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Abstract- Software systems continuously grow in size and 

code complexity, the latter most evident through greater 

component interconnectedness. This leaves more space for 

bugs which introduce risks such as exposure to security 

threats. Combinatorial testing looks for interaction failures 

in order to improve the system security and effectiveness 

guarantees. One of the most effective test selection 

approaches under combinatorial testing are experimental 

design extensions for software testing. Covering array test 

sets are compact while maintaining at the same time 

complete combinatorial coverage up to the desired level.  

Smaller test sets with customizable level of assurance can 

drive testing costs down substantially. The paper presents a 

survey of research into combinatorial testing suite factors 

while also identifying possible future research ideas. 

I. INTRODUCTION 

Software systems continuously grow in size and code 
complexity. Both factors contribute to greater danger of 
programming mistakes that lead to unexpected results. 
Such mistakes introduce various forms of risk that include 
security risk due to exploits, irreversible impacts in safety-
critical systems, negative perception of product and 
company,  etc.  NIST report [1] estimates the cost of 
inadequate software testing to US economy to be in the 
range 22.2-59.5 billion USD per year despite the 
allocation of substantial project resources to the testing.    

All said underlines the importance of adequate testing, 
which tries to find faults and identify their causes with 
minimal allocation of budget and time. Combinatorial 
testing (CT) selects test cases sampling out different 
combinations of parameter values. One of the most 
effective test set creation approaches under CT are 
experimental design extensions for software testing and 
such will be the focus of this work. Combinatorial testing 
methods produce compact test sets with desired 
characteristics that, if done properly, can greatly reduce 
testing costs, while simultaneously guaranteeing the 
required level of product faultlessness. In short, we can 
balance cost and risk by selecting a covered interaction 
level. The illustration of compactness of the generated 
covering array test sets for a system with 100 binary input 
variables is given in Tab.1 where the test set sizes were 
derived using the data from [2]. 

Exhaustive testing is infeasible, but [3] and [4] 
empirically demonstrated that all the known failures in a 
variety of domains were triggered by interactions of 6 or 
less parameters, as depicted in Fig.1. These results are 
very important and encouraging because the generation of 
test sets with this bounded interaction strength is tractable 
and the resultant test sets are substantially smaller than the 
exhaustive ones. 

 

Figure 1 Cumulative distribution of triggered faults with increasing test 
interaction covering strength, taken from [4] 

 
This paper is organized as follows; combinatorial 

testing components are covered in part 2, tools and 
applications are listed in part 3. Section 4 concludes the 
paper. 

II. COMBINATORIAL TESTING 

Combinatorial testing is a black-box (I/O based, 
functional) technique that seeks to detect faults caused by 
parameter interactions, hence also covering interaction 
between system components.  

The typical measure used for comparison of 
combinatorial test sets is the combinatorial coverage. The 
t-way combinatorial coverage is the percentage of t-tuples 
occurring in the test set, relative to the total number of 
possible t-tuples. Generated combinatorial test using 
covering arrays  cover 100% parameter interactions up to 
the desired interaction strength, while the higher 
interaction levels are only partially covered (<100%). 
Typical test sets under CT are: covering arrays, 
orthogonal, mixed level and variable strength covering 
arrays. 

Covering array CAλ (N; t, k, v), is an array with N 
cases and k parameters that satisfies the constraint that 
each t-tuple occurs at least λ times, with usual value for 
software testing of λ=1 if not stated otherwise. t denotes 
the strength of completely covered interaction level, k is 
the set of parameters, and v is the domain of all the 
parameters. Rows of an array list test cases and columns 
list the parameters. Lower bound for the number of tests in 
minimal CA is v

t
, while the upper bound for v

t
→∞ and 

k→∞ [5] is: 

(t-1) v
t 
log(k) (1+o(1))   (1) 
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TABLE I.    TEST SET SIZES FOR DIFFERENT COVERED INTERACTION 

STRENGTHS 

Covered interaction strength 
(t) 

# of test cases in test set 

1 2 

2 10 

3 33 

4 98 

5 202 

6 718 

100 (exhaustive) 2100≈1.267*1030 

 

Orthogonal array OAλ (N; t, k, v), is a covering array 
with the constraint that all the t-tuples have to occur 
exactly λ-times each (i.e. they are balanced). Orthogonal 
arrays don’t exist for some combinations of parameters 
(t,k,v)  and  if they do exist, they are harder to generate 
than covering arrays and are usually larger. The positive 
fact for OA is that they enable much easier fault 
identification. The subsection D covers the general fault 
identification for covering arrays. Cohen et al. in [6] 
conclude that the property of balance is not necessary for 
software testing, unlike statistical experiments and that 
CAs are a more efficient solution than OAs. 

