URBAN TRANSPORT
XVIII

Urban Transport and the Environment in the 21st Century

Editors
J.W.S. Longhurst & C.A. Brebbia
Urban Transport XVIII

Urban Transport and the Environment in the 21st Century

WIT Press publishes leading books in Science and Technology.
Visit our website for the current list of titles.
www.witpress.com

WIT eLibrary

Home of the Transactions of the Wessex Institute.
Papers presented at Urban Transport 2012 are archived in the WIT eLibrary in volume 128
of WIT Transactions on the Built Environment (ISSN 1743-3509).
The WIT eLibrary provides the international scientific community with immediate and
permanent access to individual papers presented at WIT conferences.
Visit the WIT eLibrary at www.witpress.com.
EIGHTEENTH INTERNATIONAL CONFERENCE ON URBAN TRANSPORT AND THE ENVIRONMENT

Urban Transport XVIII

CONFERENCE CHAIRMEN

J.W.S. Longhurst
University of the West of England, UK

C.A. Brebbia
Wessex Institute of Technology, UK

INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

S. Amirkhanian
S. Basbas
C. Borrego
A. Daadbin
L. D'Acierno
M. Lambrinos
J. Lumbreras
B. Montella
A. Pratelli
J. Rosinski
F. Russo
M. Taniguchi

Organised by
Wessex Institute of Technology, UK

Sponsored by
WIT Transactions on the Built Environment
International Journal of Sustainable Development and Planning
Urban Transport XVIII

Urban Transport and the Environment in the 21st Century

Editors

J.W.S. Longhurst
University of the West of England, UK

C.A. Brebbia
Wessex Institute of Technology, UK
Preface

This book contains selected peer reviewed papers presented at the 18th International Conference on Urban Transport and the Environment held at A Coruña, Spain in May 2012.

Transportation in urban areas, with its related environmental and social impacts, is a topic of significant concern for policymakers in both municipal and central government and for the urban citizens who require effective and efficient transport systems.

Urban transport systems require considerable studies to devise and then safeguard their operational use, maintenance and operational safety. Transportation systems produce significant environmental impacts and can enhance or degrade the quality of life in urban centres. The research goal to which this Conference contributes is to devise and implement transportation systems that contribute to a sustainable urban environment through minimising the negative environmental impacts whilst improving the socioeconomic and cultural development of the urban environment.

The depth and breadth of topics covered by this Conference allows for robust academic analysis of the complex interactions of urban transport and the environment and provides opportunities for establishing practical action strategies for resolving urban transportation problems. A distinctive element of the Urban Transport and the Environment series is the interaction between academic and practical perspectives where theories and ideas are debated and their practical applications rigorously tested. Clearly the challenge of providing effective and efficient transport systems in urban settings remains an acute challenge with financial, political and environmental constraints limiting the ability of transport system planners and operators to deliver the high quality outcomes expected by the public.

This international conference on Urban Transport and the Environment has reached its 18th meeting and has successfully established itself as an important annual event in the urban transport world. It has always attracted a distinguished international
audience and provided opportunities for academic and practice discourse. The conference series started in Southampton in 1995; continuing in Barcelona (1996); Acquasparta, Italy (1997); Lisbon (1998); Rhodes (1999); Cambridge, UK (2000); Lemnos, Greece (2001); Seville (2002); Crete (2003); Dresden (2004); the Algarve (2005); WIT campus in the New Forest (2006); Coimbra, Portugal (2007); Malta (2008); Bologna (2009); Cyprus (2010) and Pisa (2011). The importance of these meetings is reflected in the papers published in the corresponding volumes of the series of Transactions of Wessex Institute, which are archived in the e-Library of the Institute at library.witpress.com, where they are permanently and easily available to the international community.

This conference book corresponding to the 18th meeting in the series, continues in the tradition of the preceding 17 volumes by presenting papers covering a wide range of contemporary concerns and issues within the sphere of urban transport and the environment. Topics covered include

- Environmental impact
- Environmentally friendly transport modes
- Transport strategies
- Public transport systems
- Transport modelling and simulation
- Urban transport management
- Transport safety and security
- Infrastructure
- Land use and transport integration

The Editors are grateful to all contributors for their excellent papers and to the members of the International Scientific Advisory Committee and other colleagues for their peer review services.

