
Combinatorial testing in software projects

Mario Brčić and Damir Kalpić*
* Faculty of Electrical Engineering and Computing, Zagreb, Croatia

mario.brcic@fer.hr, damir.kalpic@fer.hr

Abstract- Software systems continuously grow in size and

code complexity, the latter most evident through greater

component interconnectedness. This leaves more space for

bugs which introduce risks such as exposure to security

threats. Combinatorial testing looks for interaction failures

in order to improve the system security and effectiveness

guarantees. One of the most effective test selection

approaches under combinatorial testing are experimental

design extensions for software testing. Covering array test

sets are compact while maintaining at the same time

complete combinatorial coverage up to the desired level.

Smaller test sets with customizable level of assurance can

drive testing costs down substantially. The paper presents a

survey of research into combinatorial testing suite factors

while also identifying possible future research ideas.

I. INTRODUCTION

Software systems continuously grow in size and code
complexity. Both factors contribute to greater danger of
programming mistakes that lead to unexpected results.
Such mistakes introduce various forms of risk that include
security risk due to exploits, irreversible impacts in safety-
critical systems, negative perception of product and
company, etc. NIST report [1] estimates the cost of
inadequate software testing to US economy to be in the
range 22.2-59.5 billion USD per year despite the
allocation of substantial project resources to the testing.

All said underlines the importance of adequate testing,
which tries to find faults and identify their causes with
minimal allocation of budget and time. Combinatorial
testing (CT) selects test cases sampling out different
combinations of parameter values. One of the most
effective test set creation approaches under CT are
experimental design extensions for software testing and
such will be the focus of this work. Combinatorial testing
methods produce compact test sets with desired
characteristics that, if done properly, can greatly reduce
testing costs, while simultaneously guaranteeing the
required level of product faultlessness. In short, we can
balance cost and risk by selecting a covered interaction
level. The illustration of compactness of the generated
covering array test sets for a system with 100 binary input
variables is given in Tab.1 where the test set sizes were
derived using the data from [2].

Exhaustive testing is infeasible, but [3] and [4]
empirically demonstrated that all the known failures in a
variety of domains were triggered by interactions of 6 or
less parameters, as depicted in Fig.1. These results are
very important and encouraging because the generation of
test sets with this bounded interaction strength is tractable
and the resultant test sets are substantially smaller than the
exhaustive ones.

Figure 1 Cumulative distribution of triggered faults with increasing test
interaction covering strength, taken from [4]

This paper is organized as follows; combinatorial

testing components are covered in part 2, tools and
applications are listed in part 3. Section 4 concludes the
paper.

II. COMBINATORIAL TESTING

Combinatorial testing is a black-box (I/O based,
functional) technique that seeks to detect faults caused by
parameter interactions, hence also covering interaction
between system components.

The typical measure used for comparison of
combinatorial test sets is the combinatorial coverage. The
t-way combinatorial coverage is the percentage of t-tuples
occurring in the test set, relative to the total number of
possible t-tuples. Generated combinatorial test using
covering arrays cover 100% parameter interactions up to
the desired interaction strength, while the higher
interaction levels are only partially covered (<100%).
Typical test sets under CT are: covering arrays,
orthogonal, mixed level and variable strength covering
arrays.

Covering array CAλ (N; t, k, v), is an array with N
cases and k parameters that satisfies the constraint that
each t-tuple occurs at least λ times, with usual value for
software testing of λ=1 if not stated otherwise. t denotes
the strength of completely covered interaction level, k is
the set of parameters, and v is the domain of all the
parameters. Rows of an array list test cases and columns
list the parameters. Lower bound for the number of tests in
minimal CA is v

t
, while the upper bound for v

t
→∞ and

k→∞ [5] is:

(t-1) v
t
log(k) (1+o(1)) (1)

1832 MIPRO 2012/ISS

TABLE I. TEST SET SIZES FOR DIFFERENT COVERED INTERACTION

STRENGTHS

Covered interaction strength
(t)

of test cases in test set

1 2

2 10

3 33

4 98

5 202

6 718

100 (exhaustive) 2100≈1.267*1030

Orthogonal array OAλ (N; t, k, v), is a covering array
with the constraint that all the t-tuples have to occur
exactly λ-times each (i.e. they are balanced). Orthogonal
arrays don’t exist for some combinations of parameters
(t,k,v) and if they do exist, they are harder to generate
than covering arrays and are usually larger. The positive
fact for OA is that they enable much easier fault
identification. The subsection D covers the general fault
identification for covering arrays. Cohen et al. in [6]
conclude that the property of balance is not necessary for
software testing, unlike statistical experiments and that
CAs are a more efficient solution than OAs.

