
Extracting Client-side Web Application Code

Josip Maras
University of Split

Split, Croatia
josip.maras@fesb.hr

Jan Carlson, Ivica Crnković
Mälardalen University

Västerås, Sweden
{jan.carlson, ivica.crnkovic}@mdh.se

ABSTRACT
The web application domain is one of the fastest growing
and most wide-spread application domains today. By uti-
lizing fast, modern web browsers and advanced scripting
techniques, web developers are developing highly interactive
applications that can, in terms of user-experience and re-
sponsiveness, compete with standard desktop applications.
A web application is composed of two equally important
parts: the server-side and the client-side. The client-side
acts as a user-interface to the application, and can be viewed
as a collection of behaviors. Similar behaviors are often
used in a large number of applications, and facilitating their
reuse offers considerable benefits. However, due to client-
side specifics, such as multi-language implementation and
extreme dynamicity, identifying and extracting code respon-
sible for a certain behavior is difficult. In this paper we
present a semi-automatic method for extracting client-side
web application code implementing a certain behavior. We
show how by analyzing the execution of a usage scenario,
code responsible for a certain behavior can be identified,
how dependencies between different parts of the application
can be tracked, and how in the end only the code responsi-
ble for a certain behavior can be extracted. Our evaluation
shows that the method is capable of extracting stand-alone
behaviors, while achieving considerable savings in terms of
code size and application performance.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Algorithms, Theory

Keywords
Web applications, Slicing, Code extraction, Reuse

1. INTRODUCTION
Highly interactive web applications that offer user expe-

rience and responsiveness of standard desktop applications
are becoming increasingly popular. They are composed out

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2012, April 16–20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.

of two equally important parts: the server side, realized as
a sequential application implementing data-access and busi-
ness logic, and the client side, realized as an event-driven ap-
plication representing the user-interface (UI). On the client
side, a web page structure is defined with HTML code, pre-
sentation with CSS (Cascading Style Sheets), and behavior
with JavaScript code. Alongside code, a web page usually
contains resources such as images, videos, or fonts. All this
code and resources are transfered to and evaluated in the
user’s web browser, and the interplay of these basic elements
produces the end result.

From the UI perspective, a web page can be viewed as
a collection of visually and behaviorally distinct elements,
the so called UI controls. However, this distinctiveness does
not usually exist in code, since there is no predefined way of
organizing code into neatly packed components.

A client side web application can also be viewed as a col-
lection of behaviors: from simple behaviors implementing a
single functionality, through complex UI behaviors provided
by UI controls, all the way to a single, complex behavior
that represents the functionality of the whole page. Similar
behaviors are often used in a large number of web applica-
tions, and facilitating their reuse offers significant benefits.
However, this is a challenging task. Due to the underlying
event-driven paradigm and the fact that a single behavior
can be implemented with a combined effect of three different
languages (HTML, CSS, and JavaScript) based on entirely
different paradigms, it is difficult to identify code responsible
for a certain behavior. This is especially true, because the
most complex language – JavaScript is an dynamic script-
ing language. In addition to facilitating reuse the ability to
set code into relation to behavior can also be used to detect
and remove dead code. On top of increasing code maintain-
ability, dead code removal also has a positive effect on web
application performance, because all code is transfered and
interpreted in the user’s web browser.

In this paper we present a method for extracting client-
side web application code. Our main contribution is a code
extraction method based on the analysis of application ex-
ecution traces recorded while demonstrating a web applica-
tion usage scenario. In order to be able to extract the code
that implements a certain behavior we have to identify it.
We define a client-side web application dependency graph,
describe how it is constructed, and show how it can be used
to locate and extract code responsible for a certain behav-
ior. Our work is motivated by three different usages: i) ex-
tracting library functionality, ii) extracting UI controls, and
iii) removing dead code. We have evaluated the approach

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

819

for each one, and have found out that considerable savings in
terms of code size and performance can be made, while still
being able to reproduce the demonstrated usage scenario.

The paper is organized as follows: in Section 2 we define
the overall approach, and give a short introduction to the
inner workings of client-side web applications necessary to
understand the extraction algorithm. Section 3 gives a more
detailed description of each step of the approach, defines the
dependency graph, its construction, and shows how it can
be used to locate code implementing a demonstrated us-
age scenario. Section 4 shows the results of the evaluation,
while Section 5 describes related approaches. Section 6 gives
the conclusion and presents possible continuation of the re-
search.

2. THE OVERALL APPROACH
Our goal is to provide a method for extracting behaviors

from client-side web applications: from a single functional-
ity mapped to a function call, through complex UI behaviors
implemented by UI controls, all the way to the behavior of
the whole web page. Ideally the code implementing a cer-
tain behavior would be identified with static analysis, which
would guaranty the completeness of the behavior, but in an
environment as dynamic as the client side web application,
this is not possible. Because of the extreme dynamicity of
JavaScript, the underlying event-driven paradigm, and the
fact that a behavior is usually defined through the interplay
of different web page elements, it is difficult to make a con-
nection between a behavior and the implementing code. For
these reasons we have based our approach on the analysis of
usage scenarios. The main advantages of the approach are:
i) it does not require any specification of the behavior to be
extracted and ii) the analysis of the application execution
trace recorded while demonstrating the usage scenario en-
ables us to dynamically track code dependencies (something
that cannot be accurately done statically for a language as
dynamic as JavaScript). The downside is that the accuracy
and completeness of the captured behavior in terms of how
much it relates to the desired behavior is completely depen-
dent on the developer demonstrating the usage scenario.