The Editors
A Coruña, Spain, 2012

The conference will reconvene for the 19th meeting of the Urban Transport and the Environment series on the island of Kos from 29th to 31st May, 2013.
Contents

Section 1: Environmental impact

Modelling of tree-induced effects on pedestrian exposure to road traffic pollution
C. Borrego, J. Valente, J. H. Amorim, V. Rodrigues, P. Cascão & A. I. Miranda ... 3

Environmental assessment of different vehicle technologies and fuels
F.-S. Boureima, M. Messagie, N. Sergeant, J. Matheys, J. Van Mierlo, M. De Vos, B. De Caevel, L. Turcksin & C. Macharis ... 15

Validation of the well-to-wheel approach in the Ecoscore methodology with life cycle assessment for passenger cars
N. Sergeant, M. Messagie, F.-S. Boureima, J.-M. Timmermans, L. Turcksin, C. Macharis & J. Van Mierlo ... 27

Environmental breakeven point: an introduction into environmental optimization for passenger car replacement schemes
M. Messagie, F.-S. Boureima, N. Sergeant, J.-M. Timmermans, C. Macharis & J. Van Mierlo ... 39

Biofuels for urban transport: Brazilian potential and implications for sustainable development
M. D. Berni, S. V. Bajay & P. C. Manduca .. 51

Quantification of tire and road wear particles in the environment
J. M. Panko, J. A. Chu, M. L. Kreider, B. L. McAtee & K. M. Unice .. 59

Improving safety and sustainability of urban transport surfaces through the recycling of reclaimed extinguishing powders
F. G. Praticò & D. Tramontana ... 71
Section 2: Environmentally friendly transport modes

Comparison of greenhouse gas emissions from different vehicles covering the entire life cycle
J. Perez, J. Lumbreras, J. M. López, J. A. García, M. Vedrenne, J. M. de Andrés & D. Paz ... 85

Toward zero carbon with environmentally friendly transport modes
E. Ö. Aktuğlu Aktan .. 97

Section 3: Transport strategies

Decalogue for sustainable urban transport strategy
J. Malasek & A. Jaździk-Osmólska .. 109

The influence of the European CiViTAS ELAN project on development of a better and sustainable public transport in the City of Zagreb
D. Baric, L. Novacko & H. Pilko ... 119

Transportation proposal for sustainable development integrated with the corridor of the Nile Valley in Egypt
H. El Shimy .. 129

Evaluation of railway surrounding areas: the case of Ostrava city
I. Ivan, T. Boruta & J. Horák ... 141

Towards a post-fossil urban transport system: an actor-oriented approach
H. Hüging & S. Böhler-Baedeker ... 153

Harm minimisation in a school zone: a strategy for sustaining pedestrian safety
Z. Ebrahim & H. Nikraz .. 165

Indicators for sustainable pedestrian mobility
S. Amoroso, F. Castelluccio & L. Maritano .. 173

How to reconcile operator and manufacturer risk control points of view during the construction of a transport system
A. Cointet & C. Laval ... 187
Section 4: Public transport systems

Analysis of the interaction between travel demand and rail capacity constraints
L. D’Acierno, M. Gallo, B. Montella & A. Placido .. 197

The need of improvement of transport conditions in large Romanian cities
V. Rădulescu, I. Străinescu, L. Moroianu, C. Goia, E. Tudor,
F. Bozaș, V. Lupu, B. Rădulescu & M. Tănase .. 209

A methodology to improve a public transport system
G. Salvo, L. Caruso & N. Santoro ... 219

Challenges for integrating bicycles and public transport in Brazilian metropolitan regions
M. S. G. Tobias, M. L. A. Maia & I. M. D. Pinto ... 229

An efficient cost analysis of monorail in the Middle East using statistics of existing monorail and metro models
A. Ghafooripour, O. Ogvuda & S. Rezaei .. 241

Rapid transit service in the unique context of Holy Makkah: assessing the first year of operation during the 2010 pilgrimage season
I. Kaysi, M. Sayour, B. Alshalalfiah & A. Gutub .. 253