Mixed-level covering arrays MCAλ (N; t, k,
(v1,v2,…vn)) is a generalization of covering array that
permits different domains for input parameters.

Variable strength covering array VCAλ (N; T, k, v) is
a generalization of covering array that defines different
interaction covering strength for different groups of
parameters in the T matrix of covering the strength
requirements.

All of the listed covering arrays ignore the sequence of
elements, an aspect that may be important in testing event
driven systems, such as GUI. Sequence covering array
SCAλ (N; S, t) introduces the focus on t-length sequences
of elements from finite set S and every such sequence has
to occur in at least one test case of the sequence covering
array. Elements of t-length sequences do not have to be
necessarily adjacent in the test case. The set S represents
events that are sequenced in the order of triggering in the
test case. The basic variant of sequence covering arrays
permits only one triggering of the same event per test
case. For more details on this subject, we refer the reader
to [7],[8] and [9].

A. Modelling

The elements of a test model for the combinatorial test
are: parameters, values, interaction and constraints.

In order to set properly the model elements, data
should be gathered from the project documentation,
interviews with experts and possibly by system structural
insights.

First, the parameters have to be identified.
Configuration parameters contain all configurations for
the system and input parameters contain all of the user
interface parameters.

Values for each parameter have to be determined. If a
parameter can attain only few possible values, we can use
them directly in tests. On the other hand, direct use of
values for discrete parameters with many possible values
or continuous parameters is prohibitive as it would yield
intractable the test generation and testing. In the latter case
we can use equivalence partitioning, boundary value
analysis, category partition and domain testing that
produce only a handful of test values for each parameter
[10]. In case of equivalence partitioning, some partitions
may be more important so we can select more values from
them for better covering. The discretization in this step
offers the trade-off tuning; more values create greater test
sets but possibly offer finding more faults. Structural
analysis can help to identify important parameter values
for testing.

Interactions should be listed in order to make the
generated cover arrays more efficient. Some parameters
do not interact with any other parameter; there can be
different interaction clusters; we may want to cover
different sets of parameters with different strengths to
better treat those parameters that are expected to exhibit
higher interaction. Careful interactions specification can
make test sets as well as generation more efficient.

Constraints are a very important aspect of our system
because they define the space of impossible parameter
value combinations. The inclusion of constraint in the
procedure of test case generation is important because, if
ignored, many impossible test cases would be obtained,
improperly executed and the test coverage would be
reduced, due to valid parameter combinations covered by
only that test.

The modelling phase is usually done manually,
following heuristic rules covered in previous works.
Grindal and Offut in [11] presented eight-step structured
method for creation of input parameter models for
combinatorial testing. Authors in [12] presented a method
for identification of categories and choices from UML
activity diagram. Example system requirements were
given in [13] and combinatorial testing was applied to
them in a tutorial style. The formalization, creation of
validation procedures and automation of the modelling
phase are the goals that are yet to be accomplished.
Automation needs better extraction of pertinent data from
available resources such as: project documentation,
interviews with experts (possibly using Natural Language
Processing), existing system specifications (UML etc.) or
even partially from the implementation. The level of
abstraction should be customizable. The optional
automation of abstraction level selection, possibly based
on smaller pilot tests and on comparison of promising
options, would be very useful for large systems. This
automated procedure could be coupled with automated
generation of model based test oracles, also a distant
research goal, to provide a complete testing support.

B. Generating test

Minimal covering array generation problem is NP-

complete [14], [15]. Some of the commonly used

covering arrays have pre-computed best known solutions,

MIPRO 2012/ISS 1833

[2] lists best known sizes for arrays up to covering

strength t=6.

Seeding is an inclusion of fixed test case or a partial

test case into the set. The test cases to be included are

based on domain knowledge.

