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Abstract. Triangles having rational sides a, b, c and rational areaQ are called
Heron triangles. Associated to each Heron triangle is the quartic

v2 = u(u− a)(u− b)(u− c).

The Heron formula states that Q =
√

P (P − a)(P − b)(P − c) where P is the
semi-perimeter of the triangle, so the point (u, v) = (P,Q) is a rational point
on the quartic. Also the point of in�nity is on the quartic. By a standard
construction it can be proved that the quartic is equivalent to the elliptic
curve

y2 = (x+ a b)(x+ b c)(x+ c a).

The point (P,Q) on the quartic transforms to

(x, y) =

(
−2abc

a+ b+ c
,

4Qabc

(a+ b+ c)2

)
on the cubic, and the point of in�nity goes to (0, abc). Both points are in-
dependent, so the family of curves induced by Heron triangles has rank ≥ 2.
In this note we construct subfamilies of rank at least 3, 4 and 5. For the
subfamily with rank ≥ 5, we show that its generic rank is exactly equal to 5
and we �nd free generators of the corresponding group. By specialization, we
obtain examples of elliptic curves over Q with rank equal to 9 and 10. This is
an improvement of results by F. Izadi et al., who found a subfamily with rank
≥ 3, and several examples of curves of rank 7 over Q.

1. Triangles and elliptic curves

1.1. Heron triangles.

De�nition. A triangle with sides of rational lengths {a, b, c} is called a Heron
triangle if its area Q is also a rational number.

The Heron formula states that the area Q of a triangle with sides {a, b, c} is
equal to

Q =
√

P (P − a)(P − b)(P − c), where P =
a+ b+ c

2
.

So, a triangle with sides a, b, c is a Heron triangle when

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

is a rational square. The Indian mathematician Brahmagupta, 598-668 A.D.,
showed that for a triangle with integral sides {a, b, c} and integral area Q there
are positive integers k,m, n, with k2 < mn, such that

a = n(k2 +m2),

b = m(k2 + n2),

c = (m+ n)(mn− k2),

Q = kmn(m+ n)(mn− k2).
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Observe that the value of Q is a consequence of the Heron formula. A classical
reference for Heron triangles is the second volume of the History of the Theory of
Numbers by L. E. Dickson [DI].

1.2. Elliptic curves associated to Heron triangles. Given a Heron triangle of
sides {a, b, c} and area Q, consider the quartic

(1) v2 = u(u− a)(u− b)(u− c).

The point (u, v) = ((a+b+c)/2, Q) is on the quartic (1), due to the Heron formula.
The point at in�nity is also on the quartic. Now the change of coordinates

(u, v) → (−abc
1

x
, abc

y

x2
)

transforms the quartic (1) into the cubic

(2) y2 = (x+ ab)(x+ bc)(x+ ca),

and the two points mentioned above into (x, y) =
(

−2abc
a+b+c ,

4Qabc
(a+b+c)2

)
and (x, y) =

(0, abc) respectively.
The relation between elliptic curves and Heron triangles appears in the work of

many authors in the mathematical literature. Let us mention some of them.
The quartics (1) have been used by Bremner in [B] in order to study the existence

of sets of N Heron triangles with given perimeter and area, for a given positive
integer N . Similar kind of problems have been treated in [KL] and [vL].

The existence of in�nitely many Heron triangles with a given area has been
shown in [R]. This result is also obtained in [GM], by exploiting properties of a
family of elliptic curves which generalize the congruent number elliptic curves.

In [BR] it is shown that there exist an in�nite set of Heron triangles having two
rational medians.

Elliptic curves of the shape (2) appear in a natural way in the study of elliptic
curves induced by Diophantine m-tuples (see [D] and [ADP]), where the values a, b
and c represent three components of a Diophantine triple, instead of the sides of a
Heron triangle as in the present context.

In [CG] the authors describe connections between the problem of �nding Heron
triangles with a given area and �nding Diophantine quadruples, and they are led to
study the relation of these problems with the elliptic curves over Q having rational
torsion group equal to Z/2Z× Z/8Z.

In [IKN] the authors show a family of Heron triangles whose associated elliptic
curves have generic rank equal to 3 and they also exhibit particular examples of
curves with rank equal to 7 over Q. The purpose of this note is to improve their
results. In fact, we have found families of elliptic curves induced by Heron triangles
having rank ≥ 4 and ≥ 5. Using the algorithm from [GT], we are able to show
that the generic rank of the last family is equal to 5 and to �nd generators of its
Mordell-Weil group. Furthermore, we have found particular examples of curves
whose rank over Q is 9 and 10.