Medium-capacity transit systems: some reflections about making the right choice
M. Novales, A. Orro, E. Conles & J. Anta ... 269

Improving performance of public transit buses by minimizing driver distraction
K. A. D’Souza & S. K. Maheshwari ... 281

A duty-block network approach for an integrated driver rostering problem in public bus transport
L. Xie & L. Suhl .. 295

Section 5: Transport modelling and simulation

Estimation of gap acceptance parameters for HCM 2010 roundabout capacity model applications
A. Gazzarri, M. T. Martello, A. Pratelli & R. R. Souleyrette 309

Simulation of impacts of yards on flow conditions using a mesoscopic traffic assignment approach
M. Di Gangi, A. Croce & V. Velardi .. 321
Estimating the effects of access time windows in the management of urban delivery fleets
R. Grosso, J. Muñuzuri, M. Rodríguez Palero & P. Aparicio ... 335

Access optimization in an urban area: a case study
N. Filip, M. Moldovan & C. Golgot .. 347

A fuzzy logic approach to modelling the passengers’ flow and dwelling time
A. Berbey, R. Galan, J. D. Sanz Bobi & R. Caballero .. 359

Modelling a vehicle’s speed fluctuation with a cellular automata model
J. Zheng, K. Suzuki & M. Fujita ... 371

Transport and traffic management by micro simulation models: operational use and performance of roundabouts
F. G. Praticò, R. Vaiana & V. Gallelli ... 383

Urban transport scenario test design with modelling works
Y. Chen & J. Yao ... 395

Tunnel lighting design: 3D modeling reduces whole of life cost
R. A. Morrison ... 407

Section 6: Urban transport management

Urban car sharing: an overview of relocation strategies
E. M. Cepolina & A. Farina .. 419

Analysis of possible risks in introducing congestion charging and carpooling measures in Zagreb
M. Slavulj, I. Grgurević & J. Golubić .. 433

Tehran traffic congestion charging management: a success story
H. Behruz, A. Safaie & A. P. Chavoshy ... 445

In search of sustainability: examining the variation in a national planning model when applied to different urban transport projects
L. Hansson .. 457

Calibration of international capacity models for dual lane roundabouts during saturation flow condition
H. M. N. Al-Madani .. 469

Urban freight transport initiatives – knowing when it is worth the cost
J. Holmgren .. 481
Implementation and management of private traffic limitation in urban areas: experiences and methodologies
M. E. Lopez Lambas & S. Ricci ... 493

Parking inventory management: a logistics perspective in urban traffic congestion mitigation
V. Fiorillo & R. Secchi ... 503

Demographics do matter: an analysis of people’s travel behaviour of different ethnic groups in Auckland
A. Syam, A. Khan & D. Reeves ... 513

Exploring the use of the saw and seal method for mitigation of reflective cracking in composite pavements
S. A. Arhin, E. C. Noel, D. Wright, W. Khan & V. Hong 527

Section 7: Transport safety and security

Online monitoring of essential components helps urban transport management and increases the safety of rail transport
A. Daadbin, J. Rosinski & D. Smurthwaite ... 541

Complex system understanding back to basics! The functional analysis tracking a railway system case
A. Cointet & C. Laval ... 553

Only-Bus System for intercity mass transit to reduce several numerous road traffic accidents
P. E. Faye, H. Azuma & I. Yoshida ... 563

The relationship between urban accidents, traffic and geometric design in Tehran
S. Aftabi Hossein & M. Arabani ... 575

Section 8: Infrastructure

Analysis of traffic capacity and design for the reconstruction of a large roundabout in the city of Zagreb
I. Legac, H. Pilko & D. Brčić ... 591

Comparisons of robustness measures as a communicative means for involvement of decision makers
A. V. Jensen ... 603
Re-evaluating superelevation in relation to drainage requirements and vehicle dynamics
D. B. Chaithoo & D. Allopi... 615

Review of sub-Saharan African gravel roads management system: Tanzanian case study
R. R. Mwaipungu & D. Allopi... 629