Mixed-level covering arrays MCAλ (N; t, k,  
(v1,v2,…vn)) is a generalization of covering array that 
permits different domains for input parameters. 

Variable strength covering array VCAλ (N; T, k, v) is 
a generalization of covering array that defines different 
interaction covering strength for different groups of 
parameters in the T matrix of covering the strength 
requirements.  

All of the listed covering arrays ignore the sequence of 
elements, an aspect that may be important in testing event 
driven systems, such as GUI. Sequence covering array 
SCAλ (N; S, t) introduces the focus on t-length sequences 
of elements from finite set S and every such sequence has 
to occur in at least one test case of the sequence covering 
array. Elements of t-length sequences do not have to be 
necessarily adjacent in the test case.  The set S represents 
events that are sequenced in the order of triggering in the 
test case. The basic variant of sequence covering arrays 
permits only one triggering of the same event per test 
case. For more details on this subject, we refer the reader 
to [7],[8] and [9].  

A. Modelling 

The elements of a test model for the combinatorial test 
are: parameters, values, interaction and constraints. 

In order to set properly the model elements, data 
should be gathered from the project documentation, 
interviews with experts and possibly by system structural 
insights. 

First, the parameters have to be identified. 
Configuration parameters contain all configurations for 
the system and input parameters contain all of the user 
interface parameters. 

Values for each parameter have to be determined. If a 
parameter can attain only few possible values, we can use 
them directly in tests. On the other hand, direct use of 
values for discrete parameters with many possible values 
or continuous parameters is prohibitive as it would yield 
intractable the test generation and testing. In the latter case 
we can use equivalence partitioning, boundary value 
analysis, category partition and domain testing that 
produce only a handful of test values for each parameter 
[10]. In case of equivalence partitioning, some partitions 
may be more important so we can select more values from 
them for better covering. The discretization in this step 
offers the trade-off tuning; more values create greater test 
sets but possibly offer finding more faults. Structural 
analysis can help to identify important parameter values 
for testing. 

Interactions should be listed in order to make the 
generated cover arrays more efficient. Some parameters 
do not interact with any other parameter; there can be 
different interaction clusters; we may want to cover 
different sets of parameters with different strengths to 
better treat those parameters that are expected to exhibit 
higher interaction. Careful interactions specification can 
make test sets as well as generation more efficient. 

Constraints are a very important aspect of our system 
because they define the space of impossible parameter 
value combinations. The inclusion of constraint in the 
procedure of test case generation is important because, if 
ignored, many impossible test cases would be obtained, 
improperly executed and the test coverage would be 
reduced, due to valid parameter combinations covered by 
only that test.  

The modelling phase is usually done manually, 
following heuristic rules covered in previous works. 
Grindal and Offut in [11] presented eight-step structured 
method for creation of input parameter models for 
combinatorial testing. Authors in [12] presented a method 
for identification of categories and choices from UML 
activity diagram. Example system requirements were 
given in [13] and combinatorial testing was applied to 
them in a tutorial style. The formalization, creation of 
validation procedures and automation of the modelling 
phase are the goals that are yet to be accomplished. 
Automation needs better extraction of pertinent data from 
available resources such as: project documentation, 
interviews with experts (possibly using Natural Language 
Processing), existing system specifications (UML etc.) or 
even partially from the implementation. The level of 
abstraction should be customizable. The optional 
automation of abstraction level selection, possibly based 
on smaller pilot tests and on comparison of promising 
options, would be very useful for large systems. This 
automated procedure could be coupled with automated 
generation of model based test oracles, also a distant 
research goal, to provide a complete testing support. 

B. Generating test 

Minimal covering array generation problem is NP-

complete [14], [15]. Some of the commonly used 

covering arrays have pre-computed best known solutions, 
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[2] lists best known sizes for arrays up to covering 

strength t=6.  

