mason'’s result that for a representation L(A) of g
on a vector space W, realized by a vertex operator Y (-, z), we also have another representation L(/\') on the same
vector space W, but realized by a deformed vertex operator

YL(/\I)(-,Z) = YL(/\)(A(OJ, Z)-,Z),
cf. [8, 23]. Then

[w]: L(A) — L(N)
can be interpreted as the identity map
id: W—-W
on the vector space W endowed with two different structures of g-modules, L(A) and L(A).

We can also prove the existence of [w] for B(;) by following the approach of J. Fuchs [16]: a representation L(A) of g on
a vector space W, given by
m:g— EndW,

can be changed to a new representation L(/\’) on the same vector space W by considering a composition
moo: g— EndW
of representation s with an automorphism ¢ of g defined by
0(xq(n)) = Xo(n + a(w)) forall a€R, neZ.
Then again [w]: L(A) — L(N\') can be interpreted as the identity map on W.

Remark 5.2.

In our later arguments by induction on degree, we use the map [w] in essentially the same way as it is used in [5, 17]:
we “move” monomial vectors from one space to another and, due to (11), we “lower” their degrees in the process. For
this reason we use the same notation [w] for all these different maps on different spaces, including the corresponding
maps on tensor products of level one modules and on the symmetric algebra of level one modules, cf. equation (12) and
Remark 7.1 below. It should be noted that [w] “behaves like a group element”, cf. Remark 9.2 below.
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We fix vp, = 1 in the vertex operator algebra L(/\g). Then we have
0 p

Lemma 5.3.
With properly normalized vy, and x,

(D) [wlvay = v,

(i) [w]va, = x2(=1)x2(=1) vp,-

Proof. (i) For a level k standard g-module L(A) the new module structure Yyn)(-, 2) = Y (A(w, 2) -, 2) gives
h(0)[w]va = [w](h(0) + (w, h)k) va for heb.

In particular, [w]vp, is a weight vector with level 1 weight Ay = Ag + (w, - ). Relation (11) gives

x_o(1)wlva, = [w]x_g(1 — B(w))va, = [w]x_a(0)va, = O,

Xo (0)w]va, = [w]x, (0+ ai(w))va, = [w]xq,(0i1) VA, = O for i=1,2.

Hence [w]vp, is a highest weight vector and L(A) = L(Ay).

(i) Like in (i) we first see that [w] ' xo(—1)x2(—1) v, is @ weight vector with weight Ay. By using (11) and Lemma 4.2
we obtain
x_o(M[w] X (=1 xa(=N)va, = [w] ' x_0(2)x2(—=1)x2(=1)vp, = 0,

Xay O) @] X2 (=) x2 (=) vy = (0] Xe, (= T)x2(=T)x2(=T) v, = O,
Xa () @] xa (=) x2 (= 1) vy = [@] " xe (0)X2(— 1) x2(—T) v, = O.

Hence (ii) holds and L(A}) = L(A). O
Lemma 5.4.
With properly normalized [w], wa and xo, xa,

(1) [@lva, = xo(=T)va, = xa(=T) w2,

(i) [wlwa = xo(=T)wz = xo(=T)p,-

Proof. (i) As in the proof of previous lemma we see that [w]'xg(—1)vp, is a weight vector with weight A;. By
using (11) and Lemma 4.3 we obtain

xeo(M[w] xo(=1)va, = [w]'x-0(2)x0(—1)vp, = 0,
Xe (0)[61)]’1)(0(—1)v/\2 = [ou]qu(—1))(0(—'|)VA2 =0,
Xa, (0)[ @] " xo(=T)va, = [0] " Xe, (0)Xo(— 1)V, = O.
Hence, with a proper normalization, [w]™"xo(—1)va, = va,. The second equality follows from Lemma 4.3 because
0 = x_,(0)0 = x_, (0)x2(—1)vp, = C'xo(—1)vp, + C"x2(—1)w
for some C’, C” # 0.

(ii) The first equality follows from (i) by using the fact that w; is proportional to x_,(0)va, and the fact that x_,(0)
commutes with [w]. The second equality follows from Lemma 4.3. O
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We define a linear bijection [w] on a tensor product of k fundamental modules as

k k
e @lwl: LN = QL)
s=1

s=1
It is clear that relation (11) holds for [w] = [w]® - - - ®[w]. In particular,
xy(n)[w] = [wlx,(n+1) for yerl. (12)
For a colored partition p we set p™(x,(n+1)) = p(x,(n)). Then for monomials, relation (12) reads as

Lemma 5.5.
x(p)w] = [w]x(p™).

Remark 5.6.

For x(u) = []x,(n)™" we have x(u*) = []x,(n + 1)™), so we may say that x(u*) is obtained from a monomial x(u)
by “shifting degrees of factors” x,(n) — x,(n+1). Later on we shall also use the notation p”(x,(n +p)) = p(x,(n)) for
any p € Z, and we shall write y*? when we want to emphasize the shift of degrees of factors.

From Lemmas 5.3, 5.4, 4.1, 4.2 and 4.3 we have

[w}(vak[’@vfah@vf\ikz) = ([w]va,) 29 ® ((w]va, )2M1 ® ((w]va, ) B2 = vﬁk[)@ (x;(—1)x2(—1)v/\0)®k1® ()(0(—1)v/\2)®k2

(13)
= Cxo(— ) x0(= 1) 2x (1) (Vi v @ vie?).