Geotechnical consideration regarding the routing of twin railway tunnels across the Karoun River
B. Esmaeili, A. A. Safikhani & A. A. Amiri Samani 641

Certain considerations in the alignment design of urban railways
B. Kufver & G. Hallert.. 649

Effect of cement coated aggregates on the creep and deformation characteristics of asphaltic concrete bituminous mixtures
I. Kamaruddin, Darmawan & M. Napiah .. 661

Improving infrastructure sustainability in suburban and urban areas: is porous asphalt the right answer? and how?
F. G. Praticò & R. Vaiana... 673

Effect analysis on heavy tuned mass damper system used in urban transportation
L. Li, C. Geng & Q. Yu... 685

Section 9: Land use and transport integration

Integration of transport networks based in spatial data management: a methodological essay on the metropolitan area of Porto
A. Costa, E. Pacheco & P. Trocado.. 699

Multi-modal transit hubs: enhancing sustainability through joint highway development
A. L. Savvides.. 709

A design framework for measuring transit oriented development
Y. J. Singh, M. H. P. Zuidgeest, J. Flacke & M. F. A. M. van Maarseveen 719

Author index.. 731
Analysis of traffic capacity and design for the reconstruction of a large roundabout in the city of Zagreb

I. Legac, H. Pilko & D. Brčić
Faculty of Transport and Traffic Sciences, University of Zagreb, Croatia

Abstract

The paper deals with the issues regarding the need for the reconstruction of a large three-lane roundabout with the reached AADT traffic of over 90,000 [veh./day] and intense tram traffic at the level below the road surface. Since the existing roundabout dates back to 1985, the design solution with tangential merging of three-lane approaches provides an additional cause and reason for reduced capacity and safety component of the entire intersection. In the new urban, and commercial and spatial surrounding, with the help of radical reconstruction it is necessary to achieve a modern design solution, for which purpose extensive interdisciplinary research was conducted. Common multi-disciplinary methods and criteria are presented in six proposed design solutions, with particular focus on the capacitive-safety and design elements and their interrelations.

Keywords: large three-lane roundabout, reconstruction, capacity-safety-design, multi-disciplinary analysis, investment decision.

1 Introduction

The paper presents the reconstruction analysis of the Jadranska Avenue and Dubrovnik Avenue for the purpose of which three conceptual solutions have been used (N. Šubić, AKING/GF and M. Vukušić). The objective of the performed analyses is to find the optimal traffic, urban, and technical solution, using multi-criteria procedures and decision-making. The reasons for the design are presented as well as the current traffic condition on the location of this roundabout, and all the problems regarding the capacity and safety of traffic. The presented data and the description of the traffic and safety problems show the
reasons why the municipal administration wants to bring the roundabout into the condition of sufficient capacity and safety of traffic participants. The evaluation of the proposed/variant solutions should be carried out according to one of the advanced and generally acknowledged methods. For the multi-criteria decision-making the so-called AHP (Analytic Hierarchy Process) method has been selected because the concrete case refers to a large number of criteria and decision-makers. The solving of complex decision-making problems using this method is based on a number of smaller and soluble rankings per component criteria (objective – criteria – alternatives). In the solving of the multi-criteria analysis the Expert Choice software package will be used.

2 Current state

The Jadranska Avenue – Remetinečka Avenue – Avenue Dubrovnik – Jadranski Bridge roundabout is located at the south-western entry into the city of Zagreb, opened to traffic on 9 September 1985. Before reconstruction it was designed as a signalized at-grade intersection, with grade-separated pedestrian traffic and with no tram traffic. Fast urbanisation, insufficient number of bridges spanning the Sava river, and increased traffic load of the south-western entry into the city influenced the increased traffic load of the traffic network. With the aim of increasing the traffic safety, increasing the capacity and introducing the tram traffic to the traffic junction, a roundabout was constructed as the most suitable solution at the upper level, and a passage for the pedestrians (pedestrian paths) and trams with relief tracks at the lower level.