The order of test cases in the set, in which they will be

executed, is also an important aspect of test set

generation. We can be indifferent to the order of cases,

but recently there is an incentive to optimize the order in

such way that it would find faults as soon as possible.

Definition of prioritization is given in [16] where it was

used for regression testing, retesting the system after

modifications. However, there is a hard problem of

defining effective prioritization function. Bryce and

Colbourn in [17] presented a greedy algorithm that

produces prioritized test set with support for constraints

and seeding. Bryce and Memon in [18] used prioritization

of sequence covering arrays for GUI testing. The applied

prioritization functions were based on the length of test

cases and on the covering interaction strength.

Constraint inclusion greatly complicates the

generation of test sets in combinatorial testing. There are

several ways to deal with constraints: ignore them (as do

most of existing algorithms), require explicit enumeration

of forbidden combinations, introduce soft constraints

without guarantees, or to completely address hard

constraints (rarely) [19]. Even in the case of a small

number of constraints, procedures that do not consider

constraints may generate a substantial number of invalid

test cases. Invalid test cases contain many valid

combinations that can be covered only by these cases,

which leads to decrease of the test coverage. Creation of

new algorithms that incorporate constraints is an

interesting area of research. Cohen et al. in [20] used

Satisfiability Testing (SAT) to prune the search space of

the greedy algorithm and Calvanga in [21] created an

algorithm based on Satisfiability Modulo Theories (SMT)

that enables easier expressing of complex constraints.

Methods for generating the covering arrays can be

categorized into next groups: greedy constructive

heuristics, metaheuristics, mathematical, hybrid methods

[19] and other computational approaches. Coulbourn in

[22] and Kuliamin and Petukhov in [5] have presented a

survey of methods for constructing covering arrays with

the focus on algebraic methods. The latter survey states

time and space complexity for all of the algorithms.

Greedy constructive heuristics iteratively create test

sets following the locally optimal choices at each stage.

These methods can be combined with seeding as they

iteratively extend the test set and some algorithms

efficiently support prioritization and constraints. Greedy

methods have unfavourable spatial complexity, as they

have to keep the list of uncovered t-tuples in order to

make their decisions. There are two families of

algorithms: row generation based and parameter based

methods. Row generation methods create test set by

adding new rows one-by-one in stages to the set in such a

way that they cover as many as possible of yet uncovered

combinations. AETG [6], CATS [23] and density

algorithm for pairwise tests [24] are members of this

family. Parameter-based methods build test set by both

column and row expansion. The test case is always a CA

between the stages. In each stage a new parameter

(column) is added to the test set and values for that

parameter are filled in so that it covers as many as

possible t-tuples. After that, new rows are added to cover

the rest of t-tuples and the procedure continues until all

parameters are added. These greedy algorithms in fact

have better time complexity than the former. In-

parameter-order (IPO) family of algorithms is using this

approach, see [15], [25].

Metaheuristics take up existing test set, in most cases

not necessarily CA, and try to improve it through various

transformations in an effort to find the minimal covering

array. These methods are generally not efficient in the

presence of constraints. Many approaches were used for

CA and VCA generation, here listing only some. Tabu

search was applied to generation of mixed variable

strength covering arrays in [26]. Authors in [27] used

harmony search for generation of 2-way covering arrays

and their method outperformed other popular approaches

on the benchmarks. A particle swarm optimization

method for generation of VCAs was presented in [28].

Authors in [29] used simulated annealing for binary

valued parameters and found new best solutions for

various numbers of input parameters. They have also

used the result on one of their instances with recursive

construction methods to produce further new best

solutions for some bigger instances.

Mathematical methods use some convenient features

in CA parameter configuration as basis for their

functioning. Methods can be categorized as direct,

reductive or recursive. Direct methods use the relation

between the covering arrays and combinatorial constructs

(e.g. Latin squares) for construction of simpler CAs. For

a restricted class of CAs they can build minimal

solutions. Recursive methods construct solution from

smaller CAs or other combinatorial constructs. Reductive

methods generate solution from bigger/stronger CAs

using different modifications. Mathematical methods are

fast and efficient, even producing minimal and near

minimal solutions in restricted classes of the problem.

However, in a general case they can produce worse

solutions than greedy methods and these methods do not

support prioritization and constraints.

