Sveučilište u Zagrebu Prirodoslovno - matematički fakultet Geofizički odsjek

Barbara Sušanj

Analiza globalnog Sunčevog zračenja mjerenog na Puntijarki od 1959. do 2004. godine

Diplomski rad

voditelj: dr. sc. Antun Marki

Zagreb, travanj 2012.

Zahvaljujem svom mentoru, dr.sc. Antunu Markiju na susretljivosti i pomoći pri izradi svih segmenata ovog rada. Hvala i gospodinu Zlatku Matici za prikupljanje tehničkih podataka kao i dr. sc. Ingi Lisac na korisnim savjetima.

Veliko hvala mojim kolegama, ponajprije mojoj Ekipi i Džoiću, kao i ostatku petog be razreda – Liscu, Vedrani i Mariju. Hvala Licku, Zrinku, Carki, Nini, Stipi, Kiki, Smilji i Tomaški.

Hvala i svim ostalim divnim ljudima i prijateljima koji su bili uz mene tijekom studija i koji su, na bilo koji način, dijelili sa mnom ovo životno razdoblje.

I na kraju, najveće i neizmjerno hvala mojoj obitelji na beskrajnoj podršci i strpljenju te iskazanom povjerenju u svakom trenutku moga studija.

Sadržaj

1	Uvod	I1
2	Mjer	enja na postaji Puntijarka
	2.1.	O postaji Puntijarka 3
	2.2.	Mjerni instrumenti 4
	2.3.	Izvorni podaci
3	Anal	iza mjerenja9
	3.1.	Godišnji hod
		3.1.1. Usporedba s opservatorijem Zagreb-Grič
		3.1.2. Godišnji hod prema razredima naoblake 16
	3.2.	Dnevni hod
		3.2.1. Dnevni hod po sezonama 19
4	Veza	između globalnog Sunčevog zračenja i odabranih
	mete	oroloških elemenata 21
	4.1.	Veza između globalnog Sunčevog zračenja i naoblake 21
	4.2.	Veza između globalnog Sunčevog zračenja i insolacije 22
5	Mod	eliranje globalnog Sunčevog zračenja pomoću empirijskih
	mode	ela
	5.1.	Empirijski modeli
	5.2.	Statističke metode evaluacije modela
	5.3.	Rezultati i rasprava 27
6	Zakl	jučak
Liter	atura	
Prilo	zi	

1. UVOD

Sunčevo zračenje jedno je od osnovnih prirodnih čimbenika potrebnih za život na Zemlji. Bez svijetlosti, kao ni bez toplinske energije sa Sunca, na našem planetu ne bi bio moguć život kakvog danas poznajemo.

Globalno Sunčevo zračenje obuhvaća ukupno kratkovalno zračenje koje prolazi kroz atmosferu i u obliku izravnog (direktnog) i raspršenog (difuznog) zračenja dolazi do površine Zemlje. Za Zemljinu biosferu bitan je samo mali dio sveukupnog energetskog spektra Sunčevog zračenja.

Slika 1. Energetski spektar Sunčevog zračenja [http://www.learner.org]

Mnogo je čimbenika koji utječu na izmjerenu količinu Sunčevog zračenja. Ono tijekom dana i godine ovisi o visini Sunca nad horizontom (dobu dana), naoblaci, propusnosti (prozirnosti) atmosfere te lokalnim uvjetima instalacije mjernog instrumenta (geografskom položaju, nadmorskoj visini, slobodnom horizontu). Globalno Sunčevo zračenje bitno je povezano s ostalim meteorološkim elementima. To su ponajprije insolacija (trajanje sijanja Sunca) i naoblaka, kao i temperatura zraka. Kako su kvalitetni instrumenti za mjerenje zračenja konstruirani tek u pretprošlom stoljeću, dugotrajnija mjerenja ovog meteorološkog elementa vrlo su rijetka. No, poznavajući gore navedene elemente, moguće je iz izmjerenih podataka

tih elemenata interpolirati, odnosno izračunati nedostajuće podatke globalnog Sunčevog zračenja. Upravo u tome leži važnost spomenute povezanosti, pomoću koje je, u drugom dijelu rada ispitano nekoliko empirijskih modela za procjenu količine dozračene energije.

Sve veća potreba za iskorištavanjem Sunčeve energije kao alternativnog, obnovljivog izvora, dovela je, kako u svijetu tako i u Hrvatskoj, do velikog broja istraživanja i radova koji se bave tom tematikom. Prvi radovi vezani za Sunčevo zračenje u Hrvatskoj se javljaju tridesetih godina prošlog stoljeća (Goldberg, 1931). Detaljniji radovi o raspodjeli i samim karakteristikama te komponentama zračenja javljaju se od šezdesetih godina (Penzar 1959; 1963) nadalje, dok se radovi vezani za modeliranje dozračene Sunčeve energije javljaju devedesetih godina prošlog stoljeća (Marki, 1999).

Meteorološka postaja Puntijarka jedna je od malobrojnih planinskih postaja u Hrvatskoj. Zbog svog specifičnog položaja (blizina grada Zagreba), te dugačkog niza mjerenih podataka (od 1959. godine) koji do sada nisu detaljnije obrađeni, motivacija ovog rada je upravo analiza istih. Cilj rada je odrediti osnovna svojstva spomenutog niza podataka (dnevni i godišnji hod, položaj ekstrema), te verificirati nekoliko empirijskih modela za proračun Sunčevog zračenja.

U drugom poglavlju dan je opis same postaje (lokacija, mjerni instrumenti) i izvornog niza mjerenih podataka. Treće poglavlje sadrži analizu podataka, te usporedbe dobivenih hodova sa podacima izmjerenima na opservatoriju Zagreb-Grič. Veza između dozračene Sunčeve energije te naoblake i insolacije opisana je u četvrtom poglavlju, dok je peto poglavlje posvećeno empirijskim modelima i njihovim svojstvima kod primjene na podatke postaje Puntijarka.

2. MJERENJA NA POSTAJI PUNTIJARKA

2.1. O postaji Puntijarka

Meteorološka postaja Puntijarka nalazi se na planini Medvednica (slika 2), smještenoj sjeverno od grada Zagreba. Nadmorska visina postaje iznosi 998 m. Geografske koordinate postaje su 45°55'N i 15°58'E. Planina Medvednica pruža se u pravcu SW-NE u dužini od oko 30 km, a u smjeru SE-NW od oko 10 km.

Slika 2. Satelitska snimka grada Zagreba te planine Medvednica. Žutim oznakama označeni su položaji postaje Puntijarka te opservatorija Zagreb-Grič. Izvor: Google Maps. (2012.)

Od 1959. godine pa sve do danas na postaji Puntijarka mjeri se globalno Sunčevo zračenje. Postaja djeluje u okviru Geofizičkog zavoda "Andrija Mohorovičić".

2.2. Mjerni instrumenti

Instrument kojim se mjeri globalno Sunčevo zračenje iz prostornog kuta od 2π steradijana na vodoravnu plohu naziva se piranometar. Najčešće korišteni piranometri su oni koji za osjetno tijelo imaju postavljene termočlanke. Detektor je smješten ispod dvostruke staklene kupole koja ga štiti od prodora vlage i sprječava dugovalno zračenje samog instrumenta, te ga toplinski izolira i sprječava njegovo hlađenje. Piranometri se također mogu koristiti za mjerenje raspršene (difuzne) komponente zračenja, na način da se detektor zasjeni.

Od početka mjerenja (1959. godina) do 1988. godine mjerenja na postaji Puntijarka obavljana su zvjezdastim piranometrima tipa "Schenk" (slika 3). Ova vrsta piranometra sastoji se od 6 bijelih i 6 crnih polja (elementi termočlanka) postavljenih u oblik zvijezde. Temperaturna razlika između crnih i bijelih polja proporcionalna je globalnom Sunčevom zračenju. Kako instrument mjeri temperaturnu razliku između polja, mjerenja nisu uvjetovana okolnom temperaturom.

Slika 3. Zvjezdasti piranometar tipa ''Schenk'' [http://solardat.uoregon.edu/SchenkStar.html]

Slijedeći instrument postavljen 1988. godine bio je "Kipp & Zonen" piranometar (model CM6B – slika 4). Instrumentom su obavljana mjerenja do 1990. godine. Kod ove vrste piranometra crna i bijela polja termočlanka postavljena su koncentrično.

Slika 4. "Kipp & Zonnen" piranometar (model CM6B) [http://www.kippzonen.com]

Od 1990. godine do danas mjerenja se obavljaju piranometrom "Kipp & Zonen" (model CM11 – slika 5).

Slika 5. "Kipp & Zonnen" piranometar (model CM11) [http://www.kippzonen.com]

Svi navedeni instrumenti smješteni su na metalni toranj na visini od 10 metara iznad tla.