2. Search for higher rank

2.1. Rank 2. As an initial step in our construction we transform the cubic (2) into
the form

(3) y2 = x3 +Ax2 +Bx

by x 7→ x− ab. The coe�cients A and B are{
A = −2ab+ ac+ bc,

B = ab(a− c)(b− c).
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Now we insert the values of the Brahmagupta parametrization with k = 1. There
is no loss of generality since k acts as a scaling factor. We get

A2 = −m2 − 4mn− 2m3n− n2 +m4n2 − 2mn3 +m2n4,

B2 =mn(1 +m2)(−2m− n+m2n)(1 + n2)(−m− 2n+mn2).

The cubic y2 = x3 +A2x
2 +B2x has rank ≥ 2 over over Q(m,n). In terms of m

and n, the X-coordinates of the two independent in�nite order points are

X1 =mn(1 +m2)(1 + n2),

X2 =(1 +m2)(1 + n2).

Observe that the condition k2 < mn becomes 1 < mn.
Just a word of explanation on how we have found the conditions for new points.

In every case we have curves with the shape y2 = x3 + Ax2 + Bx where the
coe�cient B is a polynomial expression in the parameters involved. Since B has
several polynomial factors Fj we look for new points in the homogenous spaces
corresponding to each Fj , i. e.: we search for conditions like

FjU
4 +AU2V 2 +

B

Fj
V 4

that can be converted into squares by an adequate choice of the parameters. In all
the cases with (U, V ) = (1, 1) we have been able to impose a new point into the
curve for the values of Fj quoted in each step below.

2.2. Rank 3. Now we impose that (a+b−c)/2 is the u-coordinate for a new point
in the quartic, or equivalently that

−mn (1 +m2)(−2 +mn)(1 + n2)

is the X-coordinate for a point on the cubic (3). This can be done with the sub-
stitution m = 2

n(1+w2) . The subfamily corresponding to this specialization of the

parameter has rank ≥ 3. After getting rid of denominators, the coe�cients of the
cubic are

A3 = − 4− 8n2 − n4 − 24w2 − 24n2w2 − 8n4w2 − 4w4 − 24n2w4 − 14n4w4

− 8n2w6 − 8n4w6 − n4w8

B3 =4(1 + n2)(1 + w2)2(1 + n2w2)(4 + n2 + 2n2w2 + n2w4)

(n2 + 4w2 + 2n2w2 + n2w4).

The X-coordinates of the three independent points are

X1 =2(1 + n2)(1 + w2)(4 + n2 + 2n2w2 + n2w4),

X2 =(1 + n2)(1 + w2)2(4 + n2 + 2n2w2 + n2w4)

X3 =4(1 + n2)w2(4 + n2 + 2n2w2 + n2w4).

The formal proof of independence will be given in Section 2.5. The condition for
the sides is w2 < 1 since mn > 1 transform into mn = 2

1+w2 > 1. The sides of the
corresponding Heron triangle are

a =4 + n2 + 2n2w2 + n2w4,

b =2(1 + n2)(1 + w2),

c = − (−1 + w)(1 + w)(2 + n2 + n2w2).



4 A. DUJELLA AND J. C. PERAL

2.3. Another rank 3 family. We constructed the previous family of rank 3 by
imposing (a+b−c)/2 as a new point on the quartic, which turns out to be equivalent
to parametrizing a conic. In a similar way we get the following family of rank at
least 3. We impose (a+ b)/2 as a new point on the quartic, which is equivalent to

specializingm = −3−w2

n(−1+w2) . In this case the new family has the following coe�cients,

A31 =2(9− 6n2 + n4 + 60w2 + 16n2w2 + 4n4w2 + 46w4

− 12n2w4 − 10n4w4 + 12w6 + 4n4w6 + w8 + 2n2w8 + n4w8),

B31 = − (1 + n2)(−1 + w)2(1 + w)2(3 + w2)(3− n2 + k2w2 − 3n2w2)×
(3− n2 + 10w2 + 2n2w2 + 3w4 − n2w4)×
(9 + n2 + 6w2 − 2n2w2 + w4 + n2w4).