2.1 Design and traffic flows

The respective traffic complex has the form of a big intersection with a circular flow with four approaches: Jadranska Avenue, Avenue Dubrovnik, Jadranski Bridge and Remetinečka Road (Figure 1). The intersection is located in the

![Figure 1](image_url)

Figure 1: Roundabout Jadranska Avenue – Avenue Dubrovnik; a) disposition in urban network; b) photo viewed from the south-east [1, 2].
flatland without any major limitations, whereas the approach routes are at longitudinal gradients of 1% to 3%. The external diameter of the roundabout (D_v) is 148 metres, whereas the internal diameter (D_u) is 124 metres. The carriageway is divided into three lanes each four metres wide, and the approaches are designed with three lanes, but 3.5 metres wide. The approaches merge into the roundabout with a radius (R) of 80 metres except for the northern approach, which merges with a radius (R) of 200 metres. The circular carriageway has a gradient of about 2% towards the centre because of the rainfall drainage [1–3].

![Diagram](image)

Figure 2: Layout design elements of the current intersection [2].

In order to present the traffic load of the intersection, the latest measurable data collected on 24 October 2008 (Table 1) were used. The traffic load of the intersection amounted to $Q_k = 99,023$ [veh/day] registering a more pronounced load on all the approaches except on approach 2 [4].

Table 1: AADT at Jadranska avenue – avenue Dubrovnik roundabout [4].

<table>
<thead>
<tr>
<th>APPROACH</th>
<th>Movement of vehicles</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right</td>
<td>Straight</td>
</tr>
<tr>
<td>1. Jadranska Avenue</td>
<td>11</td>
<td>11,060</td>
</tr>
<tr>
<td>2. Remetinečka Road</td>
<td>3,928</td>
<td>7,126</td>
</tr>
<tr>
<td>3. Avenue Dubrovnik</td>
<td>24,647</td>
<td>8,344</td>
</tr>
<tr>
<td>4. Jadranski Bridge</td>
<td>12,975</td>
<td>4,575</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.witpress.com, ISSN 1743-3509 (on-line)
2.2 Traffic safety

The analysis and the checking of the level of traffic safety was performed on the basis of the video recording, and on the analysis of the approach speeds, visibility and equipment of the intersection, and the results of this research have been published in the earlier communications [1–3, 5]. However, because of the purpose and the objective of this work, the collision diagram has been presented (Figure 3), and the official data of the traffic police for the period from 2001 to 2010 have been processed and analysed [6]. Table 2 shows the total number of accidents per years of occurrence, per number and types of accidents, and per number of the injured per years and types of accidents. The observed period shows that the most usual types of accidents are:
- rear-end collisions accounting for as many as 1,185 accidents, or 60.46% out of the total number of accidents in which 111 persons were injured or 59.04% of the total number of the injured;
- failure to yield at entry (entering-circulating) accounting for 506 incidents or 25.82%, with 39 injured or 20.75% of the total number of the injured.

Other types of incidents have caused only 41 or 2.0% of accidents, in which 12 persons were injured or 6.38% of the total number of the accidents.

![Diagram of collisions in the roundabout](image-url)
Table 2: Number of accidents and injured according to the types of traffic accident [6].

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of accident</th>
<th>2. Failure to yield at entry</th>
<th>3. Weaving in circulatory roadway</th>
<th>4. Rear-end collision</th>
<th>6. Driving in wrong direction</th>
<th>7. Skidding of the circulatory roadway</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>349</td>
<td>49</td>
<td>26</td>
<td>269</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2002</td>
<td>313</td>
<td>52</td>
<td>20</td>
<td>234</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>2003</td>
<td>354</td>
<td>106</td>
<td>26</td>
<td>206</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2004</td>
<td>248</td>
<td>37</td>
<td>24</td>
<td>179</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2005</td>
<td>136</td>
<td>48</td>
<td>12</td>
<td>67</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2006</td>
<td>129</td>
<td>48</td>
<td>15</td>
<td>57</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2007</td>
<td>124</td>
<td>46</td>
<td>11</td>
<td>58</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2008</td>
<td>104</td>
<td>28</td>
<td>20</td>
<td>46</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2009</td>
<td>119</td>
<td>49</td>
<td>13</td>
<td>44</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2010</td>
<td>84</td>
<td>43</td>
<td>8</td>
<td>25</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sum</td>
<td>1960</td>
<td>506</td>
<td>175</td>
<td>1185</td>
<td>6</td>
<td>47</td>
</tr>
<tr>
<td>Percentage [%]</td>
<td>25.8</td>
<td>8.9</td>
<td>60.4</td>
<td>0.3</td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>
3 Reconstruction proposal