Valja naglasiti da su svi spomenuti instrumenti relativni instrumenti, tj. registratori. Oni podliježu kontroli – usporedbi s apsolutnim instrumentom (aktinometar). Kontrola se obavlja jedan put mjesečno, a rezultat je dobivanje koeficijenta korekcije za obradu podataka.

2.3. Izvorni podaci

U ovom radu analizirani su podaci mjerenja globalnog Sunčevog zračenja na postaji Puntijarka u razdoblju od 1959. do 2004. godine. Valja napomenuti kako spomenuti podaci imaju iznimnu vrijednost. Naime radi se o dosta dugačkom, te gotovo homogenom nizu mjerenja na jednoj od malobrojnih planinskih postaja u Republici Hrvatskoj.

Izvorni niz podataka korištenih pri izradi rada sastoji se od 16 satnih vrijednosti dozračene energije za svaki pojedini dan (5-20 h). Ukupan broj mjerenja u svakoj godini je 5840, osim u prijestupnim godinama (5856 mjerenja).

Mjerenja su započela 17. lipnja 1959. godine. U prvih 6 godina, niz je nehomogen zbog velikog broja sati u kojima instrument nije radio (ukupno 20614 nedostajućih podataka). Od 1965. pa sve do 2004. godine, nedostajućih podataka je svega 327, od čega je 128 s kraja 1980. godine, samo 1 iz 1988. godine, a 198 iz listopada 2004. godine.

Zbog kvara na instrumentu u većem dijelu 2005. i 2006. te lipnju i srpnju 2009. godine, nepostojećih podataka je ukupno 8606 (zaključno s krajem 2010. godine). Zbog toga je niz podataka u ovom radu analiziran do kraja 2004. godine.

Tablica mjesečnih i godišnjih suma, kao i srednjih satnih vrijednosti za analizirano razdoblje nalazi se u prilozima (prilozi A i B).

Na slici 6 prikazane su godišnje sume globalnog Sunčevog zračenja izmjerenog na postaji Puntijarka u razdoblju od 1959. do 2004. godine. Crvenom bojom na grafikonu su označene godine sa preko 50% nedostajućih podataka. Maksimalne vrijednosti godišnjih suma javljaju se početkom osamdesetih godina. Iz grafa je vidljiv trend porasta količine globalnog Sunčevog zračenja, što je u skladu sa, danas sve češće spominjanim, problemom globalnog zagrijavanja. Trend porasta globalnog zračenja vidljiv je i iz prikaza srednjih dnevnih vrijednosti dozračene Sunčeve energije za promatrano razdoblje (slika 7). Kod prikaza trenda pomoću srednjih dnevnih vrijednosti u obzir nisu uzete godine sa preko 50% nedostajućih podataka (crvena boja).

Slika 6. Ukupne godišnje sume globalnog Sunčevog zračenja na postaji Puntijarka za razdoblje od 1959. do 2004. godine

Slika 7. Srednje dnevne vrijednosti globalnog Sunčevog zračenja na postaji Puntijarka za razdoblje od 1959. do 2004. godine

U radu su korišteni i podaci postaje Puntijarka o naoblaci, te insolaciji. Niz podataka vezanih za naoblaku dug je 25 godina (1981-2004) i sastoji se od 365 srednjih dnevnih vrijednosti naoblake (u desetinama pokrivenosti neba). Tablica srednjih dnevnih vrijednosti naoblake po danima za spomenuto razdoblje nalazi se u prilogu D. Za razdoblje od 1981. do 2003. godine korišten je i niz podataka o apsolutnoj insolaciji, koji se također sastoji od 365 dnevnih vrijednosti (u satima). Tablica srednjih dnevnih vrijednosti apsolutne inoslacije nalazi se u prilogu C.

U svrhu usporedbe podataka o dozračenoj Sunčevoj energiji na postaji Puntijarka sa podacima opservatorija Zagreb-Grič korišten je tridesetogodišnji (1959-1988) niz mjesečnih suma dozračene Sunčeve energije na opservatoriju Zagreb-Grič.

Iz prethodno navedenih nizova podataka korištenih pri izradi ovog rada, vidljivo je da se pripadni nizovi ne odnose na isto vremensko razdoblje. Kako je cilj na najbolji mogući način (u potpunosti) iskoristiti postojeće podatke, nizovi su korišteni u cijelosti. Zbog toga se u različitim dijelovima ovoga rada analiziraju različita vremenska razdoblja, ovisno o raspoloživim podacima za pojedine meteorološke elemente.

3. ANALIZA MJERENJA

3.1. Godišnji hod

Godišnji hod na slici 8 dobiven je usrednjavanjem 12 mjesečnih vrijednosti svake pojedine godine u zadanom razdoblju. Na osi ordinata prikazani su iznosi srednjih mjesečnih vrijednosti dozračene Sunčeve energije u Jcm⁻². Iz grafa je vidljivo da se iznos dozračene Sunčeve energije povećava od siječnja do srpnja, u kojem se postiže maksimum zračenja, nakon čega taj iznos ponovno pada, sve do prosinca, u kojem ima najnižu vrijednost. Oblik godišnjeg hoda je uobičajen. Iznosi srednjih vrijednosti dozračene Sunčeve energije po mjesecima prikazani su u tablici 1.

Slika 8. Godišnji hod dozračene Sunčeve energije na opservatoriju Puntijarka za razdoblje od 1959. do 2004. godine

1	2	3	4	5	6
1,18	1,70	2,86	3,80	5,10	5,33
7	8	9	10	11	12
5,78	4,92	3,66	2,42	1,32	0,97
	1,18 7 5,78	1 2 1,18 1,70 7 8 5,78 4,92	1 2 3 1,18 1,70 2,86 7 8 9 5,78 4,92 3,66	1 2 3 4 1,18 1,70 2,86 3,80 7 8 9 10 5,78 4,92 3,66 2,42	1 2 3 4 5 1,18 1,70 2,86 3,80 5,10 7 8 9 10 11 5,78 4,92 3,66 2,42 1,32

Tablica 1. Srednje mjesečne vrijednosti dozračene Sunčeve energije na postaji Puntijarka za razdoblje od 1959. do 2004. godine

Nadalje, godišnji hod dozračene Sunčeve energije za postaju Puntijarka uspoređen je s godišnjim hodom opservatorija Zagreb-Grič (slika 9). Korišteni su podaci srednjih mjesečnih suma za opservatorij Zagreb-Grič, za razdoblje od 1959. do 1988. godine (Penzar i sur., 1992). Kako je postaja Puntijarka smještena na višoj nadmorskoj visini (998 metara nadmorske visine) od opservatorija Zagreb-Grič (159 metara nadmorske visine) očekivano je kako će iznosi globalnog Sunčevog zračenja na Puntijarki biti veći zbog manje apsorpcije i gubitaka pri prolasku Sunčevih zraka kroz atmosferu. No, suprotno očekivanju, veće mjesečne sume dozračene Sunčeve energije, u svim mjesecima osim u siječnju, studenom i prosincu, izmjerene su na postaji Zagreb-Grič. Također, najveće razlike u mjesečnim sumama postignute su u ljetnim mjesecima, dok su u zimskim mjesecima te razlike najmanje. Mogući uzrok većih vrijednosti izmjerenih na opservatoriju Zagreb-Grič su razlike u lokalnim uvjetima instalacije mjernih instrumenata. Instrument na postaji Puntijarka nalazi se na visini od 10 m iznad tla, dok se instrument na opservatoriju Zagreb-Grič nalazi na visini od 18 m iznad tla. Kod opservatorija Zagreb-Grič horizont je slobodan tijekom cijele godine i znatno se razlikuje od horizonta postaje Puntijarka koji je uvelike uvjetovan okolnom šumskom vegetacijom.

Za pripadna dva godišnja hoda izračunat je koeficijent korelacije čiji je iznos jednak 0,9985, dakle korelacija između nizova gotovo je idealna. Signifikantnost koeficijenta korelacije utvrđena je t-testom. Koeficijent korelacije značajan je na razini signifikantnosti $\alpha = 0,05$.

Slika 9. Godišnji hodovi dozračene Sunčeve energije na postaji Puntijarka i opservatoriju Zagreb-Grič za razdoblje od 1959. do 1988. godine

Na slici 10 prikazani su, usporedbe radi, godišnji hodovi odabranih višegodišnjih kraćih razdoblja zajedno sa godišnjim hodom cjelokupnog razdoblja. Kod prvog razdoblja (1959-1968) broj mjerenja je uvelike smanjen zbog velikog broja sati u kojima instrument nije radio (ukupno 16358). Kod drugog (1969-1978) i četvrtog (1989-1998) razdoblja ukupan broj mjerenja po svakoj godini je 5840 (ukupno 58400), te nema nedostajućih podataka. Kod trećeg razdoblja (1979-1988) broj nedostajućih podataka je 129, dok je kod petog razdoblja (1999-2004) nedostajućih podataka 198.