The sides, for w2 < 1, are

a =9 + n2 + 6w2 − 2n2w2 + w4 + n2w4,

b = − (1 + n2)(−1 + w)(1 + w)(3 + w2),

c =2(1 + w2)(3 + n2 + w2 − n2w2).

2.4. Rank 4. We can force (1+n2)(1+w2)2(n2+4w2+2n2w2+n2w4) to became
the X-coordinate for a new point on the cubic given by the coe�cients {A3, B3},
solving (3 + w2)(4− n2 + n2w2) = square. This can be realized by choosing

n =
−3− 6t+ t2 + 2w2 − 2tw2 + w4

3 + t2 − 2w2 − w4

The subfamily corresponding to this specialization of the parameters has rank ≥ 4.
The X-coordinates of the four independent points are

X1 =4(1 + w2)(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2

− 2t3w2 − 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(45 + 36t+ 54t2 − 12t3 + 5t4 − 42w2 + 60tw2 + 72t2w2 − 28t3w2

+ 2t4w2 − 25w4 − 8tw4 + 84t2w4 − 20t3w4 + t4w4 + 4w6 − 56tw6

+ 40t2w6 − 4t3w6 + 11w8 − 28tw8 + 6t2w8 + 6w10 − 4tw10 + w12),

X2 =2(1 + w2)2(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2

− 2t3w2 − 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(45 + 36t+ 54t2 − 12t3 + 5t4 − 42w2 + 60tw2 + 72t2w2 − 28t3w2

+ 2t4w2 − 25w4 − 8tw4 + 84t2w4 − 20t3w4 + t4w4 + 4w6 − 56tw6

+ 40t2w6 − 4t3w6 + 11w8 − 28tw8 + 6t2w8 + 6w10 − 4tw10 + w12),

X3 =8w2(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2 − 2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(45 + 36t+ 54t2 − 12t3 + 5t4 − 42w2 + 60tw2 + 72t2w2 − 28t3w2

+ 2t4w2 − 25w4 − 8tw4 + 84t2w4 − 20t3w4 + t4w4 + 4w6 − 56tw6

+ 40t2w6 − 4t3w6 + 11w8 − 28tw8 + 6t2w8 + 6w10 − 4tw10 + w12),
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X4 =2(1 + w2)2(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2 − 2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(9 + 36t+ 30t2 − 12t3 + t4 + 42w2 + 60tw2 + 112t2w2 − 28t3w2

+ 6t4w2 − 65w4 − 8tw4 + 76t2w4 − 20t3w4 + t4w4 − 20w6 − 56tw6

+ 32t2w6 − 4t3w6 + 23w8 − 28tw8 + 6t2w8 + 10w10 − 4tw10 + w12).

The sides are, for w2 < 1,

a =45 + 36t+ 54t2 − 12t3 + 5t4 − 42w2 + 60tw2 + 72t2w2 − 28t3w2 + 2t4w2

− 25w4 − 8tw4 + 84t2w4 − 20t3w4 + t4w4 + 4w6 − 56tw6 + 40t2w6

− 4t3w6 + 11w8 − 28tw8 + 6t2w8 + 6w10 − 4tw10 + w12,

b =4(1 + w2)(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2 − 2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8),

c =(1− w)(1 + w)(3 + w2)(9 + 12t+ 14t2 − 4t3 + t4 − 12w2 + 4tw2

+ 12t2w2 − 4t3w2 − 2w4 − 12tw4 + 6t2w4 + 4w6 − 4tw6 + w8).

2.5. Rank 5. In our last step, we impose

X =8(9 + 18t+ 18t2 − 6t3 + t4 − 12w2 − 6tw2 + 12t2w2 − 2t3w2

− 2w4 − 10tw4 + 2t2w4 + 4w6 − 2tw6 + w8)

(9 + 36t+ 30t2 − 12t3 + t4 + 42w2 + 60tw2 + 112t2w2 − 28t3w2 + 6t4w2

− 65w4 − 8tw4 + 76t2w4 − 20t3w4 + t4w420w6 − 56tw6 + 32t2w6

− 4t3w6 + 23w8 − 28tw8 + 6t2w8 + 10w10 − 4tw10 + w12)

as X-coordinate of a new point on the cubic of rank 4. This is equivalent to solving

square =12t+ 8t2 − 4t3 + 9w2 + 16tw2 + 30t2w2 − 8t3w2 + t4w2 − 12w4 − 8tw4

+ 20t2w4 − 4t3w4 − 2w6 − 16tw6 + 6t2w6 + 4w8 − 4tw8 + w10.