For

A= k()/\() + k1/\1 + k2A2 set N = k1/\() + k()/\1 + kz/\z. (1 4)
Then (13) and Lemma 5.5 imply
Proposition 5.7.
[w]: LN) = L(A*) and [w]: W(N) = W(A¥).
This proposition and a construction in [8, 23] show that [w] = [w]®--- ®[w] is a simple current operator for level k

standard modules.

Virasoro algebra operators in a vertex operator algebra are usually denoted by L(n), n € Z. If we set L(0)vp = Cpva,
then
d=—-L(0)+ Cx on L(A).

We have the following:

Lemma 5.8.
For elements h of the Cartan subalgebra b, and the Virasoro algebra element L(0), on level k standard modules we have

(1) [w]"h(0)[w]" = h(0) + n{w, h)k for all n € Z, and

(i) [w]™"L(0)[w]" = L(0) + nw(0) + n*{w, w)k/2 for all n € Z.
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Proof. As it was already said, we can view [w] as the identity map on L(A) — L(A), where the target space is given
a new module structure L(/\’) with a vertex operator

Vin(2) = Yy (B, 2)2), A7) = 2 exp ( -y LA ) . (15
n>0

Then L(0)[w] is the coefficient of z72 in the vertex operator
YL(/\/)(L(—Z)1 B Z) = YL(/\) (A(w, Z) L(—2)1 , Z),
and only three terms in

w(2)(=2)"?

Mo2) = 1= (w2 + XTI T )

give a contribution to this coefficient
1
101] =[] LO) + 0(0) + 5 w0}k ).

Now (i) follows by induction. Relation (i) is proved in a similar way. O

Remark 5.9.
In the proofs of Lemmas 5.3, 5.4 and 5.8 (i) we suggested the use of deformed vertex operators (15), but all these statements
can be proved by using formula (11) as well.

On the other side, the formula in Lemma 5.8 (ii) written for operator d,

—dw]" = [w]"[—d + C\ — Cy + nw(0) + %Z(w, wk it [w]'vs € LN),

contains a term Cy — Cy which in general depends on L(0). When A = A the power [w]” is a Weyl group translation
operator on L(A) (cf. Lemma 9.1 and Remark 9.2) and a formula for d follows from (29).

6. Coefficients of level 1 intertwining operators

Let V be a vertex operator algebra and let W;, W, and W5 be three V-modules. Then an intertwining operator Y of type

(W:'Vavz) is a formal series
Yw, z) = Z w,z ", we W,
neQ

with coefficients
w, € Hom(W,, W3) for neQ,

such that “all the defining properties of a module action that make sense hold”, see [14]. In particular, for v € V we

ViWp — WV = Z (j[) (ViW)n+/—i,

i>0

have a commutator formula

where v; in v;w, is a coefficient of the vertex operator Yy, (v,z) = Y v;z/~" for V-module W5, v; in w,; is a coefficient
of the vertex operator Yy,(v,z) = Y v;z7/~" for V-module W, and v; in v;,w is a coefficient of the vertex operator
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W3

Yw, (v,2) = Y_viz7=" for V-module W;. The vector space of all intertwining operators of type Wy Wy

) is denoted by

l( Ws ) and its dimension is called a fusion rule. We have

Wy Wy
R R R P I
Wiw, | \wawi ] AW wg )Y

where for a V-module M we denote by M’ the contragredient module, see [14]. If W, is an irreducible V-module, W, a
simple current module and
Ws = WiKW,,

then by [22, Lemma 2.3] the fusion
Wi
dim/ =1
y (W1 Wz)

Lemma 6.1.
Let g be an dffine Lie algebra and L(k/\s) a vacuum level k standard g-module. Let V4, V5, V5 be irreducible modules for

vertex operator algebra V = L(k/\g). Let Y # 0 be an intertwining operator of type (Vh/z) let W be the top of V; and

v # 0 a vector on the top of V,. Then there is m € Q such that the top of V3 is a g-module
Ulg){wnv :w e W}

Proof. By [7, Proposition 11.9] we have Y(w, z)v # 0 for w # 0 and, from the definition of intertwining operators,
w,v = 0 for all n large enough. Let

m = max{n € Q: w,v # 0 for some w € W}.
Then we have a nonzero subspace
{wpv:w e W} C Vs
For x; = x(j) in g we have a commutator formula

XiWim — WnXj = ) (i) (W)

>0

which for j > 0 implies

Xj(WnV) = WXV + Z ({) (XiW)mgj—iV = (XoW)msyv = 0

i>0

because v and w are vectors on the top of modules and m is maximal such that w,v can be nonzero. Since
U@<o) {Wav : w e W} C Vs

is a g-invariant subspace of irreducible g-module V3, the space {w,v : w € W} must be a subspace of the top of V3
and the lemma follows. O

Recall that we have fixed vectors w, = v, and w, with weights w; and w, in the 4-dimensional spinor g-module on the
top of L(/\y).