Godišnji hodovi svih razdoblja karakterističnog su (zvonolikog) oblika s trendom rasta u prvom dijelu, odnosno pada u drugom dijelu godine. Srednje mjesečne sume prva dva razdoblja niže su od srednjih suma cjelokupnog razdoblja, dok su za treće, četvrto i peto razdoblje više. Dakle, vidljiv je, kao što je ranije i spomenuto, trend porasta dozračene Sunčeve energije. Razlike u sumama između pojedinih razdoblja veće su u ljetnim nego u zimskim mjesecima.

Zanimljivo je primijetiti kako se jedino kod razdoblja od 1999. do 2004. godine maksimum zračenja javlja u lipnju, dok se kod svih ostalih razdoblja on javlja u srpnju. U tablici 2. nalaze se iznosi srednjih mjesečnih vrijednosti dozračene Sunčeve energije po razdobljima.

Slika 10. Godišnji hodovi dozračene Sunčeve energije na postaji Puntijarka za četiri desetogodišnja (1959-1998) te jedno šestogodišnje (1999-2004) razdoblje

	Mjesec/Godine	1	2	3	4	5	6
	1959-1968	0,97	1,50	2,48	3,24	4,00	4,39
ena ija m ⁻²⁻ m	1969-1978	1,03	1,41	2,66	3,39	4,37	4,57
zrač lerg) ⁴ Jc	1979-1988	1,37	1,83	2,87	4,25	5,45	5,79
en en x1(1989-1998	1,21	1,94	3,06	4,00	5,55	5,61
	1999-2004	1,28	1,84	3,26	3,94	5,96	6,16
	Mjesec/Godine	7	8	9	10	11	12
	1959-1968	5,15	4,29	3,31	2,33	1,07	0,81
ena ija m ⁻²⁻	1969-1978	4,89	3,83	2,98	2,22	1,30	0,95
Dozrač energ x10 ⁴ Jc	1979-1988	6,41	5,48	4,39	2,66	1,61	1,09
	1989-1998	6,30	5,48	3,77	2,37	1,30	1,00
	1999-2004	5,98	5,48	3,78	2,52	1,27	0,95

Tablica 2. Srednje mjesečne vrijednosti dozračene Sunčeve energije na postaji Puntijarka za višegodišnja kraća razdoblja

Za opservatorij Zagreb-Grič također je napravljena usporedba godišnjih hodova tri desetgodišnja razdoblja s cjelokupnim razdobljem. Korišteni su podaci srednjih mjesečnih suma za opservatorij Zagreb-Grič, za razdoblje od 1959. do 1988. godine (Penzar i sur., 1992). Vidljivo je (slika 11) kako se svi hodovi gotovo podudaraju, s manjim odstupanjima u siječnju i prosincu, te svibnju i lipnju drugog (1969-1978) i trećeg (1979-1988) razdoblja.

Slika 11. Godišnji hodovi dozračene Sunčeve energije na opservatoriju Zagreb-Grič za tri desetogodišnja (1959-1988) razdoblja

3.1.1. Usporedba s opservatorijem Zagreb-Grič

Iz srednjih mjesečnih suma za opservatorij Zagreb-Grič, za razdoblje od 1959. do 1988. godine (Penzar i sur., 1992), napravljene su usporedbe s godišnjim hodovima postaje Puntijarka za tri desetgodišnja razdoblja, te su izračunati pripadni koeficijenti korelacije (tablica 3). Za sva tri promatrana razdoblja koeficijenti korelacije vrlo su visoki. Signifikantnost koeficijenata korelacije utvrđena je t-testom. Koeficijenti korelacije značajni su na razini signifikantnosti $\alpha = 0,05$. Iz prikaza usporedbi godišnjih hodova (slika 12a-12c) vidljivo je da su veći iznosi dozračene Sunčeve energije u prva dva razdoblja izmjereni na opservatoriju Zagreb-Grič, dok su kod trećeg razdoblja srednje mjesečne sume podjednakih iznosa, s nešto većim vrijednostima na postaji Puntijarka u zimskim mjesecima. Gledajući po sezonama, u svim razdobljima razlike u iznosima najveće su u ljetnim, a najmanje u zimskim mjesecima. Mogući uzrok ovakvih razdioba su razlike u lokalnim uvjetima instalacije mjernih instrumenata.

Tablica 3. Koeficijenti korelacije između godišnjih hodova dozračene Sunčeve energije na postaji Puntijarka i opservatoriju Zagreb-Grič

Razdoblje	1959-1968	1969-1978	1979-1988
Koeficijent korelacije	0,9912	0,9969	0,9981

Slika 12a. Godišnji hodovi dozračene Sunčeve energije na postaji Puntijarka i opservatoriju Zagreb-Grič za razdoblje od 1959. do 1968. godine

Slika 12b. Godišnji hodovi dozračene Sunčeve energije na postaji Puntijarka i opservatoriju Zagreb-Grič za razdoblje od 1969. do 1978. godine

Slika 12c. Godišnji hodovi dozračene Sunčeve energije na postaji Puntijarka i opservatoriju Zagreb-Grič za razdoblje od 1979. do 1988. godine

3.1.2. Godišnji hod prema razredima naoblake

Iz podataka za srednju dnevnu naoblaku u razdoblju od 1981. do 2004. godine napravljeni su godišnji hodovi dozračene Sunčeve energije po stupnjevima naoblake za spomenuto razdoblje. Naoblaka je definirana kao količina oblaka koja pokriva nebo, u klimatologiji izražena u desetinama pokrivenosti neba. Prema stupnju naoblake, dani su grupirani u 3 razreda; vedri dani (0 - 3 desetine neba), poluoblačni dani (4 do 7 desetina neba) i oblačni dani (8 do 10 desetina neba). Godišnji hodovi uobičajenog su oblika, a najviše srednje mjesečne vrijednosti postižu se u vedrim danima, dok se najniže vrijednosti, očekivano, postižu u oblačnim danima.

Slika 13. Godišnji hodovi dozračene Sunčeve energije na postaji Puntijarka za vrijeme vedrih, poluoblačnih i oblačnih dana za razdoblje od 1981. do 2004. godine

Iznosi srednjih mjesečnih vrijednosti dozračene Sunčeve energije na postaji Puntijarka prema razredima naoblake navedeni su u tablici 4.

	Mjesec / Stupanj naoblake	1	2	3	4	5	6
Dozračena	0 - 3	1,90	2,76	4,39	5,99	7,42	7,66
energija	4 - 7	1,43	1,94	3,28	4,48	5,67	7,42
[x10 ⁴ Jcm ⁻²]	8 - 10	0,66	0,97	1,80	2,40	3,09	3,40
	Mjesec / Stupanj naoblake	7	8	9	10	11	12
Dozračena	0 - 3	7,64	6,62	5,20	3,56	2,16	1,65
energija [x10 ⁴ Jcm ⁻²]	4 - 7	6,00	5,17	3,97	2,53	1,58	1,10
	8 - 10	3,65	3,11	2,25	1,36	0,85	0,53

Tablica 4. Srednje mjesečne vrijednosti dozračene Sunčeve energije na postaji Puntijarka prema razredima naoblake u razdoblju od 1981. do 2004. godine

3.2. Dnevni hod

Dnevni hod na slici 14 dobiven je usrednjavanjem 16 satnih vrijednosti dozračene Sunčeve energije kroz pojedinu godinu cijelog razdoblja. Vidljivo je da je krivulja dnevnog hoda vrlo bliska teorijskoj krivulji, odnosno da je dnevni hod uobičajen. Sastoji se od uzlazne grane u prvom (jutarnjem) dijelu dana, te silazne grane u drugom (poslijepodnevnom) dijelu dana. Maksimum se postiže u 12 h. Iznosi srednjih satnih vrijednosti dozračene Sunčeve energije navedeni su u tablici 5.

Slika 14. Dnevni hod dozračene Sunčeve energije na postaji Puntijarka za razdoblje od 1959. do 2004. godine

Tablica 5. Srednje satne vrijednosti dozračene Sunčeve energije na postaji Puntijarka u razdoblju od 1959. do 2004. godine

Doba dana (h)	5	6	7	8	9	10	11	12
Dozračena energija (Jcm ⁻²)	0,72	6,95	24,12	51,36	83,64	112,90	132,30	140,96
Doba dana (h)	13	14	15	16	17	18	19	20
Dozračena energija (Jcm ⁻²)	138,35	125,24	102,68	74,70	46,08	20,59	5,75	0,67

3.2.1. Dnevni hod po sezonama

Promatrani su i srednji dnevni hodovi po sezonama, odnosno godišnjim dobima. U ovu svrhu podaci su grupirani u 4 grupe, svaka u trajanju od 3 mjeseca. Zimski mjeseci su: prosinac, siječanj i veljača, proljetni su ožujak, travanj i svibanj, ljetni su lipanj, srpanj i kolovoz, a jesenski rujan, listopad i studeni. Iznosi srednjih satnih vrijednosti po sezonama navedeni su u tablici 6., a pripadajući graf prikazan je na slici 15. Vidljivo je da su dnevne količine dozračene Sunčeve energije najmanje zimi, zatim da rastu od proljeća do ljeta, kada poprimaju najveće vrijednosti, da bi se u jesen ponovno smanjile. Dnevni maksimum zimi se postiže u 13 h, dok se u proljeće, ljeto i jesen postiže u 12 h. Iznosi dnevnih maksimuma kreću se od 73,54 Jcm⁻² zimi, do 201,60 Jcm⁻² ljeti. Također je jasno vidljiv utjecaj visine Sunca na iznos dozračene Sunčeve energije. U ljetnim mjesecima, kada je Sunce na većim visinama iznad horizonta, odnosno kada je veća dnevna promjena visine Sunca, krivulja dnevnog hoda strmija je nego u zimskim.