This condition can be achieved with t = w4−1
2w2 . The subfamily corresponding to

this specialization of the parameter has rank equal to 5 over Q(w), as shown below.
The X-coordinates of the �ve independent points are

X1 =4(1 + w2)(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8 + 300w10 + 8w12 − 4w14 + w16),

X2 =2(1 + w2)2(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8 + 300w10 + 8w12 − 4w14 + w16),

X3 =8w2(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8 + 300w10 + 8w12 − 4w14 + w16),

X4 =2(1 + w2)2(1 + 6w2 + w4)(1 + 26w2 + 79w4 + 44w6 + 79w8 + 26w10 + w12)

(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)
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X5 =8(1 + 6w2 + w4)(1 + 26w2 + 79w4 + 44w6 + 79w8 + 26w10 + w12)

(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12).

The coe�cients of the cubic are

A5 = − 13− 348w2 − 4452w4 − 35100w6 − 202264w8 − 697036w10 − 1414884w12

− 1913548w14 − 1779178w16 − 1349396w18 − 721420w20 − 227540w22

− 38768w24 − 4036w26 − 556w28 − 68w30 − w32,

B5 =8(1 + w2)3(1 + 6w2 + w4)(1 + 2w2 + 47w4 + 156w6 + 47w8 + 2w10 + w12)

(1 + 26w2 + 79w4 + 44w6 + 79w8 + 26w10 + w12)

(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12)

(5 + 36w2 + 320w4 + 564w6 + 818w8 + 300w10 + 8w12 − 4w14 + w16).

The sides are, for w2 < 1, as follows,

a =5 + 36w2 + 320w4 + 564w6 + 818w8 + 300w10 + 8w12 − 4w14 + w16,

b =4(1 + w2)(1 + 14w2 + 99w4 + 52w6 + 55w8 + 30w10 + 5w12),

c = − (−1 + w)(1 + w)(3 + w2)(1− 2w + 7w2 + 4w3 + 7w4 − 2w5 + w6)

(1 + 2w + 7w2 − 4w3 + 7w4 + 2w5 + w6).

By the Silverman specialization theorem [S, Theorem 11.4], in order to prove
that the family of elliptic curves

(4) E : y2 = x3 +A5(w)x
2 +B5(w)x

has rank ≥ 5 over Q(w), it su�ces to �nd a specialization w = w0 such that
the points with X-coordinates X1(w0), . . . , X5(w0) are independent points on the
specialized curve over Q. Let us take w = 2. Then the points

(829979290180, 709888756704565620),

(2074948225450, 257727244134919050),

(1327966864288, 82472718123174096),

(7939152098050, 17599028082679258950),

(2135602557625, 421478249567754750)

are independent points of in�nite order on the elliptic curve

(5) y2 = x3 − 3366916713149x2 + 2712779764155114364021000x.

Indeed, the value of the discriminant of the canonical height matrix of these �ve
points is ≈ 115940.98 ̸= 0. Let us mention that the rank of curve (5) is equal to 8.

Our next goal is to prove that the curve E given by (4) has rank over Q(w)
exactly equal to 5, and moreover to �nd free generators of the group E(Q(w)). We
have noted experimentally that the points with the X-coordinates X1, . . . , X5 do
not generate the full group, but its subgroup of index 2. So we searched for other
points on E such that X-coordinate divides B5. In that way, we �nd the point on
E with X-coordinate

X ′
5 =2(w − 1)2(w2 + 1)(w4 + 6w2 + 1)3

(w16 − 4w14 + 8w12 + 300w10 + 818w8 + 564w6 + 320w4 + 36w2 + 5).
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Now we use the algorithm by Gusi¢ and Tadi¢ [GT, Theorem 3.1 and Corollary
3.2]. It is applicable to our situation since the curve E has three nontrivial 2-torsion
points, i.e. the equation for E can be written in the form

y2 = (x− e1)(x− e2)(x− e3),

with (e1, e2, e3 ∈ Z[w]). Indeed,

e1 =0,

e2 = 40w30 + 440w28 + 3880w26 + 28216w24 + 126792w22 + 345368w20

+ 630984w18 + 885528w16 + 976760w14 + 749608w12 + 345464w10

+ 86184w8 + 13080w6 + 1800w4 + 152w2 + 8,

e3 =w32 + 28w30 + 116w28 + 156w26 + 10552w24 + 100748w22 + 376052w20

+ 718412w18 + 893650w16 + 936788w14 + 665276w12 + 351572w10

+ 116080w8 + 22020w6 + 2652w4 + 196w2 + 5.

