
Evolution of automatic robot control with genetic
programming

Lovro Paić-Antunović, Domagoj Jakobović

Abstract—This paper investigates the problem of automatic
control of a robot model in an arbitrary two-dimensional environ-
ment. The robot control is based on behavior evolution with the
use of genetic programming (GP). A simulation environment is
developed which allows automatic synthesis of different behaviors
suited to the environment and user requirements. The influence
that different robot properties and learning mechanisms have
on the evolved behavior are studied in depth. The results show
that the presented approach is able to produce effective control
procedures.

I. INTRODUCTION

Autonomous mobile robots are becoming more and more
important and available to a widening range of uses - from
autonomous vehicles to household appliances. They are ex-
pected to solve tasks that humans are not able to cope with in
real-time conditions, or at least to simplify the tasks humans
perform on a daily basis. This requires extensively autonomous
robots, because with growing complexity of the problems
it will be no longer possible for the programmer to take
all eventualities into account from the outset. Developing
robust control programs is an active research issue in many
environments.

Lately, this development has also been performed as an
evolution process, where appropriate logic is automatically
generated with the help of evolutionary algorithms [1], [2], [3],
[4]. This paper is an example of this approach, where genetic
programming (GP) is used to evolve control algorithms for the
desired robot behavior. The main advantage of the presented
method is its reusability for different target functionalities of
the evolved control program - e.g. finding a route, mapping
an unknown environment etc.

In addition to the approaches previously described in the
literature, this paper briefly investigates the generalization
ability of the method and suggests the means to obtain it.
We also include memory capabilities to the control program
and show the advantages it may have to the development
of target behaviors in a complex environment. Finally, the
performance of the algorithm and quality of the obtained
solutions is improved with the algorithm parallelization in a
distributed manner.

To evolve the control algorithm, we use simulated robots
with sensors with arbitrary placement. Simulating robots al-
lows investigation of variable architectures and rapid prototyp-
ing, which is, compared to experiments with real hardware,
less expensive. Additionally, simulation process is fast and
easily reproducible.

The remainder of this paper is organized as follows: Section
II states the problem and simulation environment, as well as

related work on the subject. Section III describes the genetic
programming and related evolution of the control algorithm;
Section IV presents experimental results and efficiency anal-
ysis, and short conclusions are given in Section V.

II. AUTOMATIC CONTROL OF A MODEL ROBOT

The problem of automatic control design may be formulated
with various assumptions; one of the most distinctive features
is the knowledge of the environment. The environment may
be predefined and given as an input to the robot, i.e. we may
have the information about the topology which may be used
by the control algorithm. On the other hand, the autonomous
agent may have to discover the topology of the environment,
and any previous information about it is unavailable. In this
work we concentrate on the latter case, where the aim is to
develop a desired behavior in an unknown surroundings.

The model of the simulated robot is mostly equivalent to the
model from [5], where a wall following behavior was evolved.
The robot has 12 sensors, equally distributed over 360 degrees,
which report the distance to the nearest wall as a floating point
value. These sensors are the only direct information the robot
is given about its environment. As the robot moves, the sensor
data changes accordingly, depending on the room topology.

The robot’s ability to move is implemented with the follow-
ing possible actions:

• turn left 30 degrees;
• turn tight 30 degrees;
• move forward by a constant distance and
• move backward by a constant distance.

The control program has to generate one of these outputs as
a result to any combination of current robot state and sensor
input values. After the defined action is performed, new input
values are collected and another step may be taken. Finally,
the robot has the option to stop any movement if a certain
condition is met (i.e. a target position is reached or a time
interval has elapsed).

In the simulation process, the robot is simulated within an
appropriate software framework in discrete time steps. In each
time step, input sensor values are calculated and fed to the
control program, which decides upon an action. The action is
then simulated by updating robot position or orientation and
the process is repeated. The program is presumed to produce
one action at a time, as opposed to a series of actions.

Using a different program, various target behaviors may be
developed. The control program itself may be human-made
or previously evolved with genetic programming, which is
detailed in the next section.



III. GENETIC PROGRAMMING APPLIED TO BEHAVIOR
MODELING

A. Genetic programming

Genetic programming [5] is an optimization and machine
learning technique that uses evolutionary concept to automat-
ically discover symbolic procedures (functions, programs) to
the problem at hand. The main idea behind GP is that the
solution to the problem may be represented as a (computer)
program, in most applications in the form of a tree (which
allows mapping to any procedural language). The elements
of the programs (tree nodes) must be predefined by the user
and must be sufficient to describe the solution to the problem
(e.g. mathematical and logical functions, actions such as move
forward, turn left etc). The algorithm randomly generates
programs (potential solutions) and evaluates each program
on a predefined set of test cases (e.g. how well does the
program control a robot). Each potential solution thus receives
its quality estimate - the fitness value - which is then used in
the selection process.