Slika 15. Dnevni hodovi dozračene Sunčeve energije na postaji Puntijarka po sezonama za razdoblje od 1959. do 2004. godine

	Doba dana [h] /sezona	5	6	7	8	9	10	11	12
_	Zima	0,00	0,00	0,15	3,69	19,30	42,97	61,79	73,03
nčena gija n²]	Proljeće	0,61	8,00	31,36	67,77	105,24	135,60	155,54	162,37
Dozra ener [Jcr	Ljeto	2,30	19,43	57,49	103,54	145,98	177,64	194,89	201,60
Ι	Jesen	0,00	0,48	6,97	27,00	57,51	87,26	107,84	117,38
	Doba dana [h] /sezona	13	14	15	16	17	18	19	20
_	Zima	73,54	61,93	42,41	19,26	4,38	0,29	0,01	0,00
nčens gija n²]	Proljeće	158,76	144,78	121,99	93,66	61,06	26,89	6,42	0,50
ozra ener [Jcr	Ljeto	196,86	185,32	161,98	132,60	94,93	50,02	16,37	2,22
Ι	Jesen	114,96	99,81	75,84	46,80	21,00	4,88	0,32	0,00

Tablica 6. Srednje satne vrijednosti dozračene Sunčeve energije po sezonama za razdoblje od 1959. do 2004. godine

4. VEZA IZMEĐU GLOBALNOG SUNČEVOG ZRAČENJA I ODREĐENIH METEOROLOŠKIH ELEMENATA

4.1. Veza između globalnog Sunčevog zračenja i naoblake

Povezanost naoblake s drugim meteorološkim elementima ne može se precizno formulirati. Uzrok tome je što je veza između stupnja naoblake s ostalim meteorološkim elementima vrlo zamršena, jer ona ovisi o svima, stoga je vrlo teško iz promjena u naoblaci izdvojiti i izolirati komponentu koja bi se mogla povezati s promjenama samo jednog meteorološkog elementa. Međutim, ne treba ispustiti iz vida da veza ipak postoji.

Utjecaj naoblake na globalno Sunčevo zračenje specifičnog je karaktera. Tako na primjer djelomično pokriveno nebo i promjenjiva konvektivna naoblaka ne moraju nužno smanjivati globalno zračenje. Naprotiv, u određenom položaju na nebu s obzirom na refleksiju Sunčevih zraka takvi oblaci mogu dovesti do povećanja dozračene Sunčeve energije na instrument. Zbog toga se redovito događa da se, u prosjeku, maksimalne vrijednosti globalnog zračenja javljaju baš oko podneva u svim mjesecima, dakle čak i onda kada i naoblaka ima najveće vrijednosti. Ipak, dnevni hod naoblake očituje se u dnevnom hodu globalne radijacije. U hladnom dijelu godine više zračenja dolazi do tla poslije podne, nego prijepodne. U toplom dijelu godine je obratno. Utjecaj naoblake na godišnji hod zračenja najbolje je vidljiv na relativnoj radijaciji (omjer globalnog zračenja na tlu i globalnog zračenja na vrhu atmosfere). Ona ima najveće vrijednosti u kolovozu kada je najvedrije, a najmanje vrijednosti u prosincu zbog velike naoblake i male visine Sunca (Penzar, 1977).

Na slici 19 prikazani su godišnji hodovi dozračene Sunčeve energije i naoblake (srednje mjesečne vrijednosti) na postaji Puntijarka u razdoblju od 1981. do 2004. godine. Izračunat je i koeficijent korelacije koji iznosi -0,7559. Negativna vrijednost koeficijenta korelacije ukazuje na činjenicu da povećanje naoblake smanjuje količinu dozračene Sunčeve energije, i obratno. Signifikantnost koeficijenta korelacije utvrđena je t-testom te je koeficijent korelacije značajan na razini signifikantnosti $\alpha = 0,05$.

Iz ovakvog prikaza godišnjih hodova (slika 16) najlakše je objasniti jednu vrlo zanimljivu činjenicu, a to je, da se, usprkos maksimalnoj vrijednosti ekstraterestričkog zračenja u lipnju, najviše vrijednosti dozračene Sunčeve energije postižu u srpnju. Objašnjenje naime leži upravo u povezanosti naoblake i Sunčevog zračenja. Ako pogledamo godišnji hod naoblake,

vidljivo je da je prosječna lipanjska naoblaka veća od one srpanjske, što za posljedicu ima gore spomenut maksimum zračenja u srpnju, umjesto u lipnju.

Slika 16. Godišnji hod dozračene Sunčeve energije i naoblake na postaji Puntijarka za razdoblje od 1981. do 2004. godine

4.2. Veza između globalnog Sunčevog zračenja i insolacije

Pod insolacijom se podrazumijeva duljina vremenskog intervala (u satima) u kojem podloga prima direktnu Sunčevu radijaciju. Podaci o insolaciji, kao što će kasnije biti i pokazano, mogu poslužiti za procjenu globalne radijacije, ako se ona neposredno ne mjeri. Vrijednost insolacije i globalne radijacije međusobno su tijesno povezane (Penzar, 1977).

Najprije ćemo promotriti koeficijent korelacije između mjesečnih vrijednosti apsolutne insolacije (S) i globalnog zračenja (G). Apsolutna insolacija dobiva se pomoću mjernih instrumenata - heliografa. Poznavanje insolacije korisno je za upoznavanje klime. Zajedno sa Sunčevom radijacijom, insolacija ukazuje na dnevnu rasvjetu, govori o direktnom biološkom djelovanju radijacijske energije i o zagrijavanju podloge, te diktira bilancu topline u tlu. (Penzar, 1977)

Za promatrano razdoblje (1981-2003) dobivene su slijedeće vrijednosti koeficijenta korelacije između apsolutne insolacije (S) i globalnog zračenja (G) mjerenih na postaji Puntijarka:

Tablica 7. Koeficijent korelacije između globalnog zračenja (G) i apsolutne insolacije (S) mjerenih na postaji Puntijarka u razdoblju od 1981. do 2003. godine

Mjesec	1	2	3	4	5	6
Koeficijent korelacije	0,7142	0,8200	0,6493	0,9044	0,8099	0,9004
Mjesec	7	8	9	10	11	12
Koeficijent korelacije	0,8540	0,8810	0,6725	0,8589	0,8468	0,7225

Prosječna vrijednost koeficijenta korelacije iznosi 0,8025. Možemo dakle reći da je veza između tih dviju veličina dosta dobra. Značajnija odstupanja od prosječnog koeficijenta korelacije uočena su u ožujku i rujnu. Signifikantnost koeficijenata korelacije utvrđena je t-testom te su svi izračunati koeficijenti korelacije značajni na razini signifikantnosti $\alpha = 0,05$.

Pripadni koeficijenti korelacije za opservatorij Zagreb-Grič izračunati su iz desetgodišnjeg (1949-1958) niza podataka. Zanimljivo je da je iznos prosječne vrijednosti koeficijenta korelacije je 0,8000 (Penzar, 1959).

Nadalje, promotrit ćemo koeficijent korelacije između mjesečnih vrijednosti globalnog zračenja (G) i relativne insolacije (S/S_0). Naime, kod ispitivanja odnosa između insolacije i drugih elemenata, kao što su naoblaka ili globalno zračenje, obično se koristi relativna insolacija, tj. omjer apsolutne (S) i maksimalne moguće (potencijalne) insolacije (S_0). Maksimalna moguća insolacija teorijska je veličina, a dobije se na temelju deklinacije Sunca (koja određuje doba godine), geografske širine mjesta i srednje atmosferske refrakcije uz pretpostavku potpuno vedrog vremena. Razmatranje potencijalne insolacije (S_0) korisno je iz dva razloga. U prvom redu, ono karakterizira u izvjesnoj mjeri solarnu klimu dotičnog mjesta, a zatim zajedno sa apsolutnom insolacijom omogućuje izračunavanje relativne insolacije, odnosno ukazuje na djelovanje naoblake. (Penzar, 1977)

Mjesec	1	2	3	4	5	6
Koeficijent korelacije	0,6278	0,6970	0,4992	0,8481	0,7198	0,8976
Mjesec	7	8	9	10	11	12
Koeficijent korelacije	0,8063	0,7894	0,4499	0,7923	0,7887	0,7113

Tablica 8. Koeficijent korelacije između globalnog Sunčevog zračenja (G) i relativne insolacije (S/S_0) mjerenih na postaji Puntijarka u razdoblju od 1981. do 2003. godine

Mjesečni iznosi koeficijenata korelacije između globalnog zračenja (G) i relativne insolacije (S/S_0) za postaju Puntijarka dani su u tablici 8. Prosječna vrijednost koeficijenta korelacije između navedenih veličina iznosi 0,7190. Kao i kod koeficijenta korelacije između globalnog sunčevog zračenja (G) i apsolutne insolacije (S), i u ovom slučaju vrijednosti koeficijenata značajno odstupaju od prosječne vrijednosti u ožujku i rujnu. Signifikantnost koeficijenata korelacije utvrđena je t-testom. Svi koeficijenti korelacije značajni na razini signifikantnosti $\alpha = 0,05$.