Figure 1: The Extraction process

The overall extraction process is shown in Figure 1, and

goes as follows. Phase 1 – Interaction recording – requires
input from the developer in a sense that he/she has to choose
the HTML node the process should focus on (because the
goal is to track UI modifications), and demonstrate the us-
age scenario while in the background the application exe-
cution trace is being recorded. In Phase 2 – Reinterpreta-
tion – the whole web application code is reinterpreted, and
code dependencies are tracked with the application execu-
tion trace as a guideline. When the reinterpretation reaches
a point in the execution trace that changes the structure of
the HTML node we are interested in, the reinterpretation
pauses and the process enters Phase 3 – Code marking. In
this phase, starting from the code expression making the
modification, all dependencies are traversed, and all code
that directly or indirectly influences the modification code
expression are marked as important. Once the dependency
traversal is done, the process again resumes the reinterpre-
tation in Phase 2. This cycle is repeated as long as there
are node modifications in the application execution trace.
When the reinterpretation is done the process enters the
final phase, Phase 4 – Code extraction – where the code
of the entire web application is traversed; code expressions
identified in the code marking phase are kept, while the rest
are removed – the end result being a subset of the original
application still able to reproduce the demonstrated usage
scenario.

The main component of the process is the tracking of de-
pendencies between different parts of the web page. To
better understand the whole process, we give a short web
application primer.

2.1 A Web Application Primer
A client-side web application is, in its essence, an HTML

page that includes JavaScript code, CSS code and various
resources such as images or fonts. The HTML code defines
the structure of a web page, JavaScript code the behavior,
and CSS (Cascading Style Sheets) code the presentation.
The interplay of these basic elements produces the end re-
sult displayed in the user’s web browser. JavaScript is a
weakly typed, imperative, object-oriented script language
with prototype based delegation inheritance. It has no type
declarations and has only run-time checking of calls and field
accesses. Functions are first-class objects, and can be ma-
nipulated and passed around like other objects. JavaScript
is also a dynamic language: everything can be modified at
runtime, from fields and methods of an object to its pro-
totype. As many other script languages, it offers the eval
function which can execute an arbitrary string of JavaScript
code. CSS is a declarative language used to specify the pre-
sentational aspects of HTML nodes. The CSS code of the
application is composed out of CSS rules, each rule consist-
ing of a CSS selector and a set of property-value pairs. A
CSS selector is used to specify to which HTML nodes the
given property-value pairs will be applied to.

Client-side web applications are mostly event-driven UI
applications, and majority of the code is executed as a re-
sponse to user-generated events. The life-cycle of the appli-
cation can be divided into two phases: i) page initialization
and ii) event-handling phase. The main purpose of the page
initialization phase is to build the UI of the web page. The
browser achieves this by parsing the HTML code and build-
ing an object-oriented representation of the HTML docu-
ment – the Document Object Model (DOM). When parsing

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

820

the HTML code the DOM is filled one HTML node at a
time. There are two special types of HTML nodes that the
browser can reach: i) the style and link nodes, that enable
the inclusion of CSS code, and ii) the script node that en-
ables the inclusion of JavaScript code.

When the browser reaches either the style or the link node
it parses the included CSS code and constructs a set of pre-
sentational rules. Each rule has a CSS selector specifying to
which HTML nodes the rule will be applied to at any point
of application execution. If the browser reaches the script
node it suspends the DOM building process and enters the
JavaScript interpretation process. In this phase this means
sequentially executing the given JavaScript code. One im-
portant purpose of this code is to register event-handlers,
which define how events are handled later during the sec-
ond phase of the execution. Once the JavaScript code in
that node is executed, the process again resumes the DOM
building phase. After the last HTML node is parsed and the
whole UI is built, the application enters the event-handling
phase, where code is executed as a response to events. All
updates to the UI are done by JavaScript modifications of
the DOM, which can go as far as completely reshaping the
DOM, or even modifying the code of the application.

A web page is a collection of UI controls, which communi-
cate with the user by modifying their UI. Each UI control is
defined with a set of HTML nodes (the UI control’s DOM), a
set of CSS rules applied to those nodes, and JavaScript code
that implements the behavior. All modifications of the UI
are done with JavaScript modifications of the UI control’s
DOM, and a single UI behavior is often implemented with
multiple DOM modifications.

3. THE EXTRACTION PROCESS
The extraction process will be illustrated with a running

example shown in Listing 1. The UI of the web application
is initially composed out of two squares: a top red one, and a
bottom blue one, and two behaviors: i) when the top square
is clicked for the first time, a smaller blue square is created
inside it; and ii) when a bottom square is clicked it changes
its color (from blue to red, and vice versa). Throughout
this section we will show how the code necessary only for
the execution of the first behavior is extracted. A common
approach is by building a dependency graph.

3.1 The Dependency Graph
The client-side web application code is composed of three

different parts: CSS, HTML and JavaScript, that are inter-
twined and must be studied as a part of the same whole.
Because of this, we define the client-side dependency graph
consisting of three types of nodes: HTML nodes, CSS nodes
and JavaScript nodes; and three types of edges: structural
dependency edges, data flow edges, and control flow edges.
Also, since the client-side of the web application is extremely
dynamic (e.g. new HTML nodes are regularly created by
JavaScript code and inserted into the DOM of the applica-
tion, but also new JavaScript and CSS code can be dynam-
ically created with JavaScript code), for each node type we
also differentiate between static and dynamic nodes. A node
is static if it is directly present in the source code of the ap-
plication, while it is considered dynamic if it is dynamically
constructed with JavaScript code. Also, the DOM structure
can be rearranged with JavaScript code, this is why there
also exist two types of structural dependency edges (static