3.1 Variant 1/Nikola Šubić [7]

Nikola Šubić, working on his Diploma Thesis in 2006 proposed a solution for the reconstruction of the respective roundabout. The proposal consists of two steps (RI, RII) which have the purpose of improving the safety by eliminating the external lane in the circular carriageway, by verticalisation of all approaches and by segregating of the right-turners from every approach, and to increase the roundabout capacity by constructing an overpass from the East-West direction and vice versa. Step RI – spatial and traffic improvement of the current condition in the sense of: approach verticalisation, channelling of vehicles, elimination of the external lane (two lanes in the circular carriageway to reduce the conflicting situations and because of the usage level of the internal marginal lane). This is to achieve spatial – time distances between approaches, adding one more lane for right turns because of increased traffic intensity of right-turners at approaches East 3 and North 4. Step RII – follow-up of step RI regarding the construction of the overpass in the East-West and West-East direction, with grade difference from the current condition in the inter-phase by 5.50 [m] and the length of approach ramps of 180-200 [m] to overcome the climb of 4% and extension regarding widening of the approaches West 1 and East 3 due to the construction of the overpass (Figure 4) [7].

![Figure 4: Layout of Variant 1 according to [7].](image)

3.2 Variant 2 – 5/Faculty of Civil Engineering and AKING [4]

The Faculty of Civil Engineering, University of Zagreb and the business association AKING d.o.o. made in 2008 a study for the reconstruction proposal of the intersection Jadranska Avenue and Avenue Dubrovnik. For the realisation
of the project four variants of the conceptual solutions were developed. The variant solutions are briefly described here:

- **Variant 2** traffic flows West – East are guided over viaducts at +2 level
- **Variant 3** traffic flows West – East are guided through tunnels at -1 level
- **Variant 4** traffic flow West – North is guided over viaduct at +2 level, traffic flow North – East is guided through the tunnels at -1 level
- **Variant 5** traffic flow North – East is guided through tunnel at -1 level [4].

Based on the analysis of the financial aspects of construction, space occupancy and capacity increase, as optimal solution **Variant 3** (Figure 5) was selected [4]. Apart from the construction of a tunnel at the level -1 **Variant 3** proposes the keeping of three lanes in the circular carriageway, introducing traffic lights at the basic roundabout, and on all approaches the tangential segregation of the right turners that has already been achieved by the installation of grade separators in 2001 [4].

![Figure 5: Layout of Variant 3 from the study of solution selection [4].](image)

3.3 Variant 6/Matko Vukušić [8]

Working on his Final Thesis in 2011 Matko Vukušić proposed a solution for the reconstruction of the respective intersection (Figure 6). The proposal consists of Phase I and Phase II. In Phase I of the reconstruction the approaches are
verticalised, right turners are channelled at all approaches except for the approach Jadranska Avenue, the northern and southern carriageways of Jadranska Avenue are spaced out, and the number of lanes on its southern part is reduced (from three to two), in order to prepare it for the digging of the tunnel in the next phase. The approaches to the roundabout are designed with radius $R = 20 \, [m]$ to enable merging of the cargo vehicles. Furthermore, the number of traffic lanes in the roundabout is reduced in order to increase the traffic flow safety in the roundabout. The right turners are physically segregated at all approaches except the western one 1, and because of the increased intensity one traffic lane each is added to the northern 3 and eastern 4 approach. The second phase of reconstruction consists of the construction of two tunnel pipes in the East-West and West-East direction (Jadranska Avenue - Avenue Dubrovnik), and the construction of the overpass from the North towards the East (Jadranski Bridge - Avenue Dubrovnik). The length of the ramps for descending (entry) into the tunnels and climbing (exit) from the tunnels is about 150 metres with a decline of 4%. The tunnels are located at 5.5 metres below the level of the trams that pass below the roundabout. The overpass is constructed from the approaching and exiting ramps with a gradient of 4% that are about 150 metres long and a horizontal section which is elevated 5.5 metres above the roundabout carriageway. For easier merging of the vehicle from the overpass from the North, those from the tunnel from the West, and the segregated right turners from the South to the Avenue Dubrovnik the eastern exit from the roundabout, which is not required any more, is closed [8].