Hybrid methods combine different approaches in an

attempt to reap potentially synergic effects. Row

generating greedy heuristics and metaheuristics were

combined in [30]. Cohen et al. in [31] used mathematical

methods with simulated annealing to find new lower

bounds for some problems.

Other computational approaches are different from all

the above listed ones and they are rarely used. Williams

and Probert formulated minimal CA generation problem

as {0,1} integer programming problem in [32]. Such

formulations can be solved using available solvers to get

exact solutions. Authors in [33] created an exact

algorithm for minimal CA generation based on

combination of backtracking and SAT.

1834 MIPRO 2012/ISS

Random sampling constructive method samples test

cases by some predefined distribution. Generated test sets

do not have convenient properties as CA test sets but

these methods are used because of their simplicity. They

are also interesting as benchmarks for other methods.

C. The test oracle problem

A generated covering array contains only different

value combinations for parameters, but in order to carry

on with the test, the expected system outputs should be

resolved in order to enable the assessment of faultiness.

The test oracle problem is not exclusively related only to

combinatorial testing. There are many possible solutions

to the test oracle problem, for example: human oracles,

crash test, embedded assertions, formal model based

tests, etc. Human oracles are the alternative that is very

common, but also the one better to avoid, due to costs and

impracticality for larger systems.

Crash tests are the most trivial oracles that simply

detect system crash or easily detectable system failure.

Embedded assertions are widely used method for

testing. Assertions are embedded into the code stating

various relations between the data. Some modern

languages have full support for specification of

assertions, such as Eiffel [34], and there are tools which

have extend the language capabilities, such as JML (Java

Modelling Language) that was used with success for

testing smart cards in [35] using combinatorial testing.

Model based oracles ([36], [37]) are the most

complicated but they also provide the most complete

solution to the oracle problem. An additional cost for

manual creation of mathematical model of the system is

incurred in this approach, but the ability to create

automatically large test sets is gained. The model checker

with supplied system model can create expected system

outputs that complete test cases. Kuhn, Kacker and Lei in

[38] used NuSMV model checker with ACTS test case

generator. Most of the empirical work has been done with

smaller models in well-known domains. Questions about

scalability and performance of this category of oracles

have been raised. Model creation from the source code is

an interesting research venue.

GUI test oracles based on AI planning were used in

[39] with the formal model of the system containing

objects and actions from which it inferred the expected

internal state. This approach is limited to GUI testing.

Info Fuzzy Networks (IFN) were used as oracles in

[40] but only for regression testing of unchanged

components.

Artificial Neural Networks (ANN) based oracles, first

proposed in [41], are the area of recent research.

However, they have the problem that they need training

sets with expected outputs in order to be trained. For that

reason, they were mainly used for regression testing of

unchanged components or simple problems with smaller

I/O domains. Shahamiri in [42] used four artificial neural

networks with I/O relationship analysis, which tackled

the problem of expected outputs for ANN training set.

The effectiveness was shown on a web-based car

insurance application using mutation testing. To our best

knowledge, ANN based oracles have not yet been used

with combinatorial testing.

Log file analysis, proposed in [43], provides oracles

based on simple state machines using collected log files,

which should contain relevant data. Authors in [44]

presented the test oracle framework based on the log file

analysis.

D. Fault identification

After the test execution, a set of failing test cases is

available, but there remains the problem of fault

identification that speeds up the fault localization in the

system and it is indispensible in cases when there is no

source code available for debugging. In a realistic

scenario, a system can have many parameters meaning

that the set of potential faulty parameter combinations in

the faulty case can be enormous. The failure

identification aims to find, often with additional retesting,

all the fault triggering combinations and it greatly helps

in the debugging process, especially if fault identification

and debugging were utilized in automatic fault

localization in code.

Classification tree was used in [45] to identify faults

from test results. This idea was used as part of procedure

for adaptive test generation in [46] that enables easier

identification of faults with further retesting. Shi et al. in

[47] proposed novel debugging method for pair-wise

testing that singles out potential fault-causing factors

from test results using set analysis. Additional biased

(complementary) retesting can identify failure-causing

combinations. Continuing on that work, authors in [48]

present a method of failure identification based on

minimal failure-causing schema alongside the CT

methodology. Iterative adaptive procedure was presented

in [49]. Ghandehari et al. in [50] introduced ranked

retesting approach to the fault identification, where the

ranking was based on suspiciousness measures of

environment and pertinent combinations.