/*01*/<html >
/*02*/ <head >
/*03*/ <style >
/*04*/ .bgRd{background -color:red;}
/*05*/ .bgBl{ background -color:blue;}
/*06*/ div{height :60px; width :60px}
/*07*/ span{height :30px; width :30px}
/*08*/ </style >
/*09*/ </head >
/*10*/ <body >
/*11*/ <div class="bgRd"id="frSq"></div >
/*12*/

/*13*/ <div class="bgBl"id="scSq"></div >
/*14*/ <script >
/*15*/ function changeColor(elem) {
/*16*/ elem.className = elem.className

== "bgRd" ? "bgBl" : "bgRd";}
/*17*/ var frSq = document.

getElementById("frSq");
/*18*/ var scSq = document.

getElementById("scSq");
/*19*/ frSq.onclick = function (){
/*20*/ if(frSq.children.length == 0) {
/*21*/ var sml = document.

createElement("span");
/*22*/ sml.className = "bgBl";
/*23*/ frSq.appendChild(sml);}
/*24*/ };
/*25*/ scSq.onClick = function (){
/*26*/ changeColor(scSq); };
/*27*/ </script >
/*28*/ </body >
/*29*/ </html >

Listing 1: Example application

and dynamic). Table 1 shows the definition of the different
edge types, where edges marked s, d and c represent struc-
tural dependencies, data dependencies and control flow, re-
spectively. H denotes HTML nodes, J JavaScript nodes, C
CSS nodes, and N denotes a node of arbitrary type.

Table 1: Edges in the client side dependency graph

Edge Condition

N1
s−→ N2 N1 is a child of N2.

N
d−→ J J writes data to N .

J
d−→ N J reads data from N .

H
d−→ C C style is applied to H.

J1
c−→ J2 J2 is executed after J1.

Because of the inherent hierarchical organization of HTML
documents the HTML layout translates very naturally to
a graph representation. Except for the top one, each el-
ement has exactly one parent element, and can have zero
or more child elements. The parent-child relation is the
basis for forming dependency edges between H-nodes. A
directed structural dependency edge between two H-nodes
represents a parent-child relationship from a child to the

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

821

parent. A dependency graph subgraph composed only of
H-nodes matches the DOM of the web page.

C-nodes represent CSS rules applied to specified HTML
nodes. All CSS code is contained in a HTML node, so each
C node has a structural dependency towards the parent H-
node. Also, since a CSS style can be created with JavaScript
code, there can exist a structural dependency between a C-
node and a J-node. The main goal of a CSS style is to define
styling parameters of HTML nodes that satisfy certain con-
ditions, for this reason, there can exist a data dependency
between an H-node and the C-node.

J-nodes represent JavaScript code construct that occur
in the program (a simplified Abstract Syntax Tree). All
JavaScript code is contained in an HTML node, so each J-
node has a structural dependency towards the parent HTML
node. Two J-nodes can also have structural dependencies
between themselves denoting that one code construct is con-
tained within the other (e.g. a relationship between a func-
tion and a statement contained in its body). J-nodes can
form data-dependency edges with all types of nodes: a data
dependency from one J-node to another denotes that the
former is using the values set in the latter; an edge from a
J-node to an H-node that the J-node is reading data, while
an edge from the H-node to the J-node means that the J-
node is writing data to the H-node. An edge from a J-node
to a C-node means that the JavaScript code is reading data
from the C-node.

Example. Figure 2 shows the graph built while reinter-
preting the web application code based on the execution
trace shown in the usage scenario. The circle nodes repre-
sent H-nodes, the square nodes C-nodes, and the rectangle
nodes J-nodes. The numbers near each node represent the
flow of control, the full lines represent structural dependen-
cies, while the dotted lines represent data dependencies.

3.2 Interaction recording
The whole process is based on the analysis of applica-

tion traces recorded by communicating with the JavaScript
debugger while demonstrating the chosen behavior. The
recording application is realized as a Firefox extension.

Example. The developer wants to extract the first behav-
ior (creating a square within a square), so he selects the part
of the UI on which the extraction process will be focused on
– the HTML node with the id “frSq” and demonstrates the
following usage scenario: click on the bottom square, caus-
ing it to change its color from blue to red (even though this is
not required from the perspective of the first behavior), and
clicking on the top square which results with the creation of
a smaller blue square within it (the desired behavior).

3.3 Reinterpretation
After the application execution trace has been recorded,

the process enters the second phase – Reinterpretation. As
an input this phase receives the web page code, the node
selected for extraction, and a recorded execution trace. The
algorithm is shown in Algorithm 1, and has two phases: page
initialization (line 1) and event-handling (lines 2–4). The
basis of the algorithm is the process by which the browser
executes the web page (described in Section 2.1.).

Building HTML and CSS nodes
In the initialization phase, for each encountered HTML code
node a matching static H-node is created (Algorithm 2).

Algorithm 1 reinterpret(webPageCode, extractionNode,
appExeTrace)

1: createHChildNodes(createStatHNode(),
createCodeTree(webPageCode),
appExeTrace, extractionNode)

2: for all event : appExeTrace do
3: interpretJs(getCode(event), getNode(event),

getExecs(event))
4: end for

When an HTML with CSS code is reached, for each CSS
rule a static C-node with structural dependencies to the con-
taining H-node is created. On each DOM change, CSS rules
are traversed and if an HTML node satisfies a CSS rule, a
data dependency from the H-node to the C-node is created.