Pripadni koeficijenti korelacije za opservatorij Zagreb-Grič izračunati su iz desetgodišnjeg (1949-1958) niza podataka. Dobiveni iznos prosječne vrijednosti koeficijenta korelacije je 0,7300 (Penzar, 1959).

5. MODELIRANJE GLOBALNOG SUNČEVOG ZRAČENJA POMOĆU EMPIRIJSKIH MODELA

Sunčeva energija danas je jedan od najvažnijih alternativnih izvora energije. Točno poznavanje raspodjele Sunčevog zračenja na određenom mjestu, stoga je od velikog značenja za razvitak pogona za njegovo iskorištavanje. Nažalost, za mnoge lokacije, mjerenja Sunčevog zračenja vrlo su teško izvediva, kako zbog dosta skupe mjerne opreme, tako i zbog ljudskih resursa neophodnih za mjerenja. Ove su činjenice dovele do sve većeg broja modela za procjenu Sunčevog zračenja na temelju različitih meteoroloških elemenata.

5.1. Empirijski modeli

Početkom dvadesetog stoljeća, Ångström (1924) je dao empirijski model pomoću kojeg se, na temelju podataka o insolaciji i ekstraterestričkom Sunčevom ozračenju na vrhu atmosfere, mogla procijeniti prosječna količina dozračene Sunčeve energije na horizontalnu plohu pri tlu:

$$\langle G \rangle = \langle G_0 \rangle (a + b \langle S / S_0 \rangle), \tag{1}$$

gdje je:

- (G) prosječna mjesečna količina dozračene Sunčeve energije pri površini Zemlje (na horizontalnu plohu)
- $\langle G_0 \rangle$ prosječna mjesečna količina ekstraterestričke Sunčeve energije na vrhu atmosfere (na horizontalnu plohu)
- S heliografom određena insolacija
- *S*₀ maksimalna moguća insolacija
- *a* i *b* regresijski parametri dobiveni linearnom regresijskom analizom velikog broja empirijskih podataka dnevnog zračenja i insolacije.

Rietveldova (1978) istraživanja pokazala su da i sami regresijski parametri a i b u relacijama tipa (1) linearno ovise o relativnoj insolaciji, pa se na taj način ovisnost predstavlja u obliku kvadratne jednadžbe, s dodatnim regresijskim parametrom c':

$$\langle G \rangle = \langle G_0 \rangle (a' + b' \langle S/S_0 \rangle + c' \langle S/S_0 \rangle^2).$$
⁽²⁾

Newland (1989) je na temelju podataka za područje Južne Kine (portugalska kolonija Macao) našao nelinearnu vezu tipa:

$$\langle G \rangle = \langle G_0 \rangle (a'' + b'' \langle S/S_0 \rangle + c'' \log \langle S/S_0 \rangle^2), \tag{3}$$

a Dogniaux i Lemoine (1983) uvode i ovisnost o zemljopisnoj širini φ (izraženoj u stupnjevima), te na temelju podataka 116 postaja između 4°52'N i 60°8'N izvode relaciju:

$$\langle G \rangle = \langle G_0 \rangle \{ (0,37022 - 0,00313\varphi) + (0,32029 + 0,00506\varphi) \langle S/S_0 \rangle \}.$$
(4)

Na izvornom nizu podataka bit će evaluirana spomenuta četiri modela (jednadžbe (1)-(4)).

Mjesečne prosječne vrijednosti satnog ukupnog Sunčevog ozračenja, mogu se odrediti, u uvjetima prosječne prozirnosti atmosfere i potpuno vedrog neba, pomoću poznate visine Sunca γ , nad horizontom. Paltridge i Platt (1976) su na temelju mjerenih satnih vrijednosti ukupnog Sunčevog ozračenja te izračunate visine Sunca u 30. minuti pripadnoga satnog intervala dobili slijedeću opću relaciju:

$$g(\gamma) = g_0 + g_1 \sin\gamma + g_2 (\sin\gamma)^{1/2}$$
(5)

s regresijskom konstantom g_0 i parametrima g_1 i g_2 koji ovise o lokalitetu i promatranom mjesecu. Penzar i Penzar (1991) su primjenili istu relaciju na podatke opservatorija Zagreb-Grič iz razdoblja 1960-1985 i dobili regresijsku konstantu i parametre za svaki pojedini mjesec.

Na područje Hrvatske primijenjen je verificirani model Nikolov i Zeller (1992) za procjenu mjesečnog i godišnjeg srednjeg dnevnog ukupnog, raspršenog i izravnog Sunčevog ozračenja (Marki, 1999).

5.2. Statističke metode evaluacije modela

U svrhu evaluacije navedenih empirijskih modela korištene su slijedeće statističke mjere učinka: koeficijent korelacije (*r*), pristranost (*BIAS*), srednja apsolutna pogreška (*MAE*), srednja kvadratna pogreška (*MSE*), korijen srednje kvadratne pogreške (*RMSE*). (Wilmot, 1982).

$$r = \frac{n \sum o_i M_i - \sum o_i \sum M_i}{\sqrt{n \sum o_i^2 - (\sum o_i)^2} \sqrt{n \sum M_i^2 - (\sum M_i)^2}}$$
(6)

$$BIAS = \left(\frac{\bar{M} - \bar{O}}{\bar{O}}\right) \cdot 100\% \tag{7}$$

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |O_i - M_i|$$
(8)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (M_i - O_i)^2$$
(9)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (M_i - O_i)^2}$$
(10)

gdje su M modelirane vrijednosti, a O izmjerene vrijednosti.

Koeficijent korelacije (r), pokazuje linearnu vezu između dviju varijabli i ne ukazuje na moguću nelinearnu povezanost između podataka. Svi koeficijenti korelacije testirani su ttestom na nivou signifikantnosti $\alpha = 0,05$. Pristranost (*BIAS*) nam govori da li su modelirane vrijednosti manje ili veće u odnosu na izmjerene. *MAE* je mjera za prosječnu veličinu pogreške, a *RMSE* i *MSE* su mjere razlike između modeliranih i izmjerenih vrijednosti. Također, za svaki pojedini model izračunato je i apsolutno maksimalno odstupanje koje govori koliki je iznos najveće razlike između modeliranih i izmjerenih vrijednosti.

Model bi, dakle, imao najbolje performanse za veliki koeficijent korelacije, malu pristranost, male *MAE*, *MSE* i *RMSE*, te što manje maksimalno apsolutno odstupanje.

5.3. Rezultati i rasprava

Analizirani su ranije navedeni empirijski modeli kojima se na temelju podataka o insolaciji te ekstraterestričkih vrijednosti Sunčevog ozračenja, procjenjuje prosječno globalno Sunčevo zračenje (jednadžbe (1) - (4)). Za evaluaciju modela upotrijebljeni su podaci izmjereni na postaji Puntijarka za razdoblje od 1981. do 2000. godine. Modeli su evaluirani na način da je na početku spomenuto razdoblje podijeljeno na dva desetgodišnja razdoblja. Izračunati su regresijski parametri modela pomoću jednog razdoblja, te je model s tako dobivenim iznosima regresijskih parametara primijenjen na drugo razdoblje čime su dobivene modelirane vrijednosti mjesečnih srednjaka dnevnog globalnog zračenja. Modelirane vrijednosti su

uspoređene sa stvarnim (izmjerenim) vrijednostima. Isti postupak ponovljen je za oba razdoblja i za sve modele. Za sve modele također su izračunate ranije navedene statističke mjere učinka.

Primjena Ångström-ove (1) jednadžbe na prvo odabrano razdoblje (1981-1990) dala je slijedeće iznose koeficijenata regresije: a = 0,14 i b = 0,68, dok su za drugo (1991-2000) razdoblje dobivene vrijednosti a = 0,09 i b = 0,83.

Regresijski parametri za opservatorij Zagreb-Grič izračunati na temelju ranije spominjanog desetgodišnjeg niza podataka (1949-1958) su slijedeći: a = 0,16 i b = 0,65 (Penzar, 1959).