Write

(e1 − e2) · (e1 − e3) · (e2 − e3) = α · fα1
1 (w) · · · fαl

l (w),

where α ∈ Z and fi ∈ Z[w] are irreducible (of positive degree) and αi ≥ 1. Let
w0 ∈ Q. Assume that for each i = 1, . . . , l the integer square-free part of each of
fi(w0) has at least one prime factor that does not appear in the integer square-free
part of any of fj(t0) for j ̸= i) and does not appear in the factorization of α. Then
the specialization homomorphism E(Q(w)) → E(w0)(Q) is injective ([GT, Theorem
3.1]). Furthermore, if |E(w0)(Q)tors| = 4 and there exist points P1, . . . , Pr ∈
E(Q(w)) such that P1(w0), . . . , Pr(w0) are the free generators of E(w0)(Q), then
the specialization homomorphism E(Q(w)) → E(w0)(Q) is an isomorphism. Thus
E(Q(w)) and E(w0)(Q) have the same rank r, and P1, . . . , Pr are the free generators
of E(Q(w)) ([GT, Corollary 3.2]).

We have α = 8 and l = 13, with

f1 =w − 1,

f2 =w + 1,

f3 =w2 + 1,

f4 =w2 + 3,

f5 =w4 + 6w2 + 1,

f6 =w6 + 6w5 + 7w4 + 20w3 + 7w2 + 6w + 1,

f7 =w6 − 6w5 + 7w4 − 20w3 + 7w2 − 6w + 1,

f8 =w6 + 2w5 + 7w4 − 4w3 + 7w2 + 2w + 1,

f9 =w6 − 2w5 + 7w4 + 4w3 + 7w2 − 2w + 1,

f10 =5w12 + 30w10 + 55w8 + 52w6 + 99w4 + 14w2 + 1,

f11 =w12 + 2w10 + 47w8 + 156w6 + 47w4 + 2w2 + 1,

f12 =w12 + 26w10 + 79w8 + 44w6 + 79w4 + 26w2 + 1,

f13 =w16 − 4w14 + 8w12 + 300w10 + 818w8 + 564w6 + 320w4 + 36w2 + 5.

If we take w0 = 12, than it is easy to check that the conditions of [GT, Theorem
3.1], given above, are satis�ed. We have

E(12) : y2 = x3 − 51289727495763299303985770723092429x2

+ 421183417712526829656944728081554833692892562346406588197120401049000x.
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Using mwrank [C], we compute that rank(E(12)(Q)) = 5. Hence, we proved that

rank(E(Q(w))) = 5.

Moreover, mwrank is able to �nd free generators of E(12)(Q) (we increased the
default saturation bound from 100 to 350 to ensure that we get the full basis):

P1 =(49375096502864171324367807393771554457526810/24389000,

69361036898001232948930532710952449724275349458333827937855113/24389000),

P2 =(12621254444932104170882927375313600000/1331,

− 644742277873699114460115228940554043287598858706280000/1331),

P3 =(63604587076589371413390852909956890,

8752685157313155792157312102674789283888745983201910),

P4 =(67409981025385875426337353460527890,

10081869846217955542616878834848663934971209883931590),

P5 =(6147015036272127066795441511882180,

− 939823161347572492401782456798530394750552461834180).

Let us denote byQ1, . . . , Q5 the points on E withX-coordinatesX1, X2, X3, X4, X
′
5,

respectively, and let T1 = (0, 0), T2 = (e2, 0), T3 = (e3, 0) be torsion points of
E. The corresponding points on E(12) obtained by the specialization w = 12
we denote by Q1(12), . . . , Q5(12), T1(12), T2(12), T3(12). We check in SAGE that
E(12)(Q)tors = {O, T1(12), T2(12), T3(12)}. Now we express Qi(12), i = 1, . . . , 5,
(modulo torsion) in the basis P1, . . . , P5. We get:

Q1(12) =P5 + T3,

Q2(12) = − P1 + P2 + P3 − P4 − P5,

Q3(12) =P1 + P4 + P5,

Q4(12) = − P1 + P2 − P5,

Q5(12) =P3.