Example. The algorithm starts by creating the three H-
nodes: html, head, and style node, where the head node has
a structural dependency towards the html node, and the
style node towards the head node. Since the style node is a
special type of node, the process starts creating C-nodes –
four static C-nodes are created based on four CSS rules, and
each CSS node has a static structural dependency towards
the parent style node. Next, the DOM building phase is con-
tinued, and the process creates the following H-nodes: body,
div, br, div, and script and marks the necessary structural
dependencies (body → html; div, br, div, script → body).
Since the creation of each static node initiates the search
for a matching CSS rule, when the first div node is created,
data dependencies from that node to the first and the third
C-node are created (since the HTML node satisfies those
two CSS selectors), and when the second div node is cre-
ated, data dependencies from the second div to the second
and the third C-node are also created (top middle and top
left part of the graph in Figure 2).

Algorithm 2 createHChildNodes(hNode, htmlCodeElem,
appExeTrace, extrNode)

1: for all codeChild : getChildren(htmlCodeElem) do
2: hChldNode ← createStatHNode(codeChild)
3: appendChild(hNode, hChldNode)
4: addStatStrucDep(hChldNode, hNode)
5: traverseCNodesAndCreateDependencies()
6: if codeChild is HTMLScriptNode then
7: interpretJs(codeChild.text, hChldNode,

getScriptExe(appExeTrace), extrNode)
8: else if codeChild is HTMLCssNode then
9: for all cssRule : parseCss(htmlChldNode.text) do

10: cNode ← createStatCNode(cssRule)
11: addStatStrucDep(cNode, hChldNode)
12: end for
13: else
14: createHChildNodes(hChldNd, codeChild, appExe-

Trace)
15: end if
16: end for

Building JavaScript nodes
When the process encounters an HTML node containing
JavaScript code, it switches to the creation of code construct
nodes, and the process enters the execution-trace guided in-

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

822

Figure 2: Dependency graph of the web application from Listing 1 (@ - denotes the line number of the code
construct)

terpretation mode – code nodes are created as each code ex-
pression is evaluated (Algorithm 3). If the evaluated expres-
sion reads identifiers (a term encompassing objects, proper-
ties, and functions), then a data dependency from the cur-
rent node to the node matching the last assignment of the
identifier is created. Currently, we do not slice arrays, so
if the accessed object is an array, data-dependencies from
the current node to all nodes that match the modification
expressions of that array object are also created. Also, some
of the evaluated code expressions can create dynamic nodes,
and in that case a data-dependency is created from the dy-
namic node to the currently evaluated JavaScript node.

Example. The process has reached the script node in line
14 and is entering the JavaScript interpretation mode (mid-
dle and the top right part of the graph in Figure 2), and
a function declaration node from line 15 is created. Next,
the control flow reaches the variable declaration in line 17,
and the matching node is created. On the right hand side
there is a method call on the document object (which is spe-
cial object provided by the browser, acting as an interface to
the DOM). The method invocation returns an HTMLObject
mapped to the HTML node with the id “frSq” (the first div),
so a data dependency from the call expression to the H-node
is created. Also since this is a variable declaration expres-
sion, a data dependency from the identifier “frSq” to the
call expression is created. Similarly the nodes and matching
data dependencies for line 18 are created. For line 19 an
assignment expression node is created. The right hand side

creates a function expression, and the left hand side a mem-
ber expression. The member expression accesses the object
referenced with the id “frSq” so it has a data dependency to-
wards the variable declaration and the call expression in line
17 (because that is where the value has come from). Also,
since the object whose property is being set is an HTML
object, and since the “onclick” property is a property used
to set an event-handler, a dependency from the matching
H node to this assignment expression is created. A similar
procedure is repeated for line 25. Since there is no more
JavaScript code for sequential execution, the process exits
the interpretation mode. Also, all H-nodes have been cre-
ated and the page initialization phase is finished.

Event handling
Once the whole code file has been traversed, and all con-
tained JavaScript code executed in a sequential fashion the
graph construction enters the event-handling phase (Algo-
rithm 1). Information about each event is read from the ex-
ecution trace, and the dependency from the event handling
function code node to the HTML node causing the event
created. JavaScript nodes are created for each expression
executed as a part of the event-handler code (Algorithm 3).

Example. In the demonstrated usage scenario, the first
raised event was the click on the bottom square. The pro-
cess reads the application execution trace and finds that the
function in line 25 was executed as a click event-handler
on an HTML node with id “scSq” (bottom left and bottom

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

823

Algorithm 3 interpretJs(code, hNode, currExecs, progra-
mAst, extrNd)

1: for all step in curExecs do
2: currAstNd ← getAstNode(step)
3: jNode ← createJNode(currAstNd)
4: addStaticStructDep(jNode, hNode)
5: evldAstNd ← evalute(currAstNd)
6: if isAccessingIdentifiers(evaldAstNd) then
7: create data dependencies from the jNode to the iden-

tifier’s last assignment expression
8: end if
9: if isReadingArrayObject(evaldAstNd) then

10: add data dependencies from the jNode to all expres-
sions that have modified the array

11: end if
12: if isEnteringFunction(evaldAstNd) then
13: add dependency from the jNode to the call expres-

sion
14: else if isReturnFromCallExpr(evaldAstNd) then
15: add data dependency from jNode to retrnExpr
16: end if
17: if isInLoopOrInIfStatement(evaldAstNd) then
18: add data dependency from jNode to conditionExpr

node
19: end if
20: if isCreatingJsCode(evldAstNd) then
21: parse the newly added code and add AST node
22: else if isCreatingHtmlNode(evldAstNd) then
23: create a dynamic H-node with a dataDepend to jN-

ode
24: traverseCNodesAndCreateDependencies()
25: else if isCreatingCssNode(evldAstNd) then
26: create a dynamic C-node with dataDepend to jNode
27: else if isRearrangingDOM(evldAstNd) then
28: remove dynamic struct dependency of the target H-

node; add a new dynamic struct dependency from
the target H-node to the new parent node