Na slikama 17a i 17b prikazane su modelirane (crveno) i izmjerene (plavo) vrijednosti mjesečnih srednjaka dnevne globalne radijacije za odabrana razdoblja. Maksimalno apsolutno odstupanje modeliranih od izmjerenih vrijednosti za prvo razdoblje iznosi 75,79 Jcm⁻², dok za drugo razdoblje iznosi 191,33 Jcm⁻². Iz prikaza modeliranih i izmjerenih vrijednosti za prvo razdoblje je vidljivo kako modelirane vrijednosti dosta dobro prate izmjerene vrijednosti. Manja odstupanja vidljiva su u lipnju, gdje model podcjenjuje vrijednosti, te u srpnju, kolovozu, rujnu i listopadu, gdje model daje nešto veće vrijednosti od izmjerenih. U drugom razdoblju odstupanja su nešto veća, osobito u ljetnim mjesecima, gdje model daje niže vrijednosti od izmjerenih, dok u veljači i ožujku daje više vrijednosti od izmjerenih. Kod oba razdoblja maksimalne vrijednosti i za modelirani i za izmjereni niz postižu se u srpnju, dok se minimalne postižu u prosincu.

Razdoblje	r	BIAS	MAE	MSE	RMSE
1981-1990	0,9982	1,37	36,98	1819,70	42,66
1991-2000	0,9952	-1,62	62,88	7353,40	85,75

Tablica 9. Statističke mjere učinka Ångström-ovog modela

Slika 17a. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1981. do 1990. godine Ångströmovim modelom

Slika 17b. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1991. do 2000. godine Ångströmovim modelom

Primjenom Rietveld-ove (2) ovisnosti na prvo razdoblje dobivene su slijedeće vrijednosti koeficijenata regresije: a' = 0,18, b' = 0,52 i c' = 0,19, dok su za drugo razdoblje dobivene vrijednosti: a' = 0,13, b' = 0,58 i c' = 0,32.

Regresijski parametri za opservatorij Zagreb-Grič izračunati na temelju desetgodišnjeg niza podataka (1949-1958) su slijedeći: a' = 0.14, b' = 0.88 i c' = 0.33 (Penzar, 1959).

Modelirane vrijednosti Rietveldov-og modela prikazane su na slikama 18a i 18b. Maksimalno apsolutno odstupanje modeliranih od izmjerenih vrijednosti za prvo razdoblje iznosi 99,85 Jcm⁻², dok za drugo razdoblje iznosi 195,23 Jcm⁻². Slično kao i kod Ångström-ovog modela, za prvo razdoblje daje niže vrijednosti od izmjerenih za lipanj, dok za srpanj, kolovoz, rujan i listopad daje više vrijednosti od izmjerenih. U drugom razdoblju odstupanja su ponovno veća nego u prvom. Više vrijednosti od izmjerenih javljaju se u veljači i ožujku, dok se niže javljaju u svibnju, lipnju, srpnju i kolovozu. I kod ovog modela za oba razdoblja maksimalne vrijednosti i za modelirani i za izmjereni niz postižu se u srpnju, dok se minimalne postižu u prosincu.

Razdoblje	r	BIAS	MAE	MSE	RMSE
1981-1990	0,9974	1,83	43,62	2936,08	54,19
1991-2000	0,9952	-1,70	64,30	7664,76	87,55

Tablica 10. Statističke mjere učinka Rietveld-ovog modela

Slika 18a. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1981. do 1990. godine Rietveldovim modelom

Slika 18b. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1991. do 2000. godine Rietveldovim modelom

Regresijski koeficijenti Newland-ovog (3) modela za prvo razdoblje imaju slijedeće iznose: a'' = 0,02, b'' = 0,84 i c'' = -0,08, dok za drugo razdoblje iznose redom: a'' = -0,14, b'' = 1.13 i c'' = -0,13. Maksimalno apsolutno odstupanje modeliranih od izmjerenih vrijednosti za ovaj model kod prvog razdoblja iznosi 100,64 Jcm⁻², dok kod drugog iznosi 195,57 Jcm⁻². Odnosi između modeliranih i izmjerenih vrijednosti te položaji minimalnih i maksimalnih vrijednosti kod oba razdoblja isti su kao i kod prethodna dva modela (slike 19a i 19b).

Razdoblje	r	BIAS	MAE	MSE	RMSE
1981-1990	0,9974	1,82	43,86	2989,35	54,68
1991-2000	0,9953	-1,68	64,38	7661,73	87,53

Tablica 11. Statističke mjere učinka Newland-ovog modela

Slika 19a. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1981. do 1990. godine Newlandovim modelom

Slika 19b. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1991. do 2000. godine Newlandovim modelom

Nešto drugačiji model od prethodna tri jest model Dogniaux i Lemoine (4). Model je primijenjen na oba razdoblja za geografsku širinu same postaje Puntijarka (45°55'N). Maksimalno apsolutno odstupanje izmjerenih i modeliranih vrijednosti za prvo razdoblje iznosi 242,40 Jcm⁻², dok za drugo razdoblje iznosi 291,90 Jcm⁻². Pristranost modela kod oba razdoblja je pozitivna, pa kao što je i vidljivo iz prikaza, model za sve promatrane mjesečne vrijednosti daje više vrijednosti od izmjerenih. Koeficijenti korelacije ponovno su dosta visoki i ukazuju na dobro slaganje promatranih nizova (tablica 12.).

Tablica 12. Statističke mjere učinka Dogniaux i Lemoine-ovog modela

Razdoblje	r	BIAS	MAE	MSE	RMSE	
1981-1990	0,9954	12,20	148,01	25326,76	159,14	
1991-2000	0,9945	15,38	176,35	35324,21	187,95	

Slika 20a. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1981. do 1990. godine Dogniaux i Lemoine-ovim modelom

Slika 20b. Izmjerene (plavo) i modelirane (crveno) vrijednosti mjesečnih srednjaka dnevne globalne radijacije na postaji Puntijarka za razdoblje od 1991. do 2000. godine Dogniaux i Lemoine-ovim modelom

Usporedbom sva četiri navedena modela vidljivo je da podatke postaje Puntijarka najbolje opisuje prvi (Ångström-ov) model. Na to upućuju najveći koeficijenti korelacije, najmanja pristranost, te najmanji iznosi *MAE, MSE i RMSE.* Kod promatranih razdoblja, nešto veća odstupanja modeliranih od izmjerenih vrijednosti javljaju se u ljetnim mjesecima drugog razdoblja. Rietveld-ov i Newton-ov model daju slične vrijednosti onima modeliranima Ångström-ovim modelom, ali sa nešto većim pogreškama, većom pristranosti i manjim koeficijentima korelacije. Modelirani podaci modelom Dogniaux i Lemoine u oba razdoblja dosta dobro prate izmjerene podatke, ali su iznosi modeliranih vrijednosti veći u odnosu na izmjerene, što pokazuje i veliki iznos pristranosti, i to pozitivnog predznaka.

Najvažniji izvor pogrešaka kod modela je u različitim mogućnostima mjerenja piranometrom i heliografom. Naime, heliografom se mjeri osunčanost iznad unaprijed određenog praga, dok se piranometrom mjeri intenzitet zračenja. Stoga se najtočniji rezultati mogu očekivati pri procjeni srednjih, a ne pojedinačnih dnevnih vrijednosti. S druge strane, blizina prepreka koje zaklanjaju osjetnike instrumenata mogu uzrokovati sistematske pogreške u određivanju inoslacije, kao i ozračenja, a na regresijske parametre u relacijama tipa (1), (2), i (3) imaju učinak kao i povećana naoblaka, naročito u vrijeme izlaska i/ili zalaska Sunca (Marki, 1999).

6. ZAKLJUČAK

Cilj ovoga rada bio je odrediti osnovna obilježja globalnog Sunčevog zračenja izmjerenog na postaji Puntijarka u razdoblju od 1959. do 2004. godine. Na izvornom nizu podataka uočen je trend porasta dozračene Sunčeve energije. Iz analize je vidljivo da su krivulje godišnjeg i dnevnog hoda uobičajenog oblika, te da nemaju većih odstupanja od teorijskih. Pri usporedbi godišnjeg hoda postaje Puntijarka sa godišnjim hodom opservatorija Zagreb-Grič uočeno je da su veći iznosi dozračene Sunčeve energije izmjereni na opservatoriju Zagreb-Grič, što nije u skladu s pretpostavkom da bi, zbog manje apsorpcije (kao posljedice veće nadmorske visine) veći iznosi trebali biti mjereni na postaji Puntijarka. Pri ispitivanju veze između globalnog Sunčevog zračenja i naoblake, te insolacije, pokazano je da su spomenuti meteorološki elementi visoko korelirani. Evaluirana su četiri empirijska modela kojima se pomoću podataka o insolaciji procjenjuje dozračena Sunčeva energija, te je uočeno da podatke postaje Puntijarka najbolje opisuje Ångström-ov model.