M. Primc

Proposition 6.2.
(1) With proper scalars A and p and an intertwining operator Y of type

(L(/\Lz()/\z()/\o)) (1)
there are coefficients
[w)] of Y(Awy,z) = ZQ(AWZ),,Z—"”, [wa]: L(Ao) — L(N2),
[w2] of Y(uwy, 2) = Z@(uw;nz*"ﬂ [w2]: L(o) = L(Aa),

which commute with the action of g, and such that
[walvng = vy, [w2lva, = w2

(i) With proper scalars A and p and an intertwining operator Y of type

(1 1) )
there are coefficients
o] of Yoweal= T wah el L) = LD
o of Hiwe,2) =Y e Ll LD = LN

which commute with the action of g1 and such that
[wa]va, =0, [wa]wz = v, [wa]va, = VA, [wa]w, = 0.
Proof. Since L(A\;) is an L(/\g)-module, we have
(™) = o)
L(A2) L(No) L(Mo) L(A2)
and the space of intertwining operators of this type is 1-dimensional. Since L(/\1) is a simple current module such that
LA RL(A;) = L),
see [22, 23] or [8], and since both L(/\) and L(/\;) are self-dual, we have
,( L) ) ~ ,( L) )
L(A2) L(A2) L(A2) L(A)

and the space of intertwining operators of this type is 1-dimensional.

Let Y # 0 be an intertwining operator of type (16) and v = vy, on the top of L(/\g). By Lemma 6.1 there is a vector w
on the top of L(A\;) and an integer m such that w,,v is proportional to vj,. It is clear that w is proportional to v, and
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we denote by [w2] = w,, the corresponding coefficient of the formal series Y(va,, z). Obviously, for proper normalization
of w we have

[wZ]V/\o = V-

On the other hand, if we take w = w, and the corresponding coefficient [w;] = w,, of the formal series Y(ws3, z), with
proper normalization we have

[w2lvag = wa.

Now let Y # 0 be an intertwining operator of type (17) and v = v, on the top of L(A;). By Lemma 6.1 there is a vector w
on the top of L(/A;) and an integer m such that vector w,,v generates the irreducible 5-dimensional g-module on the top
of L(/A1). Since the top of L(A;) is a 4-dimensional spinor g-module, h-weight vectors of the form w,,v can have weights

&1 — & &+ & a1 - & &+ & _€1+€2 &+ &
2 2 ' 2 2 ' 2 2 y

In the first case w is proportional to w; and w,v = Cv,, for some scalar C # 0. Vectors in the second and third case
can be transformed to the vector w,,v = Cv,, of the first case by acting with Lie algebra g elements x.,_, and x,
respectively. So if we take w = w; and the corresponding coefficient [w;] = w,, of the formal series Y(w;, z) with proper
normalization, we have

[walvpa, = w.

Inspection of h-weights in 5-dimensional g-module on the top of L(A;) shows that [wy]w; = 0. In a similar way we see
that for w = v, and the properly normalized corresponding coefficient [w,] = w,, of the formal series Y(vp,, z) we have

[wa]wa = wa, and [wa]va, = 0.
In each of the above cases [w;] and [w;] are coefficients of Y(w, z) with w such that
x()w =0 forall xegy, (>0.

Hence the commutation relations for intertwining operators imply

X(J) Wi — Wi x(j) = Z ({) (x()wW)mgj—i =0 for all  x(j) € 6. O

i>0

Remark 6.3.

In Introduction we gave a very rough idea how coefficients of intertwining operators can be used in the proof of linear
independence of the monomial basis given by Theorem 3.1: with these operators we “move” monomial vectors x(5t)vp +—
x(m)vy from one space to another until we get vectors of the form x(1')[w]vas. Since these operators commute with all
x(7t), the only thing that matters is how these operators “move” the highest weight vectors vy +— var. In our case it is

[w2] [wp]

Vag = Vo, = Va [w2]wa =0,
[w] [wy]

V/\O i WZ — V/\W’ [wz}V/\z = 0

For this reason it is convenient to use for different operators the same symbol [w;] which reminds us only that they
are obtained as some coefficients of different series Y(w,, z), associated with the “same” vector w;, or, to be precise,
associated with the same weight subspace of weight w, of the top of L(/\;).
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7. Proof of linear independence

By Lemma 4.4 the set of monomial vectors
X()vn = - xa(=) T x0(=1)" X =) - Xa (1) X0 (1) xa(—1) v

satisfying difference conditions (6) and initial conditions (7) spans W(A). We prove linear independence of this set by
induction on degree

—n =Y —j-7lx(—)) = —(Tar+ by +Tcr + -+ ja; + jb; + jej + -+ -)
yel,j>1

of monomials x(7), considering in a proof all level kK modules simultaneously. In the proof we shall briefly write DC for
difference conditions (6) and IC for initial conditions (7).

Step 1. The idea of proof is illustrated most clearly in a proof of linear independence of vectors x(s) vk, of degree —n.
As induction hypothesis we assume that vectors x(u)via, of degree greater than —n are linearly independent. Assume
that

Y cax(m)vin, = 0. (18)

By Lemma 5.3 we have vy, = [w]va, and hence vip, = [w]vkr,- By Lemma 5.5,

Z X (M) Vien, = Z CaxX () w]vicn, = [w] Z CaxX (7)) Ving
and injectivity of [w] implies
Y cax(@m)vin, = 0. (19)

Monomials x(xr) in (18) satisfy difference conditions, so, obviously, “shifted by degree” monomials x(r*) in (19) satisfy
difference conditions as well. Monomials x() in (18) satisfy initial conditions for kA, L.e., contain no part of the form
Xq(—1). But then monomials x(sr*) in (19) contain parts of the form x,(—j), j > 1, and hence satisfy initial conditions
for k/\g. Since monomials x(r*) in (19) have degrees greater than —n, the induction hypothesis implies that all ¢, = 0.
Hence we proved linear independence of monomial basis vectors for W (k/\1) of degree —n.