29: traverseCNodesAndCreateDependencies()
30: if affected nodes are descendants of extrNd then
31: createCodeMarkings(jNode)
32: end if
33: end if
34: end for

right of Figure 2). This creates a data dependency from
the function expression construct towards the H-node. The
function body is interpreted and all data dependencies for
the executed code are created. The procedure is repeated
for the second event that was raised as a response to click-
ing on the first square, and goes similarly to the body of
the if statement. In line 21, a new HTML element is cre-
ated. This causes the creation of a new dynamic H-node
with a data dependency towards the call expression in line
21. Also, since this a DOM modifying expression, the search
for the matching CSS rules, is also initiated, which in this
situation, creates dependencies from the dynamic H-node to
the fourth C-node. In line 22, the DOM of the newly created
node is modified, so a data dependency from that H-node to
the assignment expression, and to the second C-node is cre-
ated. In line 23 the HTML node is inserted into the DOM
of the first div (a node chosen for extraction). This raises

the DOM modified event, and the process enters the code
marking phase (Algorithm 4).

3.4 Code Marking
As the application code is being interpreted and code de-

pendencies built, it is important to identify executed code
constructs that will be used as a basis for code extraction.
Since we are dealing with UI applications, these important
code constructs are the ones that are modifying the UI. All
UI modifications on the client-side are done by modifying the
DOM of the web application, so we track dependencies from
DOM modifying statements. The main idea is that when
the code interpretation algorithm raises the DOM modifying
event, the dependency graph is traversed starting from the
HTML node being modified by following all dependencies
(Algorithm 4). When a static node is reached its matching
code construct is marked as important.

Example. The call expression in line 23 is modifying the
DOM of the node chosen for extraction, so the process en-
ters the marking phase which causes the traversal of the
dependency graph. The call expression in line 23 is marked
because it is causing the DOM modification. Next, the iden-
tifier “sml” is marked, which leads to the marking of the
variable declaration in line 21. The value of the identifier
matches the dynamically created HTML span node, so its
dependencies are also traversed (but the node itself is not
included). This causes the inclusion of the assignment ex-
pression in line 22, and the second and the fourth C-node
(and the style node, and the head node because of structural
dependencies). Since the node whose DOM is being modi-
fied is the one chosen for extraction, it, and its dependencies,
are also included (the first div node, the parent body node,
the parent html node, the first and the third C-node, and
the assignment expression in line 17). The if statement in
line 20, and the script node are also included since there are
statements included within them.

Algorithm 4 createCodeMarkings(topNode)

1: codeNode ← getCodeNode(topNode)
2: if isStaticNode(codeNode) then
3: markAsImportant(codeNode)
4: end if
5: if topNode is JNode then
6: for all node : getCntrlDepInCurrCntxt(topNode) do
7: if node is Break OR Continue

OR (ConditionExpr AND
areOnSameLvl(topNode, node)) then

8: createCodeMarkings(node);
9: end if

10: end for
11: end if
12: for all node in getStrucAndDataDep(topNode) do
13: nodes.push(node)
14: end for

3.5 Code Extraction
After the whole application execution trace has been rein-

terpreted, the process goes into the last phase – Code extrac-
tion, where the web applications code tree is traversed and
where code is generated from all static nodes marked as im-
portant in the code marking phase.

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

824

Example. The extraction result for the example is shown
in Listing 2. Even though the function changeColor was
executed, and has modified the UI of the second square, it
is not present in the final, extracted code, simply because
it did not modify the part of the UI we were interested in
(node – “frSq”).

/*01*/<html >
/*02*/ <head >
/*03*/ <style >
/*04*/ .bgRd{background -color:red}
/*05*/ .bgBl{ background -color:blue}
/*06*/ div{height :60px; width :60px}
/*07*/ span{height :30px; width :30px}
/*08*/ </style >
/*09*/ </head >
/*10*/ <body >
/*11*/ <div class="bgRd"id="frSq"></div >
/*12*/ <script >
/*13*/ var frSq = document.

getElementById("frSq");
/*14*/ frSq.onclick = function (){
/*15*/ if(frSq.children.length == 0) {
/*16*/ var sml = document.

createElement("span");
/*17*/ sml.className = "bgBl";
/*18*/ frSq.appendChild(sml);}
/*19*/ };
/*20*/ </script >
/*21*/ </body >
/*22*/ </html >

Listing 2: Extracted example application

4. EVALUATION
We have evaluated the approach based on three applica-

tions of the method: i) extracting library code, ii) extracting
UI controls, and iii) removing dead code of web applications.
The evaluation is based on two metrics: lines of code (LOC)
and the number of execution steps (EXE). For the LOC we
use two baselines: total LOC of the entire application, and
the executed LOC (ExLOC). The effectiveness of the ap-
proach is then measured by comparing the baselines with
the extracted LOC (ExtLOC). For the total LOC, in order
to better compare the results we reformat the application
source code in the same format the extracted code will be in
(e.g. by removing comments, braking lines according to same
rules, etc.). Executed code lines represent a very simple, but
straightforward extraction approach. They are derived from
the application execution trace, without any analysis, sim-
ply by keeping all uniquely executed lines while maintaining
syntactical correctness. This code version does not include
lines that were not executed, and is capable of replicating
the starting usage scenario. It is important to note that not
all executed code is important from the perspective of the
target behavior (e.g. some of it might do initialization, or im-
plement functionality that is irrelevant from the perspective
of the target behavior). This is why we measure the effec-
tiveness of our approach by comparing the extracted LOC
with the executed LOC. We also report the difference in the
number of execution steps when executing the usage scenario
in the context of the full web application code (ExEXE), and
when executed in the context of extracted code (ExtEXE).
This difference represents the performance gains that can be

achieved by using our method, because the same behavior is
realized with less execution steps. All used test applications
can be downloaded from www.fesb.hr/˜jomaras/www2012.