Kako je izvorni niz podataka nehomogen u prvih šest (1959-1964), kao i u 2005., 2006. i 2009. godini, cilj je modeliranjem popuniti nedostajuće podatke, što u ovom radu nije bilo moguće ostvariti zbog nedostajućih podataka o trajanju insolacije za spomenuta vremenska razdoblja. Stoga bi u tu svrhu bilo potrebno upotrijebiti model koji za ulazne parametre ima neki od meteoroloških elemenata sa homogenim nizom podataka za određena razdoblja.

Literatura

ÅNGSTRÖM, A., 1924. Solar and terrestrial radiation. Quart. J. Roy. Meteor. Soc., 50, 121.

- DOGINAUX, R. and M. LEMOINE, 1983. Classification of radiation site sin terms of different indices of atmospheric transparency. Solar Energy Research and Development in the European Community, Series F, Vol. 2, D. Reidel Publishing Company, Dordrecht, Holland.
- GOLDBERG, J., 1931. Godišnji i dnevni period oblačnosti u Zagrebu. Jugoslavenska akademija znanosti i umjetnosti u Zagrebu. Tisak nadbiskupijske tiskare, Zagreb.
- GOLDBERG, J., 1933. Trajanje insolacije u Zagrebu na osnovi 36-godišnjih registracija. Jugoslavenska akademija znanosti i umjetnosti u Zagrebu. Tisak nadbiskupijske tiskare, Zagreb, 120-159.
- MARKI, A., 1999. Modeliranje srednjeg dnevnog hoda komponenata dozračene Sunčeve energije. Disertacija, Zagreb, 3-6.
- NEWLAND, F.J., 1989. A study of solar radiation models for the coastal region of south China. Solar Energy, 43, 227-235.
- PENZAR, B. i I. PENZAR, 1959. Raspodjela globalne radijacije nad Jugoslavijom i Jadranskim morem. Hidrografski godišnjak 1959, Hidrografski institut JRM, Split, 151-158.
- PENZAR, I., 1963. Kakva je veza između globalne radijacije i trajanja insolacije u Zagrebu. Vesnik hidrometeorološke službe, Beograd. No.3-4., 1-6.
- PENZAR, I., 1969. Zagreb Grad sa sve manje sunca. Priroda, No.9, 267-290.
- PENZAR, I., 1977. Naoblaka (Prilog poznavanju klime grada Zagreba, I). Geofizički zavod, Zagreb, 81-95.
- PENZAR, I., 1977. Trajanje insolacije (Prilog poznavanju klime grada Zagreba, I). Geofizički zavod, Zagreb, 61-76.

- PENZAR, I., 1982: Proračun Sunčevog zračenja na granici atmosfere u pojasu Jugoslavije. Zbornik radova o M. Milankoviću, SANU Knj. 12, 107-118.
- PENZAR, I. and B. PENZAR, 1991.: Hourly values of solar irradiation in clear skies. Geofizika, 8, 33-42.
- PENZAR, I, J. JURAS and A. MARKI, 1992.: Long-term meteorological measurements at Zagreb: 1862-1990. Geofizika, 9 (Supplement), 26-28.
- RIETVELD, M.R., 1978. A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agric. Meteor., 19, 243.
- WILLMOTT, C. J. 1982. Some comments on the evaluation of model performance, Bulletin of the American Meteorological Society, 63, 1309–1313.

Prilozi

Prilog A. Mjesečne i godišnje sume dozračene Sunčeve energije za postaju Puntijarka u Jcm⁻² (razdoblje od 1959. do 2004. godine)

Prilog B. Srednje satne vrijednosti dozračene Sunčeve energije za postaju Puntijarka u

Jcm⁻²h⁻¹ (razdoblje od 1959. do 2004. godine)

Prilog C: Srednje dnevne vrijednosti insolacije za postaju Puntijarka u satima (razdoblje od 1981. do 2003. godine)

Prilog D: Srednje dnevne vrijednosti naoblake za postaju Puntijarka u desetinama pokrivenosti neba (razdoblje od 1981. do 2004. godine)

Prilog A. Mjesečne i godišnje sume dozračene Sunčeve energije za postaju Puntijarka u Jcm⁻² (razdoblje od 1959. do 2004. godine)

Godina	1	2	3	4	5	6	7	8	9	10	11	12	Ukupno
1959	0	0	0	0	0	20042	27807	0	21933	14635	3338	178	87933
1960	0	14917	19693	9322	0	0	0	0	0	0	0	0	43932
_ 1961	0	0	0	0	0	0	0	0	8541	13701	3876	3977	30095
1962_	4892	8683	14659	26849	33687	31690	35273	37445	22354	16123	5500	5950	_243105_
1963	5801	9735	19322	22755	15478	0	0	0	0	22229	19008	7327	121655
1964	0	0	0	0	0	19799	56515	55654	41118	0	0	0	173086
_ 1965_	10371	20417	31952	31756	32705	46184	50146	42124	36754	28152	10446	9215	_350222_
1966	12071	17007	28300	36505	48118	51921	48843	39779	36871	23827	11492	9223	363957
1967	11506	19722	27971	31139	50487	46338	56499	46725	31407	26330	14837	9700	372661
1968	13341	15829	31997	44351	44423	41305	54553	35710	27808	26825	10907	9706	_356755_
1969	10828	11752	19922	39243	50819	43186	53213	39221	30837	28317	13854	6747	_347939_
_ 1970_	9735	15198	23417	33739	46181	49495	54707	43122	37721	26736	15530	11830	_367411_
1971_	11086	19060	22397	38951	50734	50401	58916	50662	34665	29952	12286	13655	_392765_
1972	9742	12384	33262	30204	40921	54383	35824	18164	11828	8676	8253	4393	_268034_
1973	4767	7960	21758	27647	50130	39871	44968	35993	30750	19422	13254	9566	_306086_
1974	10517	11460	22296	33616	37601	41242	52489	44077	29206	14424	11881	10563	319372
1975	12439	18612	22001	34336	38266	31373	44894	34392	30885	18289	9162	9209	_303858_
1976	11190	13462	29976	31428	43865	43454	43568	33996	24623	30288	16067	11826	333743
1977	12508	19712	42461	39499	45133	52738	50413	40673	32396	23745	12974	9768	_382020_
_ 1978_	9871	12716	28756	30821	33677	50817	49904	42533	35009	22145	16527	7400	_340176_
1979	10860	11193	23660	35755	54539	45193	44590	41688	30218	22186	8335	//09	335926
1980	11568	1/964	25008	30590	39672	56048	52958	46263	45584	19948	13547	-8389	367539
_ 1981_	23328	26036	43558	63870	68082	72251	82313	66980	40110	30410	22837	10117	_549892_
1982	17996	29279	37602	42461	60560	64253	6/65/ 71097	61759	52091	24037	19316	11927	_487938_
1903	11607	23030	22420	49510	51206	60702	67712	55025	50240 40704	34500	15202	7545	492170
1904	10675	17400	18672	38861	55708	51111	63120	50778	40794	20421	11018	12044	402672
1986	127/1	7560	16851	33750	58975	47408	53007	51960	45790	29390	18/81	12044	391822
1987	5699	17287	23330	47444	45010	54903	69734	60245	43030 51409	25818	16658	12920	430950
1988	14500	19942	31481	42197	50835	56913	68276	56714	39492	20554	14022	11587	426513
1989	11690	13167	35935	37225	51460	49635	60668	47643	33276	28405	16428	11996	397528
1990	12467	24323	37423	36961	57275	53999	65651	58576	35710	23665	11411	8614	426075
1991	11875	19290	28187	40064	46867	59336	57752	54055	39075	20602	12927	13939	403969
1992	15066	21718	31606	43885	62942	57871	66997	65963	47693	19343	16827	10827	460738
1993	15909	21614	30688	45403	59150	57464	66129	56804	36084	22156	7701	11061	430163
1994	16564	16188	38469	36869	58049	59577	69578	57830	41644	27500	15323	11294	448885
1995	12696	18892	24805	39568	54327	47762	67223	50175	31677	29013	14503	6725	397366
1996	6340	15597	25064	38432	51737	61593	57943	47759	28687	20861	11967	7322	373302
1997	8552	24818	28884	35628	56339	56353	56651	51836	47181	23069	10462	7310	407083
1998	9847	20262	25013	46426	56416	57090	61533	57693	36004	22300	12163	11456	416203
1999	17318	16267	29733	36046	51845	55005	53226	50239	38882	26028	11134	10699	396422
2000	15959	24064	31660	45915	65725	71636	62679	61731	40137	23477	10423	11175	464581
2001	9245	18640	29892	43949	61679	59831	56792	57085	30380	31230	14426	7579	420728
2002	14380	17654	38841	35063	57508	62460	61986	45170	34716	24455	13080	5316	410629
2003	9498	19923	38322	43856	65403	66324	63630	59358	43574	23278	14392	12112	459670
2004	10690	15564	27005	31355	55418	54275	60695	54921	38811	13854	12311	10099	384998