Step 2. For A = (1, by, aq) write
X(=1)* = xa(=1) " x0(= 1) xa (1),

Later on it will be convenient to write a monomial x(u) as a product
- Xa(=)) T x0(= )" xa(= )T - =1) T xo(= 1) xa (=) = X () x(= 1)
We define a partial order on the set of level k integral dominant weights:
N = kN + kiA + ks < A= koo + ki + ko/\;

if and only if
kégko, ké-l—kégko-l—kz
Clearly, kA is the smallest element and k/\y is the largest element in the set of level k integral dominant weights.

Now we proceed with a proof of linear independence. We assume that vectors x(p)va of degree greater than or equal
to —n satisfying DC and IC are linearly independent for some set of A’ > k/\;. Let A be a minimal level k integral weight
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for which we need to prove linear independence of monomial vectors of degree greater than or equal to —n satisfying
DC and IC. Let

Z Cax(m)vp = 0. (20)

Assume that ¢, # 0 for some x(u) = x(u2)x(—1)"" for
Au:(61,b1,01), aq <k0,
and that aq is the smallest power of x,(—1) appearing in such A,. Since [w;]: L(Ag) — L(Az), we have the operator
1801 ®[w2}®(k0701)®1®(k2+k1) . L(/\) R L(/\/), V/@\);]ko® v/%;kz® V/Q\Z:h s V/Q\B;]m ® V/‘i(kz-%—ko—m)@ v/éalq ,

which commutes with the action of gi. Note that A > A’ so that we may use the induction hypothesis for corresponding
monomial vectors. If we apply this operator on the sum (20) we get

Z cax(m)vy = 0. (21)

By Lemmas 4.1, 4.3, 4.2 we have xo(—1)va, = 0, xo(—1)va, = 0, x2(—1)%vp, = 0, so for any monomial x(7) = x(5')x2(—1)°
with a > a; we have
x(mvy = )((Jr')xz(—1)”(v/§;'J1 ®vf\92(k2+k°7”1)® vﬁh) =0.
On the other hand, vectors like x(uy)va besides DC satisfy IC as well, iLe.,
a1§k{,=a1, b1+(]1§k6+ké=k0+k2, C1+b1§k6+ké=k0+k2,

so by induction hypothesis the coefficient ¢, in linear combination (21) must be zero, a contradiction.

So in (20) we need to consider only monomials with a; = ko, i.e., monomials of the form
x(7) = x(7) xa(=1)ko,
Assume that ¢, # 0 for some x(u) = x(u2)x(—1)"" for
Ay = (1, b1, aq), a1 =ky, bi+ai<ko+k, c1+b<ky+k.
Since [w2]: L(A\2) = L(/\1), we have the operator
1800t [w)]@18% 1 L(A) — LN), vzk°® vf\ib@ vf:’q — Vf\pok‘]@) vf\pz(kz_”(@ vﬁ(h S

which commutes with the action of g;. Note that A > A’ so that we may use the induction hypothesis for corresponding
monomial vectors. If we apply this operator on the sum (20) we get

cxx(m)vy = 0. (22)
)

By Lemmas 4.1, 4.3, 4.2 we have xo(—1)va, = 0, xo(—1)va, = 0, x2(—1)v, = 0, so for any monomial x(r) = x(5") xo(—1)*
we have
®ko

x(mpv = x(m D=1 (v @ v v ) = Cx() (=T, o vy @)

for some C # 0. If for such x(;r) = x(7m2)x(—1)"** we have
b1 +ay =ky+ ko or ¢+ by = ko + ko,

then by Lemma 4.3, xa(—1)%va, = x2(—1)x0(—1)va, = xo(—1)*va, = 0 and by Lemma 4.2, xo(—1)xo(—1)va, = 0, so in either
case at least one of xg(—1) or x(—1) must act on one copy of v5,. Hence, by Lemma 4.1, for such x(s) there must be

x(myvy = 0.

So in (22) we have only vectors like x(y)va which besides DC satisfy IC as well, and by induction hypothesis the
coefficient ¢, in linear combination (22) must be zero, a contradiction.
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e
Remark 7.1.

For the rest of the proof it will be convenient to realize L(A) of level k in a k™ component of a symmetric algebra
L(A) c SK(Vv), V = L(No)® L) B L(N).

The operator [w] = S([w]) acts as “a group element” on S(V). On the other hand, operators A and B on V in Lemmas 7.2
and 7.3 below act as derivations on S(V).

Step 3. By the previous step, in the linear combination (20) we need to consider only monomials x(;r) = x(sr2) x(—1)"~
with a1 = ko for A, = (¢1, b1, a1) and

by + a1 =ky+ k> or c1+ by = ko + ky.

