

Zbornik radova KoREMA 40 (1. svezak), 1995 / KoREMA Proceedings 40 (Part 1) / Bartolić, Juraj; Glavinić, Vlado; Štih, Željko;
Szabo, Aleksandar; Borić, Mladen; Mahović, Sanjin; Vukić, Zoran; Mijat, Neven; Novaković, Branko; Essert, Mario; Jakopović,
Željko; Kovačić, Zdenko (ur.), ISBN 953-6037-08-4, Zagreb, Hrvatska, 19-21. travnja 1995.

REDUNDANT DISK ARRAY ARCHITECTURES AND THEIR IMPACT
TO DISK SUBSYSTEM THROUGHPUT

Dragutin Vuković

Microlab d.o.o.
Savska cesta 41

41000 Zagreb
HRVATSKA

ABSTRACT: Various redundant disk array architectures are described. Their applicability in
personal computer architectures, for various purposes, is considered. Special attention is
given to array architecture impact on disk subsystem's data throughput. Comparative
characteristics of disk array architectures, with accent on throughput, are shown at the end
of this paper.

ARHITEKTURE ZALIHOSTNIH DISKOVNIH NIZOVA I NJIHOV UTJECAJ
NA PROPUSNOST DISKOVNOG PODSUSTAVA

SAŽETAK: Opisane su različite arhitekture diskovnih nizova sa zalihošću podataka.
Razmatrana je njihova primjenjivost u arhitekturama osobnih računala za različite primjene.
Posebna pažnja posvećena je utjecaju arhitekture zalihosnog niza na podatkovnu
propusnost diskovnog podsustava. Na kraju je dan usporedni pregled svojstava arhitektura
zalihostnih diskovnih nizova s naglaskom na propusnost podsustava.

1. INTRODUCTION

As widespread use of microprocessor based
servers increase the importance of data stored
on them, system manufacturers have begun to
develop innovative disk subsystem
architectures to provide both reliability and
data availability, and to achieve access and
transfer rates beyond the physical limitations
of contemporary disk drives. Eventually,
storage subsystems were developed that in-
corporate multiple disk drives in an archi-
tecture that appears to the operating system
as a single physical drive.

First papers [1], [2] mentioning the term
"Redundant Array of Inexpensive Disks"
(RAID) came out of the University of
California, Berkeley. The Berkeley papers do
not provide a strict definition of the term RAID;

they rather imply the definition by giving an
example of the architecture. Here we propose
the definition which will incorporate the
originally described architectures, as well as
the manner in which RAID is used in
microcomputer based systems today:

A Redundant Array of Inexpensive Disks
(RAID) is any disk subsystem architecture that
combines two or more standard physical disk
drives into a single logical drive in order to
achieve data redundancy.

In [1], RAID systems were categorized in
terms of "levels". Although in [2] authors
abandoned it, the term has been adopted by
many industrial sources and has persisted
despite the technical inaccuracy. RAID
architectures are not true levels of
implementation because the higher levels do

not incorporate all of the features of lower
levels. Therefore, we will rather use the term
architectures, throughout this paper.

Here we will present the five architectures of
RAID systems and discuss their applicability in
microcomputer based systems in terms of
overhead and seek time. Overhead is defined
as the ratio between disk space used by
redundant data and total disk space; seek time
represents the mean time needed for a disk
subsystem to find the place on disk surfaces
where data should be written to or read from.

2. RAID Architectures

2.1. RAID 1

RAID 1 architecture, often called "mirrored
disks" or "shadowed disks", maintains a
duplicate disk with an exact copy of the
information for each disk in the subsystem.
Every bit is duplicated, so data redundancy is
obvious with overhead of 50%.

The impact on performance is more difficult to
evaluate. If both drives containing duplicated
data are allowed, through optimized driver or
controller, to start seeking in the same time,
and data are read from the disk that completes
the seek first, average access time will be
better than for a single drive. Data writes
always require writing to two drives, which will
incur penalty relative to a single drive, waiting
to two drives to complete. In a multitasking
system it is possible to take a different
approach. Having two exact copies of data, we
can satisfy two different requests in the same
time by sending one to each drive. If the
system is saturated with read requests, twice
as many requests can be processed and the
seek time will be half that of a single drive.
However, this parallel operation will be
interrupted every time the write request is
received. So this method will heavily depend
upon the read/write ratio and the size of blocks
transferred.