The data presented in this evaluation was gathered by a
tool developed as a Firefox extension – all tracing data is
Firefox specific, and results could be different in another
browser. However, we do not believe that considerably dif-
ferent results would be attained with other modern web
browsers.

4.1 Extracting Library Code
For extracting library code we have evaluated the approach

by extracting functionalities from an open-source vector and
matrix math library – Sylvester1. It includes functions for
working with vectors, matrices, lines and planes. As with
other libraries, if we only use a small subset of its functional-
ity, then a lot of library code will be irrelevant from our ap-
plication’s point of view. Based on the public API given on
the homepage of the library, we have developed use-cases for
a subset of the public methods. We have recorded the execu-
tion of those use-cases, with the following results: from the
total of 130 methods spread over 1400 lines of code we have
extracted 27 methods in a way that alongside each method
only the code that is essential for the stand-alone function-
ing of the method is extracted. In all cases the method
extraction was successful, meaning that the use-case could
be repeated with the same result for the extracted code.
Table 2 presents the experimental data. For each tested
method it provides information about the total number of
uniquely executed code lines during the execution of a use
case (ExLOC), the number of lines that were included in
the extracted code (ExtLOC), number of executions gener-
ated while executing the usage scenario in the context of
the whole web application code (ExEXE), and the number
of execution steps when repeating the usage scenario in the
context of the extracted code (ExtEXE). As can be seen,
each method executes from around 17%–27% of the total
library code, and out of that executed code the extraction
process extracts anywhere from 5%–65%, which constitutes
the part of the code required to implement the target be-
havior. In terms of the overall number of execution steps,
the savings range from 42% to 97%. It is important to note
that savings are the greatest in simple methods, where the
overall number of execution steps performed in the method
is significantly smaller than executions generated in the ini-
tialization phase. As a base line we present the number of ex-
ecuted lines and executions recorded while just including the
library, without explicitly executing any methods. Even in
that case the library has 241 executed LOC and 2279 execu-
tion steps, the reason being that all included code generates
executions (e.g registering function or variable declarations,
performing initialization, etc.).

4.2 Extracting UI Controls and Dead Code Re-
moval

The goal of the UI control extraction functionality is to ex-
tract only the HTML, CSS, and JavaScript code that build
the UI control, while in the case of dead code elimination we
want to remove JavaScript code that is not necessary from
the behavior’s perspective. These two usages of the method
have been evaluated on the same test data (Table 3): eight

1http://sylvester.jcoglan.com/

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

825

Table 2: Experimental results on extracting API
functions from the Sylvester math library

Method ExLOC ExtLOC ExEXE ExtEXE
No method 241 0 2279 0
V.create 241 14 2230 68
V.cross 247 20 2464 189
V.dot 241 26 2441 174
V.random 250 24 2421 160
V.zero 241 24 2427 166
V.add 269 43 2456 275
V.dimensions 244 18 2335 75
V.distanceFrom 266 38 2515 243
V.isParallelTo 280 51 2804 409
V.max 258 31 2477 192
V.modulus 241 30 2449 185
V.multiply 267 42 2553 289
V.rotate 299 77 2668 406
V.angleFrom 276 43 2549 261
M.add 312 76 3679 1340
M.determinant 330 90 3385 1032
M.isSingular 338 98 4023 1590
M.multiply 321 83 4071 1729
M.minor 298 62 5571 3198
M.subtract 312 76 3679 1340
M.transpose 298 62 3322 1066
L.contains 269 84 2867 582
L.distanceFrom 265 76 2833 544
L.intersection 350 157 3698 1584
L.intersects 326 133 3768 1385
L.pointClosest 394 210 5501 2973
L.rotate 359 236 4621 2151

Whole Library LOC: 1417

medium-sized web applications, the first two being stan-
dard web applications, and six being openly available smaller
demo applications (examples of UI controls). None of the
applications communicates asynchronously with the server
side – all behavior is realized on the client-side. All evalu-
ated applications, except the “checkbox-radioBox” applica-
tion, use the jQuery library, the most wide-spread library for
simplifying client-side scripting [12]. jQuery is a complex li-
brary, with about 9000 LOC, and provides functionality for
simplifying work with multiple browsers, selecting DOM el-
ements, animations, etc. For each test application, Table 3
shortly describes the interaction we record.

Example.The process will be illustrated with an example
application that we have developed for another project –
http://www.idt.mdh.se/pride/ (Figure 3). Apart from the
presentational aspects this web page also has one imple-
mented behavior: in the central part there exist a UI control
with two buttons. When the user clicks on a button, the cur-
rent image and caption change with a fade effect. We will
use this example with a slight modification for both usages.

Extracting UI controls
The result of the UI control extraction is a web page which
contains only the selected UI control with all necessary code
and resources required for its stand-alone functioning. In
this evaluation, from the eight web applications we were
able to successfully extract eleven stand-alone UI controls.

Table 3: Web applications
web page Target behavior
idt.mdh.se/pride Go through all items by clicking
druckbar.info 1. Wait for all image replacement

2. Mouse hover over a single item
accordion Cycle through all items by clicking

on each header
slider1 Go through items by clicking
slider2 Go through items by clicking
humanTypist Wait page load, effect finish
checkbox radioBox Click two times on each checkbox

click once on each radio box
iPhone buttons Click on enable, disable; on, off

Example. In the example application (Figure 3), the de-
veloper demonstrates the following behavior: he/she selects
the HTML node encompassing the whole UI control, waits
for the page to load, clicks on the second button and waits
for the image-caption change effect to finish. When this is
done, the developer clicks on the first button, and also waits
for the end of the effect. When analyzing this execution
trace, code dependencies are traversed and important code
constructs marked when the structure of the selected HTML
node (or the structure of its descendants) is being modified.
The end result is the UI control from Figure 4.