E. CA vs. random testing

Random testing has been categorized under

combinatorial testing strategies as well by [10].

Combinatorial testing using covering arrays, was

compared to the random testing in several papers, but

conclusions between these studies were contradictory. In

[51] the conclusion is that there is no significant

difference in fault detection effectiveness and that test

suites from both methods have a similar number of test

combinations covered. The combinatorial coverage was a

comparison criterion in [52]. It was shown that covering

array approach produced better results for a limited

number of test cases per set, t-way CAs finds more t-way

faults than random testing, but that random testing, due to

its unfocused nature and larger test sets finds more faults

in higher interaction levels.

As the covering array generation is a NP-complete

problem, random testing could be preferred in situations

where there are no means to acquire/generate test cases

quickly, with many parameters and/or with high

interaction coverage strengths. More research is needed

into this aspect of the trade-off.

MIPRO 2012/ISS 1835

III. APPLICATIONS

Combinatorial testing support tools mostly use greedy

algorithms. The full list of CT tools is available at [53].

Applications of combinatorial testing were reported in

a number of papers, listing here only a few. Nair et al. in

[54] tested a small operation support system in AT&T.

Smith et al. in [55] used pair-wise testing on remote

planner agent on Deep Space 1 mission. Krishnan et al. in

[56] described the testing on a mobile phone application.

Lei et al. in [57] presented CT approach to concurrent

programs. Authors in [58] created CT approach for

testing buffer overflow vulnerabilities. Unified model for

GUI and web applications testing, with an empirical

study, was demonstrated in [59].

Empirical studies that quantify the effects of

combinatorial testing on final project quality would be

welcome.

IV. CONCLUSION

A combinatorial testing using covering arrays

involves cost vs. risk trade-off that enables to completely

focus the efforts to important regions of the search space.

Despite inconclusive empirical studies, combinatorial

testing, if done properly, can be very effective in finding

interaction failures, especially in situations where the

execution of each test case is expensive and/or number of

test cases is limited. It is possible that some faults occur

only in higher interaction levels than covered by testing.

The concerns regarding such faults can be somewhat

relieved by empirical findings from a study of projects in

several domains that state the absence of triggered faults

in interaction levels higher than 6 and by a considerable

falling trend of triggered faults when increasing the

interaction strength (Fig.1). Maybe some of the

undetected faults could be easily found using a different

approach to testing or having more insight into the

structure of the implementation could single out

additional interesting test cases in higher interaction

levels. For the faults uncovered even by hybrid

approaches, we rely on virtual intractability of testing in

higher interaction levels, culminating with exhaustive

testing as well as a very low probability of their

accidental triggering.

Some potential research venues have been identified.

Automation and optimization of test model creation and

test oracle generation to the fullest possible extent as well

as their verification are important steps to wider

acceptance. There is a need for empirical studies of CT

effectiveness compared to other methods as well as

identification of environment where this approach would

be the best. Test case generation methods can be

improved. Most research is currently done for covered

interaction strength of 2 and, to a lesser extent, 3. Better

inclusion of constraints and prioritization in efficient test

set generation, better covering array generation for t>2,

generation of (mixed) variable strength and sequence

covering arrays as well as responding to changes in

requirements comprise viable research agenda.

REFERENCES

[1] G. Tassey, “The Economic Impacts of Inadequate Infrastructure

for Software Testing,” National Institute of Standards and
Technology, RTI Project Number 7007.011, 2002.

[2] C. Colbourn, “Covering array tables for t=2,3,4,5,6.” [Online].

Available:http://www.public.asu.edu/%7Eccolbou/src/tabby/cat
able.html. [Accessed: 07-Mar-2012].

[3] D. R. Kuhn and M. J. Reilly, “An Investigation of the

Applicability of Design of Experiments to Software Testing,” in
Proceedings of the 27th Annual NASA Goddard Software

Engineering Workshop (SEW-27’02), Washington, DC, USA,

2002, p. 91–.
[4] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault

interactions and implications for software testing,” IEEE

Transactions on Software Engineering, vol. 30, no. 6, pp. 418–
421, Jun. 2004.