The primary advantage of RAID 1 is its
simplicity. It can be implemented by a dual
channel controller or two controllers, with
minimal change in device driver and without
any changes to the operating system. The
most serious disadvantage of RAID 1 is cost.
This includes special drivers, custom
controllers and disk overhead. The second
problem is physical space. RAID 1 requires
twice as many disks to achieve the same
amount of usable storage space, using
physical space that is not abundant in mi-
crocomputer systems. They also use twice as
much power, fact that is often neglected.

2.2. RAID 2

RAID 2 architecture takes advantage of the
Hamming codes [3] to reduce disk overhead.
The first drive contains the first bit in each data
group, the second disk contains the second
bit, and so forth. If each data group has eight
bits there should be eight disk drives for data
bits, and three disks more for error correcting
code (ECC) bits. In microcomputer
environment the overhead will range from 27%
(11 drives) to 50% (4 drives).

For a read and write operations, all disks must
seek (two times for a write), so there will be a
significant slowdown relative to single drive.
However, once the seek has completed, data
transfer rate will be very high, since all disks
will transmit data simultaneously.

ECC bits of Hamming code serve for two
purposes: they are used to detect an error,
and also to identify the faulty bit. In the
microprocessor environment disk electronics
implements internal error checking and re-
porting, so we will know which disk is faulty.
The Hamming codes are too robust for our
need and we pay penalty for storing redundant
error isolation data. Thus RAID 2 will prove as
unacceptable architecture for microcomputer
systems and we will not consider it further.

2.3. RAID 3

RAID 3 architecture assumes that each disk in
array can detect and report errors, which is
true for disks used in contemporary
microcomputer environments. RAID
architecture need only maintain the redundant
data for error correction. We will have two or
more data disks and only one ECC disk. The
first byte is on the first disk, the second byte is
on the second disk, etc. With n data disks,
n+1st byte is again on the first disk. Each
logical sector of the ECC disk contains the bit-
wise XOR of the corresponding sector from
each data disk.

Data reads require that all of the data disks
seek before reading. Write transactions
require a read transaction, computing new
ECC, a seek by all drives and a write to all
drives including ECC drive. Data transfer rates
will be high as in RAID 2, but this will generate
two disadvantages. Every data drive is
involved in every read or write, so RAID 3 can
process only one transaction at a time. Logical
sector size of RAID 3 storage equals to the
sum of physical sector sizes of all data disks,
getting larger every time new disk is added to
the array. This results in having to read large
amount of data to access small records, as
well as having trouble accommodating disk

buffering schemes in some operating systems.
Often it means that only RAID 3 architectures
with 2 or 4 data disks can be successfully
integrated in microcomputer environment.

2.4. RAID 4

To decline the disadvantages of RAID 3 of
having large and inconsistent transfer block
sizes and inability to perform simultaneous
transactions, RAID 4 eliminates interleaving
transfer blocks across all disks. Rather, entire
first transfer block is placed on the first data
disk, second transfer block on the second
drive, and so forth. There is still only one
dedicated ECC drive.

Reading data involves only a single data drive
and seek time is identical to a single drive
architecture. Also, multiple simultaneous
requests could be issued to different disks,
depending on how data are segregated into
distinct subsets for inclusion on different
drives.

Write transaction requires reads and writes of
the data drive involved and the ECC drive.
ECC drive has to be read also, because it
contains ECC information for other data
blocks. Therefore write operations will have
slightly longer seek times relative to single
drive. More important is that the ECC drive is
involved in every write operation, so
parallelism in write operations is not possible
as in read operations.

The primary advantage of RAID 4 is the ability
to process multiple simultaneous reads, which
make it very efficient for transaction or
multitasking systems with high read/write ratio.

2.5. RAID 5

Inability to satisfy more than one write request
at a time, in both RAID 3 and 4, stems from
the use of dedicated ECC disk. RAID 5 tries to
eliminate this problem by distributing ECC
blocks, so that each disk in array contains a
combination of data and ECC blocks. Transfer
blocks are entirely placed on single disks as in
RAID 4.