Seeding is an inclusion of fixed test case or a partial 

test case into the set. The test cases to be included are 

based on domain knowledge. 

The order of test cases in the set, in which they will be 

executed, is also an important aspect of test set 

generation. We can be indifferent to the order of cases, 

but recently there is an incentive to optimize the order in 

such way that it would find faults as soon as possible. 

Definition of prioritization is given in [16] where it was 

used for regression testing, retesting the system after 

modifications. However, there is a hard problem of 

defining effective prioritization function. Bryce and 

Colbourn in [17] presented a greedy algorithm that 

produces prioritized test set with support for constraints 

and seeding. Bryce and Memon in [18] used prioritization 

of sequence covering arrays for GUI testing. The applied 

prioritization functions were based on the length of test 

cases and on the covering interaction strength. 

Constraint inclusion greatly complicates the 

generation of test sets in combinatorial testing. There are 

several ways to deal with constraints: ignore them (as do 

most of existing algorithms), require explicit enumeration 

of forbidden combinations, introduce soft constraints 

without guarantees,  or to completely address hard 

constraints (rarely) [19]. Even in the case of a small 

number of constraints, procedures that do not consider 

constraints may generate a substantial number of invalid 

test cases. Invalid test cases contain many valid 

combinations that can be covered only by these cases, 

which leads to decrease of the test coverage. Creation of 

new algorithms that incorporate constraints is an 

interesting area of research. Cohen et al. in [20] used 

Satisfiability Testing (SAT) to prune the search space of 

the greedy algorithm and Calvanga in [21] created an 

algorithm based on Satisfiability Modulo Theories (SMT) 

that enables easier expressing of complex constraints. 

Methods for generating the covering arrays can be 

categorized into next groups: greedy constructive 

heuristics, metaheuristics, mathematical, hybrid methods 

[19] and other computational approaches. Coulbourn in 

[22] and Kuliamin and Petukhov in [5] have presented a 

survey of methods for constructing covering arrays  with 

the focus on algebraic methods. The latter survey states 

time and space complexity for all of the algorithms. 

Greedy constructive heuristics iteratively create test 

sets following the locally optimal choices at each stage. 

These methods can be combined with seeding as they 

iteratively extend the test set and some algorithms 

efficiently support prioritization and constraints. Greedy 

methods have unfavourable spatial complexity, as they 

have to keep the list of uncovered t-tuples in order to 

make their decisions.  There are two families of 

algorithms: row generation based and parameter based 

methods. Row generation methods create test set by 

adding new rows one-by-one in stages to the set in such a 

way that they cover as many as possible of yet uncovered 

combinations. AETG [6], CATS [23] and density 

algorithm for pairwise tests [24] are members of this 

family. Parameter-based methods build test set by both 

column and row expansion. The test case is always a CA 

between the stages. In each stage a new parameter 

(column) is added to the test set and values for that 

parameter are filled in so that it covers as many as 

possible t-tuples. After that, new rows are added to cover 

the rest of t-tuples and the procedure continues until all 

parameters are added. These greedy algorithms in fact 

have better time complexity than the former. In-

parameter-order (IPO) family of algorithms is using this 

approach, see [15], [25]. 

Metaheuristics take up existing test set, in most cases 

not necessarily CA, and try to improve it through various 

transformations in an effort to find the minimal covering 

array. These methods are generally not efficient in the 

presence of constraints.  Many approaches were used for 

CA and VCA generation, here listing only some. Tabu 

search was applied to generation of mixed variable 

strength covering arrays in [26]. Authors in [27] used 

harmony search for generation of 2-way covering arrays 

and their method outperformed other popular approaches 

on the benchmarks. A particle swarm optimization 

method for generation of VCAs was presented in [28]. 

Authors in [29] used simulated annealing for binary 

valued parameters and found new best solutions for 

various numbers of input parameters. They have also 

used the result on one of their instances with recursive 

construction methods to produce further new best 

solutions for some bigger instances.  