[5] V. Kuliamin and A. Petukhov, “A survey of methods for

constructing covering arrays,” Programming and Computer
Software, vol. 37, no. 3, pp. 121–146, May 2011.

[6] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, “The

Automatic Efficient Test Generator (AETG) system,” in , 5th

International Symposium on Software Reliability Engineering,

1994. Proceedings, 1994, pp. 303–309.

[7] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and
Y. Lei, “Combinatorial Methods for Event Sequence Testing,”

2012.
[8] D. R. Kuhn, R. Kacker, and Y. Lei, “Practical Combinatorial

Testing,” National Institute of Standards and Technology,

Washington, DC, USA, NIST Special Publication 800-142, Oct.
2010.

[9] K. Z. Zamli, R. R. Othman, and M. H. M. Zabil, “On sequence

based interaction testing,” 2011, pp. 662–667.
[10] M. Grindal, J. Offutt, and S. F. Andler, “Combination testing

strategies: a survey,” Software Testing, Verification and

Reliability, vol. 15, no. 3, pp. 167–199, Sep. 2005.
[11] M. Grindal and J. Offutt, “Input parameter modeling for

combination strategies,” in Proceedings of the 25th conference

on IASTED International Multi-Conference: Software
Engineering, Anaheim, CA, USA, 2007, pp. 255–260.

[12] T. Y. Chen, Sau-Fun Tang, Pak-Lok Poon, and T. H. Tse,

“Identification of Categories and Choices in Activity

Diagrams,” presented at the Fifth International Conference on

Quality Software, 2005. (QSIC 2005), 2005, pp. 55–63.

[13] C. Lott, A. Jain, and S. Dalal, “Modeling requirements for
combinatorial software testing,” in Proceedings of the 1st

international workshop on Advances in model-based testing,

New York, NY, USA, 2005, pp. 1–7.
[14] G. Seroussi and N. H. Bshouty, “Vector sets for exhaustive

testing of logic circuits,” IEEE Transactions on Information

Theory, vol. 34, no. 3, pp. 513–522, May 1988.
[15] Y. Lei and K.-C. Tai, “In-Parameter-Order: A Test Generation

Strategy for Pairwise Testing,” in The 3rd IEEE International

Symposium on High-Assurance Systems Engineering,
Washington, DC, USA, 1998, pp. 254–261.

[16] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold,

“Prioritizing test cases for regression testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 10, pp. 929–

948, Oct. 2001.

[17] R. C. Bryce and C. J. Colbourn, “Prioritized interaction testing
for pair-wise coverage with seeding and constraints,”

Information and Software Technology, vol. 48, no. 10, pp. 960–

970, Oct. 2006.
[18] R. C. Bryce and A. M. Memon, “Test suite prioritization by

interaction coverage,” in Workshop on Domain specific

approaches to software test automation: in conjunction with the
6th ESEC/FSE joint meeting, New York, NY, USA, 2007, pp.

1–7.

[19] C. Nie and H. Leung, “A survey of combinatorial testing,”
ACM Computing Surveys, vol. 43, no. 2, pp. 11:1–11:29, Jan.

2011.

[20] M. B. Cohen, M. B. Dwyer, and Jiangfan Shi, “Constructing
Interaction Test Suites for Highly-Configurable Systems in the

Presence of Constraints: A Greedy Approach,” IEEE

Transactions on Software Engineering, vol. 34, no. 5, pp. 633–
650, Sep. 2008.

1836 MIPRO 2012/ISS

[21] A. Calvagna and A. Gargantini, “Combining Satisfiability
Solving and Heuristics to Constrained Combinatorial Interaction

Testing”, Springer Berlin / Heidelberg, 2009, pp. 27–42.

[22] C. Colbourn, “Combinatorial aspects of covering arrays,” Le
Matematiche, vol. 58, pp. 121–167, 2004.

[23] G. Sherwood, “Effective Testing of Factor Combinations,”

presented at the Third International Conference on Software
Testing, Analysis & Review, Washington, DC, USA, 1994.

[24] C. Colbourn and M. Cohen, “A Deterministic Density

Algorithm for Pairwise Interaction Coverage,” in Proc. of the
IASTED Intl. Conference on Software Engineering, 2004, pp.

242–252.