Seek times are the same as in RAID 4, but
multiple simultaneous writes are possible. In
saturated disk request situation, there could be
half as many write transactions as the number
of disks.

3. SEEK TIMES

In the above descriptions it was mentioned
several times that seek times for an array are
either lower or higher than for a single drive,
because we either could take the best or had
to wait for the worst of them.

When data has to be read, two cases exist. If
there are multiple copies, we can issue seeks
to all of the drives involved and read data only
from the first drive to complete the seek. The
second case is when data are spread across
several drives, so that all of the drives involved
must complete their seek before the actual
transfer can take place.

Redundancy always involves writing on at
least two disks, so multiple drives must seek
before the data can be written. In many cases
the data and existing ECC will have to be read
before writing.

Let us assume that RAID subsystem contains
n identical disks which is true for the vast
majority of them. Also it could be proven that
the seek time of single disk varies according to

normal distribution N() with  being the

mean seek time for a single disk, and  being
standard deviation of the single drive seek

time. Let us also define the i,n to be mean

seek time for first i out of n drives, and i,n to
be the corresponding standard deviation.

To answer how much does redundant data
improve seek we will assume that seek
commands are issued to all n drives and the
data are read from the first drive to complete
the seek. In this case we are interested in

value of 1,n and 1,n which are shown in figure
1 for number of drives of 2 to 8 and supposed

=10ms and =2ms.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

2 3 4 5 6 7 8

broj diskova u nizu





Figure 1. Values of 1,n and 1,n

How much does multiple drive seeks slow
down the system? To answer this, we will
assume that the seek commands are issued to
all n drives, and we have to wait until all of
them complete the seek. In this case we are

interested in n,n and n,n. Their values, shown
in figure 2, are computed under the dame
assumptions as in previous case.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

2 3 4 5 6 7 8

broj diskova u nizu





Figure 2.: Values of n,n and n,n

Values from the tables could be computed
starting with probability density functions for
seek time of the single drive, but the formulas
would be too complex to integrate. Therefore,
the values were determined using stochastic
modeling techniques.

Table 1 summarizes characteristics of various
RAID architectures. All values shown are
normalized to corresponding value of the
single drive. Characteristics shown include:
overhead, number of simultaneous reads,
number of simultaneous writes, ability to read
and write simultaneously, average seek time
(ts) for single or saturated read and writes, and
virtual transfer rate (Tr) for single and
saturated reads and writes.

architecture RAID architecture

characteristics 1 3 4 5

total number of
drives

n

(even)

n

n>2

n

n>2

n

n>2

overhead 1/2 1/n 1/n 1/n

simult. R n/2 1 n-1 n-1

simult. W n/2 1 1 n/2

simult. R/W? if n>2 no no yes

ts (single R) <1 >>1 1 1

ts (single W) 1 >>1 >1 >1

ts (saturated R) 2/n >>1 1/(n-1) 1/(n-1)

ts (saturated W) 2/n >>1 >1 2/n

Tr (single R) 1 n-1 1 1

Tr (single W) 1 n-1 1 1

Tr (saturated R) n/2 n-1 n-1 n-1

Tr (saturated W) n/2 n-1 1 n/2

Table 1. RAID architecture characteristics

4. CONCLUSION

Analysis and discussion presented here
should not be thought off as aimed to dis-
criminate or point out the generally best of
RAID architectures. Applicability of any
architecture should be considered on per case
basis. It is our hope that this paper could be of
use in this process.

LITERATURE

[1] D.A.Patterson, G.Gibson, R.H.Katz, A
Case of Redundant Arrary of Inexpensive
Disks (RAID), (undated, about 1987)

[2] D.A.Patterson, G.Gibson, R.H.Katz,
Introduction to Redundant Arrarys of
Inexpensive Disks (RAID), IEEE 1989

[3] R. W. Hamming, Error Detecting and
Correcting Codes", The Bell System
Technical Journal, Vol XXVI, No. 2, (April
1950), pp. 147-160.