Assume first we have a monomial vector x(;)va such that a1 = ko, by + a1 = ko + kz and ¢ + by < ko + kz. This implies
that

a) = ko, b1 = kz, 1 S ko. (23)

As above, Lemmas 4.1, 4.3 and 4.2 imply that

x(=Nvp = xo(=1) x0(=1)*2x5(— 1k°(v,\1v/\2v/\°) = Cxo(—1)" (w1 ! (x0(—=T)va) 2 (xa(—T) v )©)

= OV (xo(=T)va, ) (xa=1)vag ) ™" (da(— 1) xa(= 1) ) "
Let A: V — V be a linear operator
Ah(/\o) = [wy]: L(No) = L(A2), A[L(/\1)€BL(/\2) =0,

and let A act as a derivation on S(V). By Proposition 6.2, derivation A commutes with the action of g; on the
symmetric algebra S(V). Note that Avy, = [w;]vp, = w, by Proposition 6.2 and x,(—1)w; = 0 by Lemma 4.3, so
A(x2(=1)x2(—1)va,) = 0. Hence, by Lemmas 5.3 and 5.4, we have

AR X (1) 7w = Cvp! (xo(—T1) vy )2 (xa(—T) w2) 0 (xa (=T xa(— 1) vy )

= C"([w]vrg)" (w]vr,)* (w]vn,) o~ (w]va )T = C7[w](vagvazvas Var) = C7w](vagvaz ™ VAL )-

Since A commutes with the action of g1, we have

Ako’”x(ﬂ)v/\ ka+ko—cq C1)

x(m) Ax(=1)*7 vy = C"x () [cu](v/\ov/\2 Vy,

() (vapvas ™" VAT ) = Cwlx(t

for some C” # 0. It is clear that “truncated and shifted by degree” monomial x(rr5) satisfies DC, and IC for x(t))va
read

a, < ki=k—by—an, by+a;<ki+ki+ko—cq, o+b<kit+k+k—c=k—c.

But these are just three difference condition relations which hold for x(s)va:
a;+ b1+ ay <k, by + a2+ ¢ <k, o+ b+ <k.

Hence we have proved the following:
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Lemma 7.2.
In the case when (23) holds, the monomial vector

X3 ) = (C"[w]) T AR x() v

satisfies difference conditions (6) and initial conditions (7).

Assume now that we have a monomial vector x(7t)va such that a1 = kg and by + a1 < ko + k; and ¢ + by = ko + kz. This
implies that

a1 = ko, b1 < ko, ¢+ b1 = ko + k. (24)

Like before, Lemmas 4.1, 4.3 and 4.2 imply that

(=17 = xp(=1)Txo(= 1) xa(= 105 (VT 2up ) = Coxa(= 1) (VaTvA2 ™" (xo(—1) va )" (= 1) v, )©)

= C'vﬁ (XZ(—1)vA2)k2_b (xof 1)v/\2) (xa(=T)x2(=1)vay) ™ fo

By Lemmas 5.3 and 5.4 we further have

X(=1 v = C (@] (w]wa) " (w]v,)" (w]va )0 = C'lw](vagws® " valval).-
Hence we have
x(m)va = x(m)x(= 1) 7vp = C'x(m)[w](vit wh? i) = Clwlx () (v w2 " v ve).

Let B: V — V be a linear operator

BTL(/\Z) = [wa]: L(A) — L(M), BD(/\O)@L(M) =0,

and let B act as a derivation on S(V). By Proposition 6.2, the derivation B commutes with the action of g on the
symmetric algebra S(V), Bw; = [wy]w; = vp, and Bvp, = [w)]va, = 0. Hence

ko—bq . ki ka=b1 by ko 0. ki kotka—by by
B Pyt v e Clvy = Clvy v Va, -

Lemma 7.3.
In the case when (24) holds, the monomial vector

x(7 v = B2 (C7C'[w]) T x () va
satisfies difference conditions (6) and initial conditions (7).
Proof. ltis clear that “truncated and shifted by degree” monomial x(:rJ) satisfies DC, and IC for x(55)vy read
ar, < ki =k—cy— by, b, +a; < ki + by, o+b,<ki+bi=ki+k+k—c1=k—c.
But these are just three difference condition relations which hold for x(7)va:

a)+ ¢+ by <k, by +ax+ ¢ <k, o+by+c <k O

216
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Now we proceed with the proof of linear independence. As already noted, in the linear combination (20) we need to
consider only

_ o (—1\a 1)b1 1)k (1%
0= > Cocpyar - x2(=1) xo(=1)" o (= 1) (vavizval )
ay1=kg, b1+a1=ko+ky>c1+bq
aq=kg, b1+a1<kp+ky=c1+bq

=3 Coopoo A=D1 20 (=00 (W2 ) + D Coepig x2(—1) T xo(=1) (= 1) (VATV212).

c1<kp b1<ky, c1+b1=ko+ky

Note that in the first sum we have vectors of the form

X(712) (Vi (o (= 1) v )2 (o (= 1) vag )0~ (o (= 1) xa( =1) v ) ), (23)
ko—c1 =1,..., ko, and that in the second sum we have vectors of the form

x(72) (var (xa(=1)va, )27 (o= 1) v, ) (=T xa (=T v ) ), (26)
ko — by =0,..., ko. In particular, in (25) we see a factor

(a(=T)vr ) Pl =T)xa(=1)vay )" for e =0,... kg —1,

and in (26) we see a factor (xz(—1)x2(—1)va,)*. Hence the operator A% annihilates all these terms except the ones with
¢1 = 0 and the action on linear combination (20) gives

0 = Ab Z Cax(m)va = [w) Z ¢ C"x (70 Y.