[25] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG-IPOG-D: efficient test generation for multi-way

combinatorial testing,” Softw. Test. Verif. Reliab., vol. 18, no. 3,

pp. 125–148, Sep. 2008.
[26] L. Gonzalez-Hernandez, N. Rangel-Valdez, and J. Torres-

Jimenez, “Construction of Mixed Covering Arrays of Variable

Strength Using a Tabu Search Approach,” in Combinatorial
Optimization and Applications, vol. 6508, Springer Berlin /

Heidelberg, 2010, pp. 51–64.

[27] Abdul Rahman A. Alsewari, “A harmony search based pairwise

sampling strategy for combinatorial testing,” International

Journal of the Physical Sciences, vol. 7, no. 7, Feb. 2012.

[28] B. S. Ahmed and K. Z. Zamli, “A variable strength interaction
test suites generation strategy using Particle Swarm

Optimization,” J. Syst. Softw., vol. 84, no. 12, pp. 2171–2185,

Dec. 2011.
[29] J. Torres-Jimenez and E. Rodriguez-Tello, “New bounds for

binary covering arrays using simulated annealing,” Information

Sciences, vol. 185, no. 1, pp. 137–152, Feb. 2012.
[30] Xiang Chen, Qing Gu, Xinping Wang, Ang Li, and Daoxu

Chen, “A Hybrid Approach to Build Prioritized Pairwise

Interaction Test Suites,” in International Conference on
Computational Intelligence and Software Engineering, 2009.

CiSE 2009, 2009, pp. 1–4.

[31] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, “Augmenting
Simulated Annealing to Build Interaction Test Suites,” in

Proceedings of the 14th International Symposium on Software

Reliability Engineering, Washington, DC, USA, 2003, p. 394–.
[32] A. W. Williams and R. L. Probert, “Formulation of the

Interaction Test Coverage Problem as an Integer Program,” in

Proceedings of the IFIP 14th International Conference on
Testing Communicating Systems XIV, Deventer, The

Netherlands, The Netherlands, 2002, p. 283–.

[33] J. Yan and J. Zhang, “Backtracking Algorithms and Search
Heuristics to Generate Test Suites for Combinatorial Testing,”

in Computer Software and Applications Conference, Annual

International, Los Alamitos, CA, USA, 2006, vol. 1, pp. 385–
394.

[34] B. Meyer, Object-Oriented Software Construction, 2nd ed.

Prentice Hall, 2000.
[35] L. du Bousquet, Y. Ledru, O. Maury, C. Oriat, and J.-L. Lanet,

“A Case Study in JML-Based Software Validation,” in
Proceedings of the 19th IEEE international conference on

Automated software engineering, Washington, DC, USA, 2004,

pp. 294–297.
[36] P. Ammann and P. E. Black, “Abstracting formal specifications

to generate software tests via model checking,” presented at the

Digital Avionics Systems Conference, 1999. Proceedings. 18th,
St Louis, MO, 1999, vol. B.6-6 vol.2, p. 10.A.6–1–10.A.6–10.

[37] V. Okun, P. E. Black, and Y. Yesha, “Testing with Model

Checker: Insuring Fault Visibility,” WSEAS TRANS. SYS, vol. 2,
p. 77–82, 2003.

[38] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Automated

Combinatorial Test Methods: Beyond Pairwise Testing,”
Crosstalk, Journal of Defense Software Engineering, vol. 21,

no. 6, pp. 22–26, Jun. 2008.

[39] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Automated test
oracles for GUIs,” SIGSOFT Softw. Eng. Notes, vol. 25, no. 6,

pp. 30–39, Nov. 2000.

[40] M. Last, M. Friedman, and A. Kandel, “The data mining
approach to automated software testing,” in Proceedings of the

ninth ACM SIGKDD international conference on Knowledge

discovery and data mining, New York, NY, USA, 2003, pp.
388–396.

[41] M. Vanmali, M. Last, and A. Kandel, “Using a neural network
in the software testing process,” International Journal of

Intelligent Systems, vol. 17, no. 1, pp. 45–62, 2002.

[42] S. R. Shahamiri, W. M. N. W. Kadir, S. Ibrahim, and S. Z. M.
Hashim, “An automated framework for software test oracle,”

Information and Software Technology, vol. 53, no. 7, pp. 774–

788, Jul. 2011.
[43] J. H. Andrews, “Testing using log file analysis: tools, methods,

and issues,” in 13th IEEE International Conference on

Automated Software Engineering, 1998. Proceedings, 1998, pp.
157–166.