Since the transformation matrix has determinant equal to 1, we conclude that
Q1(12), . . . , Q5(12) also represent a full basis for E(12). Finally, by [GT, Corollary
3.2], we conclude that Q1, . . . , Q5 are free generators of E(Q(w)).

2.6. Rank 9 and 10. In [IKN] Izadi et al., using a result of Fine [F], found a
subfamily of rank ≥ 3 and also several examples of elliptic curves with rank 7 over
Q associated to Heron triangles. Here we will give some examples of such curves
with rank 9 and 10.

Our starting point are the families of elliptic curves with rank ≥ 3 from Sections
2.2 and 2.3. We use the sieving method based on Mestre-Nagao sums

S(N,E) =
∑

p≤N, p prime

(
1− p− 1

#E(Fp)

)
log(p)

(see [M, N, D]). For curves with large values of S(N,E), with N up to 2000,
we compute the Selmer rank, which is well-known upper bound for the rank. We
combine these information with the conjectural parity for the rank.

Finally, we try to compute the rank and �nd generators for the best candidates
for large rank. We have implemented this procedure in PARI [P], using Cremona's
program mwrank [C] for the computation of rank and Selmer rank.

In the following tables, we present examples of rank 9. We give the corresponding
parameters n,w and also the sides of the corresponding Heron triangle (normalized
such that they are coprime integers). Tables 1 and 2 correspond to the families
from Sections 2.2 and 2.3, respectively.
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Table 1. Heron triangles inducing curves with rank 9 � �rst family

n w a b c

221/48 4/17 18384649 31198450 15329769

41/194 11/41 64077917 35424617 30058860

79/20 4/33 65640625 110226402 57479537

87/52 3/41 77191201 86344565 54123476

71/107 13/17 122058701 109132469 26778900

178/117 9/20 309450037 335760200 160672963

179/81 5/31 6923377145 9144292673 5171712156

71/43 17/26 8074099721 8989245200 2850027831

Table 2. Heron triangles inducing curves with rank 9 � second family

n w a b c

167/33 4/5 626501 1318499 1594900

97/12 1/17 771626 2073001 1427235

109/73 3/4 1789609 686679 1934600

227/120 5/7 4746774 2834947 5724973

206/43 3/7 7055929 17271150 14397659

204/245 3/4 9383829 1931179 8839850

95/67 7/11 50547901 25054956 53109445

245/239 1/11 75291643 45686940 60989203

227/169 3/16 156821821 118236867 142364360

171/125 9/17 318902763 184309528 322125515

43/10 87/97 419985425 401156823 740852008

7/55 14/81 4128925645 1341216251 2816777076

For the parameters (n,w) = (45/173, 1/95) in the family from Section 2.2 we get
by mwrank that rank is equal to 9 or 10, while the root number is 1, so according
to the Parity conjecture the rank should be even, therefore equal to 10. Here the
sides are

a = 49579585457, b = 26029616561, c = 25199344032,

and the equation in minimal Weierstrass form is

y2 + xy = x3 − 7881226746551489213016065979516857217096x

− 265236028744207146756504666260405073058501079074967742413760.

Finally, for the parameters (n,w) = (21/328, 6/7) in the family from Section 2.2
we get the curve with rank equal to 10, unconditionally. Here the sides are

a = 21151489, b = 18364250, c = 2807129.

The equation in minimal Weierstrass form is

y2 = x3 − x2 − 36971276861970806346470557520x

+ 2731084763358858501141649586776465069957632.
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The ten independent points found by mwrank and further reduced by LLL algorithm
are:

P1 = (63406532576504, 801113711642717115240),

P2 = (2237297792773394, 105445780346586956755050),

P3 = (−93593058891631, 2317648855799791495800),

P4 = (24036048058997, 1362471196229901177966),

P5 = (33228567635744, 1240673649293544991200),

P6 = (3850001393944, 1608975563080858775000),

P7 = (−79722558761326, 2274167534491017899370),

P8 = (93776244351274, 297865847675487142730),

P9 = (115077802151832, 21802947657723652056),

P10 = (1788254015658016/9, 48521092864923720268640/27) .

Acknowledgement. The authors would like to thank Ivica Gusi¢ for very useful
comments on the previous version of this paper.
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