Ax=(0,kz.ko)

Now Lemma 7.2 and the induction hypothesis imply that ¢, = 0 whenever A, = (0, k2, ko). In turn this implies that in
the first sum of (20) it is enough to consider vectors (25) for ¢; = 1,..., ko — 1. Then we apply operator A%~" which
annihilates all these terms except the ones with ¢; = 1 and the action on linear combination (20) gives

0 = Ab Z Cox(m)vp = [w] Z ¢ C"x (7 Y.
Ax=(1.k2.ko)

Now Lemma 7.2 and the induction hypothesis imply that ¢, = 0 whenever A, = (1, k2, kg). By proceeding in this way
we see that all the coefficients c; = C_ 5,4, for ¢; < ko in the first sum are equal to zero.

So we are left with the second sum

ko=by by ko) _
E Cax(m)vp = [w] E e C'x()( v/\ wy? v /\1) 0. (27)
bi<ks
c1+by=ko+k
This implies
ky—by by ko) _
E ¢ C'x (5 )(v/\ow2 7 v/\1) =0. (28)
bi<k,
c1+b1=ko+k;
In (28) we see factors
ky—by b
w;y? 1VA; for b1 =0,..., k.

The operator B* will annihilate all these terms except the ones with by = 0 and the action on linear combination (28)
gives
Z cxC'C"x(f )(v/\ VKOHQ b /1:;) =0.

by=0
& +b1=kg+k>

Now Lemma 7.3 and the induction hypothesis imply that ¢, = 0 whenever A, = (ko+ k2,0, ko). In turn this implies that
in (28) it is enough to consider vectors for by = 1, ..., kp. So next we apply B*~" and conclude that ¢, = 0 whenever
Ar = (ko+ky—1,1, ko). By proceeding in this way we see that all the coefficients ¢, in the second sum of (27) are equal
to zero and our proof of linear independence is complete.




Combinatorial bases of modules for affine Lie algebra B‘;'

218

8. Vertex operator formula

For a root @ we denote by a" € h a dual root, @V = 2a/{a, a). In this section for each @ € R we choose x, € g, s0
that [xq, x_¢] = —a" and define on L(A) a “Weyl group translation” operator e, by

So = exp xq(0) exp x_4(0) exp x4(0), Ss—a = eXp X_qa(1) exp xa(—1) exp x_q(1), €4 = S5—aSa-

Then on a standard g-module L(A) we have
1
eq.ce; =c, e de;' =d+a¥ — = (a% a")c, eqhe;' =h —{(a" h)c,
2 (29)
eah(je;' = h(j)  for j#0, eaxy(jeg’ = (1) (j—v(a")
for h € b, y € R and j € Z. These formulas are a consequence of the adjoint action of the group element e, on g. The
map a" > e, extends from the dual root system RV to a projective representation of the root lattice Q(RY), cf. [13, 15, 19].

Let a € R. Then s?[z(a) defined by (9) is of the type Ag” with the canonical central element

Ca = {Xa) —X_qg)C = @a)

For a standard g-module L(A) of level A(c) = k, the restriction to glz(a) is of level k, = A(cq) = k if {a, @) =2 (ie. if @

is a long root) and of level k, = 2k if (a, a) =1 (Le. if a is a short root). Recall that zx,(z) = Y_x,(n)z™" is a formal

Laurent series in an indeterminate z with coefficients in End L(A). We also define a formal Laurent series zCata’ by
cq+a¥ kg +u(aY)

z Vy = VuZ

whenever v, € L(A) is a vector of h-weight p. Set

E*(a,z) = exp (Zav(ii) Z; ) .

>0

Since x4(z)k*!" = 0 on L(A), the exponential exp(zx,(z)) = exp( > xa(n)z*”) is well defined and we have a generalization
of the Frenkel-Kac vertex operator formula, cf. [21, Theorem 5.6], [26, Theorem 6.4] or [27, Section 3], for all standard
modules:

exp(zx4(2)) = E™(—a, ) exp (—zx_q(2)) E* (—a, 2) eqz ", (30)

By (29) the h-weight components of the vertex operator formula (30) on level kK module L(A) give relations

% (zxq(2))P = % E~(—a,2)(—2x_q(2))TEt(—a, 2) e, zkta" (31

for p,g >0, p + g = kg In the level k =1 case, for a long root @ and p = 1,0 we have

2X4(2) = E~(—a, 2) E¥(—a,z) e.2'"C, 1= E~(—a,2)(—zx_0(2)) ET (—a, 2) e 2"+ (32)
Since in this case e, e_, = —1, relations (32) are simply the Frenkel-Kac vertex operator formulas
Xe(2) = E"(—a,2) Et(—a, 2) e,2°, X_o(2) = E (a,2)ET(a,2)e_qz” ¢,

see [13,15]. In fact, the Frenkel-Kac vertex operator formulas for level 1 standard fﬁz(a)—modules imply xq(2)? = x_a(2)? =
0 and the relation (30), and for higher level k modules we prove (30) simply by applying the “exponentials of Lie algebra
elements” on both sides of (30) to tensor product of k copies of level 1 modules.

Denote by (e, : @ € ') a group of operators on L(A) generated by all operators e,, @ € I'. Then we have
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Lemma 8.1.
LIN) = (eq : a € T)U(g1) va.

Proof. First notice that the Lie algebra g is generated by g U g_4. In particular, spanl¥ = . Similarly, [g, 3] is
generated by g1 Ug_1, so we have

LN = {xi---xsva:5 >0, x €31 UG }.
By using the vertex operator formula (31) for @ € (—I') and p = 1, we may replace each x; € g_; with a product of

elements from
{eq:a € (-MN}UsUg,

where s denotes the Heisenberg subalgebra

s= ) het+Cc s=) het.