[44] Dan Tu, Rong Chen, Zhenjun Du, and Yaqing Liu, “A Method

of Log File Analysis for Test Oracle,” in International
Conference on Scalable Computing and Communications;

Eighth International Conference on Embedded Computing,

2009. SCALCOM-EMBEDDEDCOM’09, 2009, pp. 351–354.
[45] C. Yilmaz, M. B. Cohen, and A. Porter, “Covering arrays for

efficient fault characterization in complex configuration

spaces,” in Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis, New

York, NY, USA, 2004, pp. 45–54.

[46] E. Dumlu, C. Yilmaz, M. B. Cohen, and A. Porter, “Feedback

driven adaptive combinatorial testing,” in Proceedings of the

2011 International Symposium on Software Testing and

Analysis, New York, NY, USA, 2011, pp. 243–253.
[47] L. Shi, C. Nie, and B. Xu, “A software debugging method

based on pairwise testing,” in Proceedings of the 5th

international conference on Computational Science - Volume
Part III, Berlin, Heidelberg, 2005, pp. 1088–1091.

[48] C. Nie and H. Leung, “The Minimal Failure-Causing Schema

of Combinatorial Testing,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 4, pp. 15:1–15:38, Sep. 2011.

[49] Ziyuan Wang, Baowen Xu, Lin Chen, and Lei Xu, “Adaptive

Interaction Fault Location Based on Combinatorial Testing,” in
2010 10th International Conference on Quality Software

(QSIC), 2010, pp. 495–502.

[50] L. S. G. Ghandehari, Y. Lei, T. Xie, D. R. Kuhn, and R.
Kacker, “Identifying Failure-Inducing Combinations in a

Combinatorial Test Set,” Arlington, USA, 2012.

[51] P. J. Schroeder, P. Bolaki, and V. Gopu, “Comparing the fault
detection effectiveness of n-way and random test suites,” in

2004 International Symposium on Empirical Software

Engineering, 2004. ISESE ’04. Proceedings, 2004, pp. 49– 59.
[52] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Random vs.

Combinatorial Methods for Discrete Event Simulation of a

Grid Computer Network,” presented at the Mod Sim World
2009, Virginia, USA.

[53] J. Czerwonka, “Pairwise Testing - Available Tools.” [Online].

Available: http://www.pairwise.org/tools.asp. [Accessed: 13-
Mar-2012].

[54] V. N. Nair, D. A. James, W. K. Erlich, and J. Zevallos, “A

Statistical Assessment of Some Software Testing Strategies and
Application of Experimental Design Techniques,” Statistica

Sinica, vol. 8, no. 1, pp. 165–184, 1998.
[55] B. Smith and M. S. Feather, “Challenges and Methods in

Testing the Remote Agent Planner,” IN PROC. 5TH INT.NL

CONF. ON ARTIFICIAL INTELLIGENCE PLANNING AND
SCHEDULING (AIPS, vol. 2000, p. 254–263, 2000.

[56] R. Krishnan, S. M. Krishna, and P. S. Nandhan, “Combinatorial

testing: learnings from our experience,” SIGSOFT Softw. Eng.
Notes, vol. 32, no. 3, pp. 1–8, May 2007.

[57] Y. Lei, R. H. Carver, R. Kacker, and D. Kung, “A

combinatorial testing strategy for concurrent programs,” Softw.
Test. Verif. Reliab., vol. 17, no. 4, pp. 207–225, Dec. 2007.

[58] Wenhua Wang, Yu Lei, Donggang Liu, D. Kung, C. Csallner,

Dazhi Zhang, R. Kacker, and R. Kuhn, “A combinatorial
approach to detecting buffer overflow vulnerabilities,” in 2011

IEEE/IFIP 41st International Conference on Dependable

Systems & Networks (DSN), 2011, pp. 269–278.
[59] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a

Single Model and Test Prioritization Strategies for Event-Driven

Software,” IEEE Transactions on Software Engineering, vol.
37, no. 1, pp. 48–64, Feb. 2011.

MIPRO 2012/ISS 1837