Figure 6: Layout of Variant 6 according to [8].
4 Results of multi-criteria evaluation and selection of the optimal solution

The AHP (Analytic Hierarchy Process) method was selected for multi-criteria decision-making because in the concrete case a larger number of criteria and decision-makers is considered. The basic elements of the hierarchical structure in case of AHP model are the function of objective, alternatives (variants), criteria and subcriteria [9, 10]. The hierarchical structure of the multi-criteria analysis model in the function of project selection is presented schematically in Figure 7. The result of applying the multi-criteria analysis is the determination of the best variant for the reconstruction of the Jadranska Avenue and Avenue Dubrovnik. Since the function of objective, alternatives and criteria have already been defined, the procedure of determining the best variant means:

- defining of relative importance of criteria in relation to the research objective, i.e. criteria ranking (comparison of relative importance of criteria regarding all criteria pairs (Saaty scale), calculation of the criteria weights),
- ranking of certain variants/alternatives regarding a single criterion, i.e. calculation of the values of alternatives according to criteria,
- calculation of the total priority for each variant/alternative, selection of the best variant/alternative [9].

![Schematic presentation of the hierarchic structure of the multi-criteria analysis model](image)

Figure 7: Schematic presentation of the hierarchic structure of the multi-criteria analysis model [11].

In solving the subject of multi-criteria analysis the software package Expert Choice presented in Figure 8 was used. Since the role of measures/criteria is to describe the alternatives in such a way that it is possible for two alternatives to clearly determine which is more suitable regarding the considered criterion, the following criteria and subcriteria have been selected (Figure 9):

- Technical features: level of complexity of the facilities on the route, level of complexity of the route design;
- Ecology: noise, land occupancy, spatial and urban planning influence;
- Economic criterion: construction cost, land purchase;
- Reconstruction of the existing facilities [11].
Figure 8: Presentation of alternatives, criteria, and subcriteria using expert choice software package [11].

In determining the weights of the criteria more complex methods have been developed, and also the assessments of the decision-makers are important, regarding the knowledge about the problems and the experience.

By applying the AHP method and the simulation in software package Expert Choice with the aim of selecting the optimal reconstruction variant of the Jadranska Avenue and Avenue Dubrovnik intersection the result has been obtained according to which the best variant is **Variant 3** (weight 0.231) Figure 10.

Figure 9: Criteria in relation to the function of objective.
5 Conclusion

Multiple checks of the traffic serviceability of a big roundabout at the periphery of the City of Zagreb confirm that its radical reconstruction is necessary in the near future. For this purpose several analyses of the traffic flows have been carried out, with special emphasis on the traffic capacity and safety components, and on their corrections with the design specifics of the intersection.

Consequently to the performed traffic and urban planning analyses certain solutions of the roundabout reconstruction have been developed. For objective selection of the optimal solution multi-criteria decision-making was carried out using AHP (Analytic Hierarchy Process) method. In solving the multi-criteria analysis procedure the software package Expert Choice was used with precisely defined criteria and subcriteria. By using the AHP method and simulation in the software package Expert Choice the obtained result showed that the most suitable is Variant 3 for the reconstruction of the Jadranska Avenue – Avenue Dubrovnik roundabout in Zagreb. It should be noted that for the final analyses and the selection of the optimal solution the objective weights/ponders of the basic criteria should be objectivised and the equality of the processing of the considered versions of reconstructing the respective intersection should be insured.

References

[4] Faculty of Civil Engineering and AKING d.o.o., Rekonstrukcija raskrižja Jadranske i Dubrovačke avenije - Studija izbora rješenja, Faculty of Civil Engineering and AKING d.o.o., Zagreb, pp. 1–13, 2008.