Mathematical methods use some convenient features 

in CA parameter configuration as basis for their 

functioning. Methods can be categorized as direct, 

reductive or recursive. Direct methods use the relation 

between the covering arrays and combinatorial constructs 

(e.g. Latin squares) for construction of simpler CAs. For 

a restricted class of CAs they can build minimal 

solutions. Recursive methods construct solution from 

smaller CAs or other combinatorial constructs. Reductive 

methods generate solution from bigger/stronger CAs 

using different modifications. Mathematical methods are 

fast and efficient, even producing minimal and near 

minimal solutions in restricted classes of the problem. 

However, in a general case they can produce worse 

solutions than greedy methods and these methods do not 

support prioritization and constraints. 

Hybrid methods combine different approaches in an 

attempt to reap potentially synergic effects. Row 

generating greedy heuristics and metaheuristics were 

combined in [30]. Cohen et al. in [31] used mathematical 

methods with simulated annealing to find new lower 

bounds for some problems. 

Other computational approaches are different from all 

the above listed ones and they are rarely used. Williams 

and Probert formulated minimal CA generation problem 

as {0,1} integer programming problem in [32]. Such 

formulations can be solved using available solvers to get 

exact solutions. Authors in [33] created an exact 

algorithm for minimal CA generation based on 

combination of backtracking and SAT. 
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Random sampling constructive method samples test 

cases by some predefined distribution. Generated test sets 

do not have convenient properties as CA test sets but 

these methods are used because of their simplicity. They 

are also interesting as benchmarks for other methods.  

C. The test oracle problem 

A generated covering array contains only different 

value combinations for parameters, but in order to carry 

on with the test, the expected system outputs should be 

resolved in order to enable the assessment of faultiness. 

The test oracle problem is not exclusively related only to 

combinatorial testing. There are many possible solutions 

to the test oracle problem, for example: human oracles, 

crash test, embedded assertions, formal model based 

tests, etc. Human oracles are the alternative that is very 

common, but also the one better to avoid, due to costs and 

impracticality for larger systems. 

Crash tests are the most trivial oracles that simply 

detect system crash or easily detectable system failure. 

Embedded assertions are widely used method for 

testing. Assertions are embedded into the code stating 

various relations between the data. Some modern 

languages have full support for specification of 

assertions, such as Eiffel [34], and there are tools which 

have extend the language capabilities, such as JML (Java 

Modelling Language) that was used with success for 

testing smart cards in [35] using combinatorial testing.   

Model based oracles ([36], [37]) are the most 

complicated but they also provide the most complete 

solution to the oracle problem. An additional cost for 

manual creation of mathematical model of the system is 

incurred in this approach, but the ability to create 

automatically large test sets is gained. The model checker 

with supplied system model can create expected system 

outputs that complete test cases. Kuhn, Kacker and Lei in 

[38] used NuSMV model checker with ACTS test case 

generator. Most of the empirical work has been done with 

smaller models in well-known domains. Questions about 

scalability and performance of this category of oracles 

have been raised. Model creation from the source code is 

an interesting research venue. 

GUI test oracles based on AI planning were used in 

[39] with the formal model of the system containing 

objects and actions from which it inferred the expected 

internal state. This approach is limited to GUI testing. 

Info Fuzzy Networks (IFN) were used as oracles in 

[40] but only for regression testing of unchanged 

components.  

Artificial Neural Networks (ANN) based oracles, first 

proposed in [41], are the area of recent research. 

However, they have the problem that they need training 

sets with expected outputs in order to be trained. For that 

reason, they were mainly used for regression testing of 

unchanged components or simple problems with smaller 

I/O domains. Shahamiri in [42] used four artificial neural 

networks with I/O relationship analysis, which tackled 

the problem of expected outputs for ANN training set. 

The effectiveness was shown on a web-based car 

insurance application using mutation testing. To our best 

knowledge, ANN based oracles have not yet been used 

with combinatorial testing.  

Log file analysis, proposed in [43], provides oracles 

based on simple state machines using collected log files, 

which should contain relevant data. Authors in [44] 

presented the test oracle framework based on the log file 

analysis. 

D. Fault identification 

After the test execution, a set of failing test cases is 

available, but there remains the problem of fault 

identification that speeds up the fault localization in the 

system and it is indispensible in cases when there is no 

source code available for debugging. In a realistic 

scenario, a system can have many parameters meaning 

that the set of potential faulty parameter combinations in 

the faulty case can be enormous. The failure 

identification aims to find, often with additional retesting, 

all the fault triggering combinations and it greatly helps 

in the debugging process, especially if fault identification 

and debugging were utilized in automatic fault 

localization in code. 