Sat	1	2	3	4	5	6	7	8	9	10	11	12
4-5					2	4	3					
5-6				5	19	27	22	10	2			
6-7		1	8	30	57	66	63	43	20	3		
7-8	2	10	35	67	101	112	111	88	59	25	6	2
8-9	16	35	70	104	141	150	155	133	101	58	26	14
_ 9-10 _	39	64	101	136	169	178	188	167	137	90	51	35
_ 10-11 _	59	87	124	156	187	191	207	187	159	112	69	51
_ 11-12 _	70	101	134	160	193	198	214	192	167	122	79	61
12-13	71	101	132	156	188	194	208	188	163	120	78	61
13-14	61	90	117	145	173	185	195	176	145	104	65	49
_ 14-15 _	42	68	94	122	150	160	173	153	118	80	44	30
_ 15-16 _	18	39	65	93	122	135	142	121	86	46	20	11
16-17	3	13	34	62	87	99	104	82	48	17	4	1
_ 17-18 _		1	9	26	46	55	57	38	14	2		
_ 18-19 _			4	15	21	20	8	1				
19-20				1	4	3						

Jcm⁻²*h*⁻¹ (*razdoblje od 1959. do 2004. godine*)

Prilog C: Srednje dnevne vrijednosti insolacije za postaju Puntijarka u satima (razdoblje od 1981. do 2003. godine)

Dan	1	2	3	4	5	6	7	8	9	10	11	12
1	2,1	4,1	4,2	4,7	5,5	6,7	9,2	8,2	6,6	4,7	4,5	2,8
2	2,5	4,3	3,2	5	6,9	8,5	8,5	8,3	5,3	5,4	4,1	2,6
3	2,7	4,9	3,5	4,4	7,2	7,6	6,8	8,4	6,8	5,7	3,6	2,7
4	3	4,6	4	4,5	7,4	6,4	7	7,5	5,6	5,6	3,2	3,2
5	3	4,4	4,4	4,4	5,8	6,4	7,6	7,4	6,6	5,2	2,9	3,3
6	3,1	4	4,3	5,2	6,9	6,4	8,1	7,7	6,9	5,5	2,9	3,1
7	3,7	4,1	4,6	6,4	7,4	6,5	7,4	6,4	7,5	4,8	4,3	2,8
8	2,3	3,5	4,2	5,6	6,6	6,7	7,9	6,8	6,6	3,4	4,5	2,4
9 _	2,4	3,6	4,1	5,6	6,4	7,7	8,2	7,5	5,6	5	3,1	2,9
10	3,2	2,4	6,4	4,3	7	7,5	7,9	8,3	6,1	5	3,1	3
11	2,8	3	5,6	4,9	6,7	6,6	8	7,2	7,4	6,1	3,2	1,7
12	4,1	3,3	6,1	4,5	6,7	6,8	6,2	7,8	7	4,5	4	2,6
13	2,8	3,2	4,4	3,6	6,8	4,5	7,1	8,1	6,4	6,3	2,6	1,4
14	3,5	2,9	4,7	6,7	6,9	6,5	6,3	8,6	5,9	6,7	2,1	1,4
15	3,3	3,4	4,8	4,9	7	6,2	6,5	8,4	7	4,7	4,3	2,6
16	4,1	3,6	3,3	4,2	6,4	6,6	7,6	8,8	6,7	6,2	2,1	2,4
17	4,2	3,7	4,8	4,3	7,2	5,2	7,8	8,1	5,9	4,6	1	2,3
18	4	5,3	5	5,5	7,5	6,6	8,2	8	5,5	4,3	3,5	2,5
19	4,2	4,3	3,5	6,4	6,8	6,1	8	8,2	6,2	4,2	2,7	1,9
20	3,2	4,6	4,9	7	5,6	6,6	7,6	8	6,1	3,5	3,1	2,2
21	2,4	3,3	5,5	5,9	5,2	7,7	7,4	6,7	6	2,4	3,1	2,3
22	2,2	3,9	4,8	7,1	4,5	7	8,6	8	6,7	3,6	2,9	2,8
23	2,8	4,4	4,4	7,1	6,2	5,8	9,3	8,5	7,1	4,6	3,6	2,2
24	1,9	4,2	5,9	7,2	7,3	5,9	7,8	7,7	6	4,5	3,3	2,4
25	3,2	5,3	4,6	7,7	8,4	6,8	7,3	5,9	5,1	4,7	2,2	2,1
26	2,6	4,4	4,2	6,9	7,3	8	6,4	7,1	6,2	3,9	2,2	2,2
27	2,7	4,5	4,7	6	7,4	7,8	9,6	6,6	5,8	3,9	1,8	2,5
28	2,7	5,3	4,9	6,1	7,5	7,6	6,6	5,1	4,8	4	2,5	1,3
29	3,4		5,8	5,9	6,4	7,1	7,6	5,3	5,8	3,5	2,5	2,9
30	4,2		4,8	6	7,4	8,3	8,6	5,8	7	2,5	1,8	3,2
31	4,1		6		7,6		8,3	6,7		3,2		2,4

Dan	1	2	3	4	5	6	7	8	9	10	11	12
	6,7	4,4	6,3	5,7	5,7	5	3,5	3,3	4,7	5,2	4,8	6,5
2	6,5	5	6,9	5,2	5	3,8	4,4	3,1	5,9	5,3	5,2	6,5
3	5,7	4,4	6,2	6,5	4,4	4,2	4,6	3,3	4,8	5,4	5,6	6
4	6,2	5,1	6,2	6	5,2	5,9	4,3	4,4	5,6	5,1	6,3	5,9
5	5,2	4,2	4,5	6,5	5,7	5,6	4,3	4,2	4,9	5,3	6,4	5,8
6	5,2	4,5	5,7	6,2	4,7	5,4	4,4	4,2	4,5	4,7	6,5	5,2
7	5,4	5,9	6,2	5,5	4,6	5,2	4,1	4,6	4,3	5,7	5	5,9
8	5,6	5,6	6	6	5,7	4,6	4	4,6	4,6	5,6	5,1	5,4
9	6,7	5,5	6,4	6,4	5,5	4,4	3,6	4,1	5,4	5,1	6,4	5,5
10	5,3	6,5	4,2	6,7	5	4,7	4,2	3,5	5	5	6,4	5,6
11	5,4	5,5	5,3	6,8	5,5	5,2	4,5	4,1	4,1	4,4	6,1	6,6
12	4,5	6	5,1	7,3	5,8	6	5,1	3,8	4,6	5,4	5,8	5,6
13	6	6,5	5,6	7	5,3	6,6	4,7	3,6	4,6	3,9	6,7	7
14	5,7	5,8	5,6	5,1	4,6	5,1	5,2	3,6	5,3	3,8	7,1	6,4
15	5,4	6,5	5,5	6,5	4,8	5,2	5,3	3,1	4,7	4,6	5,4	5,6
16	3,5	6	6,6	6,9	5	5,5	4,5	2,7	4,7	4	7,1	5,5
_ 17 _	4,2	5,9	5,3	6,7	4,9	6	4,2	4,1	5	4,7	7,2	6,3
18	4,6	4,5	5,5	6,3	4,6	5	3,7	3,8	4,6	5	5,1	5,9
19	4,4	5,5	6	5,5	5,5	5,7	4,4	3,4	4,1	6,3	5,9	6,5
20	5,9	5,1	5,5	5,1	5,7	5,8	4,2	3,9	4,3	7,2	5,3	6,1
21	6,5	5,8	5,7	5,8	5,5	5,1	4	4,4	4,6	7,5	6	6,2
22	6,9	5,9	6,2	5	6,4	5,2	3,2	3,9	4,1	6,7	5,9	6,2
23	6,1	5,2	6,2	5,4	5,5	5,9	3,3	3,3	4,1	5,4	5,5	6,2
24	6,3	6,1	4,9	5,1	4,3	5,7	4	3,8	5,3	4,9	5,7	5,8
25	5,7	5	6,5	4,3	4,3	5,3	4,7	5	5,5	4,6	6	6,1
26	5,9	5,2	6,7	5,3	4,3	4,2	5	4,4	5	5,6	7,1	6,6
27	6	5,2	5,9	6,1	4,5	5	2,9	4,6	4,8	4,5	7,1	6
28	5,7	4,9	5	5,9	5,3	4,8	5,3	5,1	5,7	5,7	6,3	7
29	5,6		5,3	5,4	5,7	4,5	4,3	5,6	5,1	6,5	6,2	5,1
30	4,7		6,3	5,4	4,7	3,7	3,5	4,8	4,9	7,2	6,2	5
31	4,6		5		4,4		3,8	4,7		6		5,3

Prilog D: Srednje dnevne vrijednosti naoblake za postaju Puntijarka u desetinama pokrivenosti neba (razdoblje od 1981. do 2004. godine)