JEZ\{0} j<0
Since both group elements e, and Lie algebra elements from the Heisenberg subalgebra s normalize g, we get
L(Mo) = (eq - @ € ) U(g1) Uls-) va.

Now notice that U(s_) is generated by the coefficients of E~(—a, z) for a € . So, using the vertex operator formula
(31) for a € T and g = 0, we may replace elements in U(s_)va by elements in {e, : a@ € ) U(g1) va. O

As in [27, Section 5] we set

e= el =| e (33)

ael

Proposition 8.2.
Let L(N\), be a weight subspace of L(N\). Then there exists an integer mg such that for any fixed m < my the set of vectors

e"xg, (1) -+ xg. (fs)va € LNy,
where s 20, Bi,....Bs €T, ji,...,js € Z, is a spanning set of L(\),. In particular,
L(N) = (e) W(A).

Proof. Since dim L(A\), < oo, by Lemma 8.1 we may choose a finite spanning set of vectors of the form
(I‘Iea) [ eloxs, () e liohwa,
ael acl

r >0, xg,(ji) € g1, m fixed for all vectors. Clearly there exists mq such that if we choose m < myg, then all p, > 0 for all
vectors. Since e, normalize g;, we have a spanning set of vectors of the form

" xg, (1) - xg.()) [ ] €2 va-

aecl

Now in a finite number of steps we replace each e,vs by an element from U(gi)va using coefficients of ZkatNa’) i the
vertex operator formula (31) for a € ' and g = 0. O
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9. Bases consisting of semi-infinite monomials

In (14) we have set A* = kiAo + ko/\1 + ka/\; for A = ko/\o + k1/\1 + ka/\2. Note that A** = A. The relation (13) applied
twice together with Lemma 5.5 gives

[wPva = [w]z(v/ik(’@vﬁh@v/ikz) = C'[w]xa (=19 xo(=1)*2x2(=1)5 (V/%:k°® v/ih@vf’zkz)

= C'xo(=2)"x0(=2)2x2(=2) [w] (Vi " @ Vi @ v ) (34)

= Cxa(=2)"x0(=2)2x2(=2) 1 xa (= 1) Ox0 (= 1) 2x2(=1) v

for some C = C) # 0. If we set
X(kn) = x2(—2)"1x0(—2) 2x2(=2)  xz (= 1) 0x0 (= 1) 2z (= 1),

then (34) reads
[wPva = Cax(ka)va. (35)

This relation and Lemma 5.5 imply
[wP: LN) = LN and  [w]: W(A) = W(N).

Lemma 9.1.
e = Clw]* for some C # 0.

Proof. Since (1— &))" + € + (e1+ &)Y = 4&, relations (29) and (11) imply
exsy(fle” =x(F4)  and  [w]'xy (o] = x(F4)
forall y € . So e[w]™* commutes with the action of g and must be proportional to the identity operator on L(A). O

Remark 9.2.
Roughly speaking, the above lemma states that the simple current operator [w] is a “fourth root” of inner automorphism e.
By choosing e = [],cr e« we follow the notation in [27], but our arguments would work in the same way if we have
chosen the inner automorphism e to be

Cei—e,Cerre, = Cleg, = Clw]

for some C’, C # 0.
Theorem 9.3.
Let L(N), be a weight subspace of a level k standard 8(21)—m0dule L(A). Then there exists an integer mqy such that for

any fixed m < my the set of vectors
i [wf"x(m)va € L(N),

such that monomial vectors x(rt)va € W(A) satisfy difference conditions (6) and initial conditions (7), is a basis of L(\),.
Moreover, for two choices of my, m, < my the corresponding two bases are equal.

Proof. By Proposition 8.2 vectors of the form

e"x(myva € L(N),
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span L(A), for a given small enough m, so, by Theorem 3.1, monomial vectors satisfying DC and IC will form a basis. By
Lemma 9.1 we can replace e with [w]"™. Note that by Lemma 5.5, the notation from Remark 5.6 and (35)

G [ x()va = [wP " 2x () [wPva = G [l x () x (k) va (36)

and the monomial vector x(rr)vy satisfies DC and IC if and only if the monomial vector x(7172) x(kx) v satisfies DC and IC.
We can iterate this process:

CimwPx(m)va = ... = Ci™ 2 [wP ™D x (™) x (ki 2) X (Kp)va = - . .

Hence for different choices of integers m,m —1,m — 2, ... we always get the same basis vector (36), only written in a
different way. O

Remark 9.4.

One may think of Theorem 9.3 as a vertex operator construction for an arbitrary standard g-module L(A). And while the
basis constructed by using an inner automorphism and three commutative currents is relatively simple, the action of g
is given by a complicated implicit use of the vertex operator formula (30).

In the level k = 1 case, linear independence in this theorem is proved in [27] for the basic representation L(/\g) by
writing basis elements as semi-infinite monomials and then “counting” them by using crystal base character formula [20].
Such semi-infinite monomials interpretation is possible for all standard B}-modules, like in [29] for Ag”: for fixed A and
m € Z set

Vem = Cllw]™vp.