Classification tree was used in [45] to identify faults 

from test results. This idea was used as part of procedure 

for adaptive test generation in [46] that enables easier 

identification of faults with further retesting. Shi et al. in 

[47] proposed novel debugging method for pair-wise 

testing that singles out potential fault-causing factors 

from test results using set analysis. Additional biased 

(complementary) retesting can identify failure-causing 

combinations. Continuing on that work, authors in [48] 

present a method of failure identification based on 

minimal failure-causing schema alongside the CT 

methodology. Iterative adaptive procedure was presented 

in [49]. Ghandehari et al. in [50] introduced ranked 

retesting approach to the fault identification, where the 

ranking was based on suspiciousness measures of 

environment and pertinent combinations. 

E. CA vs. random testing 

Random testing has been categorized under 

combinatorial testing strategies as well by [10]. 

Combinatorial testing using covering arrays, was 

compared to the random testing in several papers, but 

conclusions between these studies were contradictory. In 

[51] the conclusion is that there is no significant 

difference in fault detection effectiveness and that test 

suites from both methods have a similar number of test 

combinations covered. The combinatorial coverage was a 

comparison criterion in [52]. It was shown that covering 

array approach produced better results for a limited 

number of test cases per set, t-way CAs finds more t-way 

faults than random testing, but that random testing, due to 

its unfocused nature and larger test sets finds more faults 

in higher interaction levels.  

As the covering array generation is a NP-complete 

problem, random testing could be preferred in situations 

where there are no means to acquire/generate test cases 

quickly, with many parameters and/or with high 

interaction coverage strengths. More research is needed 

into this aspect of the trade-off. 
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III. APPLICATIONS 

Combinatorial testing support tools mostly use greedy 

algorithms. The full list of CT tools is available at [53].  

Applications of combinatorial testing were reported in 

a number of papers, listing here only a few. Nair et al. in 

[54] tested a small operation support system in AT&T. 

Smith et al. in [55] used pair-wise testing on remote 

planner agent on Deep Space 1 mission. Krishnan et al. in 

[56] described the testing on a mobile phone application. 

Lei et al. in [57] presented CT approach to concurrent 

programs. Authors in [58] created CT approach for 

testing buffer overflow vulnerabilities. Unified model for 

GUI and web applications testing, with an empirical 

study, was demonstrated in [59]. 

Empirical studies that quantify the effects of 

combinatorial testing on final project quality would be 

welcome. 

IV. CONCLUSION 

A combinatorial testing using covering arrays 

involves cost vs. risk trade-off that enables to completely 

focus the efforts to important regions of the search space. 

Despite inconclusive empirical studies, combinatorial 

testing, if done properly, can be very effective in finding 

interaction failures, especially in situations where the 

execution of each test case is expensive and/or number of 

test cases is limited. It is possible that some faults occur 

only in higher interaction levels than covered by testing. 

The concerns regarding such faults can be somewhat 

relieved by empirical findings from a study of projects in 

several domains that state the absence of triggered faults 

in interaction levels higher than 6 and by a considerable 

falling trend of triggered faults when increasing the 

interaction strength (Fig.1). Maybe some of the 

undetected faults could be easily found using a different 

approach to testing or having more insight into the 

structure of the implementation could single out 

additional interesting test cases in higher interaction 

levels. For the faults uncovered even by hybrid 

approaches, we rely on virtual intractability of testing in 

higher interaction levels, culminating with exhaustive 

testing as well as a very low probability of their 

accidental triggering. 

Some potential research venues have been identified. 

Automation and optimization of test model creation and 

test oracle generation to the fullest possible extent as well 

as their verification are important steps to wider 

acceptance. There is a need for empirical studies of CT 

effectiveness compared to other methods as well as 

identification of environment where this approach would 

be the best. Test case generation methods can be 

improved.  Most research is currently done for covered 

interaction strength of 2 and, to a lesser extent, 3. Better 

inclusion of constraints and prioritization in efficient test 

set generation, better covering array generation for t>2, 

generation of (mixed) variable strength and sequence 

covering arrays as well as responding to changes in 

requirements comprise viable research agenda. 
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