Dead Code Removal
In the case of removing dead code, Table 4 shows the exper-
imental results gained when removing dead code based on
the behaviors shown in Table 3. In addition to the informa-
tion described in the introduction of this section, for this set
of data, we also present gains achieved in terms of page load-
ing time (GPLT), which is measured by loading an uncached
page from the local machine. This was done in order to re-
duce the influence of the connection speed on the end results.
Loading time is an important piece of information because
the longer the page loading time, the higher the probability
that the user will abandon the web page [2]. As can be seen,
considerable savings can be achieved in terms of page load-
ing time (25,5% on average), and LOC (33,5% compared to
executed LOC, or even 73,8% if compared with the original

Figure 3: Pride home page; 1 – the dashed blue
square marks the UI control, 2 – clickable buttons,
3 – image, 4 – captions

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

826

Figure 4: The UI control extracted from the Pride
home page

LOC), while still being able to reproduce the behavior of the
web page. These results indicate that, in general, web appli-
cations contain more code than is actually needed by their
behavior, and that considerable savings could be achieved
by applying this extraction method. However, in order to
strongly claim this fact, a more extensive web application
test suite will have to be created.

Example. The functionality described in the previous sec-
tion (Extracting UI controls) actually captures all complex
behaviors in the example application (Figure 3), and can be
used for dead code removal. The functionality is realized
with the jQuery library. However, since this is not a large
application, it only uses a subset of the library. This means
that every time, when a user accesses the page, unnecessary
code is transfered and interpreted in the browser. This leads
to slower pages and increases web server traffic.

When re-executing the behavior described in the Extract-
ing UI controls section, we get the following data (Table 4,
first row): application behavior is implemented with 5730
JavaScript LOC (5610 jQuery, and 120 in the home page),
and the average loading time is 268,9 ms2. Out of these
5730 LOC, in this scenario, the web application control goes
through 2059 LOC. After the extraction process is finished,
we end up with only 1458 LOC. This decrease in the total
LOC, also decreases the loading time to 220,3 ms (18,7%
faster loading time).

5. RELATED WORK
The work that we have presented in this paper is closely

related to program slicing, which is defined by Weisner [13]
as a method that starting from a subset of a program’s be-
havior, reduces that program to a minimal form which still
produces that behavior. In its original form, a program is
sliced statically, for all possible program inputs. Static slic-
ing can be difficult, and can lead to slices that are larger
than necessary, especially in the case of pointer usage (e.g.
in C). Further research has lead to development of dynamic
slicing [1] in which a program slice is composed of state-
ments that influence the value of a variable occurrence for
specific program inputs – only the dependencies that occur
in a specific execution of a program are studied.

Program slicing is usually based on some form of a Depen-
dency Graph – a graph that shows dependencies between
code constructs. Depending on the area of application, it

2averaged on 10 uncached, local page loadings, on an Intel
Core i7, 1.73 GHz

can have different forms: a Flow Graph in original Weis-
ner’s form, a Program Dependence Graph (PDG) [5] where
it shows both data and control dependencies for each evalu-
ated expression, or a System Dependence Graph (SDG) [6]
which extends the PDG to support procedure calls rather
than only monolithic programs. The SDG has also been later
expanded in order to support object-oriented programs [7].

In the web domain Tonella and Ricca [11] define web ap-
plication slicing as a process which results in a portion of
a web application which still exhibits the same behavior as
the initial web application in terms of information of interest
to the user. They present a technique for web application
slicing in the presence of dynamic code generation by build-
ing an SDG for server-side web applications. Even though
the server-side and the client-side applications are parts of
the same whole, they are based on different development
paradigms, and cannot be treated equally.

There are also two tools that facilitate the understanding
of dynamic web page behavior: Script InSight [8] and Fire-
Crystal [10]. Script InSight helps to relate the elements in
the browser with the lower-level JavaScript syntax. It uses
the information gathered during the script’s execution to
build a dynamic, context-sensitive, control-flow model that
summaries tracing information. FireCrystal facilitates the
understanding of interactive behaviors in dynamic web pages
by recording interactions and logging information about DOM
changes, user input events, and JavaScript executions. After
the recording phase, the user can use an execution time-line
to see the code that is of interest for the particular behavior.
Compared to our approach they make no attempts to track
data dependencies between different code expressions, nor
to extract the analyzed code.

In the more general domain of Java applications, G&P [4]
is a reuse environment composed of two tools: Gilligan and
Procrustes, that facilitates pragmatic reuse tasks. Gilligan
allows the developer to investigate dependencies from a de-
sired functionality and to construct a plan about their reuse,
while Procrustes automatically extracts the relevant code
from the originating system, transforms it to minimize the
compilation errors and inserts it into the developer’s system.
This work was further expanded [3] with the possibility to
automatically recommend elements to be reused based on
their structural relevance and cost-of-reuse.

This work is the continuation of our previous work [9]
where we have shown how web application UI controls can be
reused. However in that work, for relating code and behavior
we have used only the executrion trace data – all visited
lines have been extracted, and there were no attempts to
identify data dependencies between code constructs. As our
experiments indicate, by also taking data dependencies into
account, we are able able to achieve additional savings - from
5.3% to 64.6% in the number of code lines, and from 22,5%
to 57,5% in the number of executions.