From Lemma 5.8 we see that the h-weight of v_,, is A|h—2mkey and the degree of v_,, is 2mA\(g1) — 2m2k. By using
Lemma 5.5 and (35), as in (36) we get

Voy = )((‘</-<—2(m-¢—1))v7m71 — (K/-{—Z(m-'—”)X(K/TZ(m*—Z))V,m,z - (37)

So by “taking a limit" we see that the vector v_,, can be represented by a semi-infinite quasi-periodic monomial
o
+2(m+1) +2(m+2) _ +2(m+p)
Ve ~ x(ky ) x(kr )-~~7|_|x(:<,\ ),
p=1
or written in more detail,

Vo~ xa(2m)K xo(2m)K2x; (2m) ¥ x (2m ++ 1) 0 x0 (2m 4 1)*2x,(2m 4 1)k0

X2(2m 4 2)%1 x0(2m + 2)K2x, (2m + 2)K1 %, (2m 4 3)k0xo(2m 4 3)*2x,(2m 4+ 3)%0 - - -

Now we can write basis elements of L(A\), given by Theorem 9.3 as

Clw] 2 x(m)va = x(mH2m) CR{w] 2" vp = x(m2")v_. (38)
Then (37) implies
X(7T+2m)V_m — X(]r+2m)X(K/J\r2(m+1)) Vopo1 = X(JT+2"')X(K/J\r2(m+1))X(K/J\r2(m+2)) Vemes = ...

and we see that our basis vector (38) can be represented by a semi-infinite monomial with quasi-periodic tail
X(JT+2m)V_,,, ~ X(ﬂ_+2m)X(K/-{—2(m+1))X(K/-{—Z(m+2))X(K/-{-2(m+3)) .

Hence we have
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Corollary 9.5.

We can parametrize a basis of level k standard 8(21)—module L(N),
N = Noko + Mky + Nk, k =ko+ ki + ko,

by semi-infinite monomials

[ Tra(=i)Tx0(=j)"xa(—=4)r, ¢g=bj=a;=0 for —j<0,

jez

with quasi-periodic tail with the period of length 6,
(~ e € b o, aon, coonm1, bgp1, G g1, - ) = ( cokika ki ko, ko ko, )

n > 0, satisfying for all j € Z difference conditions

C,'+1+bj+1+CjSk, b,‘+1+0,'+1+6,‘§k, 0/+1+Cj+b,'Sk, G,‘+1+b,-+0/§k-

Note that for semi-infinite monomials the initial conditions follow from the form of quasi-periodic tail and the difference
conditions.

10. Presentation of W(/\)

Theorem 10.1.
Let \ = ko/\() + k1/\1 + kz/\z and k = k() + k1 + kz. Let

P = Clx(f), xo(f), x2(j) : j £ —1]

and let I, be the ideal in the polynomial algebra P generated by the set of polynomials

n<—k—1 Jirejk1 =1
Ntetjkr=n

where - denotes the adjoint action of gy on P. Then, as vector spaces,
W(A) = P/Ix.
Proof. Since P C S(g1) = U(g1), we have a linear map
f: - WA), f: x(m) = x(m)va.

Since x(j)va = 0 for x € g4 and j > 0, relations U(go) - xe(2)**' = 0 on L(A) imply

n<—k—1 [1 ..... ,kﬁg—1
Atk =n

222
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From the proof of Lemma 4.4 we see that
{a(=1)%"1Y U Ulgo) - xo(—1)f0 2T C ker f.

Hence we have a surjective linear map
g: PlIn — W(N).

On the quotient P/J5 we have relations

U(go) - Y i) xalisn) | =0 forall n<—k—1,
Jrofkg1 <=1
htetik=n

(=1t =0 and  U(go) - xa(—1)0tet! =0,

As in the proof of Lemma 4.4 we see that monomials x(;t) € P satisfying DC and IC span the quotient P/J5. Since g
maps this spanning set to a basis of W(A), monomials x(n1) € P satisfying DC and IC are a basis of P/J5 and g is an
isomorphism. O

11. A connection with monomial bases of standard A'"-modules

Let now g = sl(2, C) with the standard basis e, h, f. Then we have monomial bases of standard g-modules constructed
in [11, 24, 25]:

For integral dominant \ = ko/\g + ki/\1 of level k = ko + k; the set of finite monomial vectors
X()vn = - F(=)Th(=j) (=) - F(=1)Th(=1)"Te(=1)"" f(0)Ovp
satisfying difference conditions
Cit1 +bj+ ¢ <k, bixi+aj+c <k, aj1+ ¢+ by <k, aj1+bj+a; <k

for all j > 0, and initial conditions a1 < ko and ¢y < ky, is a basis of standard g-module L(N).

These difference and initial conditions for A(11)—module L(k/\g) coincide with difference conditions (6) and initial condi-
tions (7) for Bg” subspace W(k/\g). Moreover, the result of E. Feigin [12, Theorem 3.1] implies that W (kA) for B(;) and
L(k/No) for Aﬁ” have the same presentation:

Let k be a positive integer. Let
P =Cl[f(j). h(j). e(j) : j < 1]

and let Jip, be the ideal in the polynomial algebra P generated by polynomials

n<—k—1 Jlrejkp1 <=1
Jitotgr=n

(here - denotes the adjoint action of g on P). Then, as Z-graded vector spaces and g-modules,

L(kAo) = PlTin, -

Due to this coincidence, E. Feigin's fermionic formula [12, Theorem 3.2] for Ag”—module L(k/\o) is also a character formula
of Feigin—Stoyanovsky type subspace W(k/\y) for B(Z”.
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