6. CONCLUSIONS AND FUTURE WORK
In this work we have shown how web application code

implementing a certain behavior can be extracted from the
whole web application code by dynamically analyzing appli-
cation execution traces. We have demonstrated how, even in
this highly dynamic, multi-paradigm, multi-language envi-
ronment of the web application client side, dependencies can
be tracked by constructing a client-side dependency graph,
and how by using that graph only the code responsible for

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

827

Table 4: Experimental results on dead code removal from the test applications: LOC (Original LOC), ExLOC
(Executed), ExtLOC (Extracted), GPLT (page loading time gains), GLOC (extracted vs executed code gains)

Page LOC ExLOC ExtLOC GLOC(vsOrig) GLOC(vsExe) GPLT ExEXE ExtEXE GEXE
pride 5730 2059 1458 74,6% 29,2% 18,7% 52374 39137 25,2%
druckbar 5694 1798 1305 77% 27,4% 12,8% 38564 29232 24,2%
accordion 6214 2315 1833 70,5% 20,8% 23,5% 68669 49100 28,5%
slider1 5656 1897 1092 80,7% 42,4% 30% 44793 29779 33,5%
slider2 5855 2233 1451 75,2% 35% 23,4% 28734 17226 40%
humanTypist 5686 1338 473 91,7% 64,6% 54,6% 21446 9122 57,5%
check, radioBox 85 56 53 37,7% 5,3% 7% 1214 941 22,5%
iPhone buttons 5627 1687 957 83% 43,2% 34,3% 27531 14929 45,8%

a certain behavior can be extracted. We have shown how
this extraction process can be used for different purposes:
extracting library code, extracting UI controls, and remov-
ing dead code. Based on these three applications we have
evaluated the approach and have reached two conclusions:
i) the performed method can correctly extract stand-alone
behaviors by analyzing web application traces, and ii) con-
siderable savings in terms of the number of executions, page
loading time, and code size, can be achieved while still being
able to reproduce the demonstrated behavior.

For future work we plan to extend the process to also
support the analysis of server side code and resources. The
client-side and the server-side of the web application, even
though based on completely different paradigms, are parts of
the same whole, and should be studied together. Web appli-
cations are based on a request-response paradigm: a request
is sent to the server, the server processes it, accesses some
data (stored in files, or in a database) and creates a response
that is sent to the client. The response is usually a combi-
nation of HTML, CSS, and JavaScript that will be executed
in the web browser (the client-side of the application). This
is why, in order to enable complete behavior extraction, we
have to extend the process to track dependencies between
the generated, client-side code, and the code and resources
responsible for its generation on the server-side. Also, in this
work we have considered only behaviors that result with a UI
modification, but there are also behaviors that result with
a message exchange with the server-side (downloading data,
or sending information to the server-side), so the process has
to be expanded to support them, too.

We are in the process of setting up a more extensive test
suite of web applications to test that the extracted code al-
ways correctly implements the desired behavior. Also, the
currently performed evaluation can not be used to strongly
claim that web applications contain much more code than is
actually needed by their behavior. This is why the evalua-
tion is being set up to generally determine how much code,
on average, is unnecessarily included in web applications.

7. REFERENCES
[1] H. Agrawal and J. R. Horgan. Dynamic program

slicing. In Conference on Programming language
design and implementation, PLDI ’90, pages 246–256,
New York, NY, USA, 1990. ACM.

[2] S. Galbraith. Quantifying the relationship between
website download time and abandonment by users.
”http://www.simple-talk.com/dotnet/.net-tools/the-
cost-of-poor-website-performance/”.

[3] R. Holmes, T. Ratchford, M. Robillard, and R. J.
Walker. Automatically Recommending Triage
Decisions for Pragmatic Reuse Tasks. In International
Conference on Automated Software Engineering. IEEE
Computer Society, 2009.

[4] R. Holmes and R. J. Walker. Semi-Automating
Pragmatic Reuse Tasks. In International Conference
on Automated Software Engineering, pages 481–482.
IEEE Computer Society, 2008.

[5] S. Horwitz, J. Prins, and T. Reps. Integrating
noninterfering versions of programs. ACM Trans.
Program. Lang. Syst., 11:345–387, July 1989.

[6] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. SIGPLAN Not.,
23:35–46, June 1988.

[7] L. Larsen and M. J. Harrold. Slicing object-oriented
software. In International conference on Software
engineering, ICSE ’96, pages 495–505, Washington,
DC, USA, 1996. IEEE Computer Society.

[8] P. Li and E. Wohlstadter. Script insight: Using models
to explore javascript code from the browser view. In
International Conference on Web Engineering, ICWE
’9, pages 260–274, Berlin, Heidelberg, 2009.
Springer-Verlag.

[9] J. Maras, M. Štula, and J. Carlson. Reusing web
application user-interface controls. In International
conference on Web engineering, ICWE’11, pages
228–242, Berlin, Heidelberg, 2011. Springer-Verlag.

[10] S. Oney and B. Myers. FireCrystal: Understanding
interactive behaviors in dynamic web pages. In
Symposium on Visual Languages and Human-Centric
Computing, pages 105–108. IEEE Computer Society,
2009.

[11] P. Tonella and F. Ricca. Web Application Slicing in
Presence of Dynamic Code Generation. Automated
Software Engg., 12(2):259–288, 2005.

[12] W3Techs. Usage statistics and market share of
javascript libraries for websites, October 2011.
w3techs.com/technologies/overview/javascript library/all/.

[13] M. Weiser. Program slicing. In International
Conference on Software engineering, pages 439–449.
IEEE Press, 1981.

WWW 2012 – Session: Web Engineering 1 April 16–20, 2012, Lyon, France

828