The selection process imitates natural evolution where
weaker individuals (solutions) are eliminated, and better indi-
viduals survive. Additionally, better individuals also participate
in recombination, where two (or more) individuals are com-
bined to form a new solution. The algorithm also incorporates
a mutation mechanism, where a single individual is subject
to a change, with a relatively small probability. The process
continues, building new generations from old ones, until a
suitable termination criterion is reached. These criteria usually
include finding a solution of the desired quality or performing
the algorithm for a predefined amount of time. The examples
of human-competitive results of genetic programming may be
found in [6].

B. Evolving a robot with GP

In this work the control program is represented as a tree,
where each node may server as an input, perform a certain
logical function or a certain action. There are two main
types of tree nodes which every generated program contains
- terminal and function nodes. Terminal nodes are the leaves
of tree program structure; they don’t have children nodes and
they return certain value which may be used by their parent
function node.

Terminal nodes in this application can be one of the follow-
ing:

• 12 different nodes (S01, S02, ..., S11) that return the
distance from one of 12 sensors surrounding simulated
robot;

• a node which returns dynamically computed shortest
distance among all the sensors (SS);

• nodes which perform one of four basic motor functions
(MF - move forward, MB - move backward, TR - turn
right, TL- turn left), in which case they also return the
shortest distance from three front sensors.

Function nodes are the inner nodes of a tree and have at
least one child node. In our implementation each function

node controls the program flow in a specific manner. Function
PROGN2 is the simplest function node which is used for
connecting parts of program together. It evaluates both of
its two subtrees in sequence, and returns the value from the
second one. Function IFLTE stands for ’If Less Than or Equal’
and has a total of four child nodes. It is used for deciding on a
behavior based on results from the first two of its nodes. If the
value received after traversing the first subtree is less than or
equal to the value received from its second subtree, the third
subtree will be traversed and its value returned, and if not, the
fourth subtree will be traversed and its value returned.

In this work we also include the optional memory functions,
denoted IMEM1 and IMEM2, which have the ability of
keeping the track of the internal state of the robot. Function
IMEM1 requires that the robot keeps track of coordinates of
walls he was already close to in his run. The function then
controls the program flow by checking the table of visited
walls; if there exists a wall which is directly in front of the
robot, it evaluates and returns the first subtree. If such a wall
doesn’t exist, it evaluates and returns the second subtree value.

Function IMEM2 has three child nodes, and it requires re-
membering the history and location of previous robot actions.
It decides which subtree will be evaluated by checking if the
table of all actions for the current position contains the action
from the first child node. If it does, it evaluates and returns
value from the second subtree, and if it doesn’t, the third tree’s
value is evaluated and returned.

The inclusion of memory functions may serve the purpose
of completing the tasks whose solution cannot be represented
with a stateless program. An example of this problem includes
the task of visiting the walls in an unknown room which has
inner walls that are not connected to any of the outer walls
(see Fig. 2). This kind of control problem was successfully
solved with the help of these functions.

An example of an evolved control program comprising of
the described nodes is given in Fig. 1.

In this work we used two different target behaviors. One
goal is visiting all walls in an arbitrary unknown room, and
the other is traversing the whole room surface. The examples
of both evolved behaviors are given in Fig. 2 and 3.

Figure 1. An example control program (genetic programming tree)



Figure 2. An example of an evolved behavior: following walls in unknown
room

Figure 3. An example of an evolved behavior: covering an unknown room

C. Evaluating a control program

During the evolution process, a great number of candi-
date solutions (control programs) is created that have to be
evaluated. Evaluation is performed by simulating the robot
movements in a given environment using the selected program.
Each solution (individual) is given a fitness value that is used
in a selection process and represents the individuals ability to
compete with other individuals.

In both of the goals used in this work it is required that
the robot drives over a set of targeted positions. Because
of this property, the fitness function value is defined by the
number of visited discrete target locations (each location is
counted only the first time that the robot moves over it). The
target locations in the simulation process are set in a uniform
grid over the room surface or along the walls. The fitness

value of a control program is thus represented as the total
number of visited target locations. Although the number of
target locations depends on the desired behavior, room shape
and the number of rooms used in the learning, all the scores
in the results are scaled to a maximum value of 100.

Additionally, each action a robot performs (a single move-
ment or a single rotation) is presumed to take a constant
amount of time, and is represented as a single simulation time
step. If two different evolved programs visit the same number
of target locations, the one which has visited them in less time
steps is considered better.

It is important to note that, to evolve one or the other behav-
ior, no modifications are needed in the GP evolutionary system
other than the appropriate calculation of the fitness function.
In other words, to evolve a different (custom) behavior, only
the fitness function needs to be altered, whereas the functional
and terminal tree elements may remain the same.

IV. RESULTS AND ANALYSIS

The following experiments aim to evaluate the GP efficiency
in evolution of the target robot behavior. The following param-
eters were used in all experiments, unless stated otherwise:

• population size of 1000 individuals;
• termination condition of 500 generations;
• at least 10 repetitions for all configurations.

A. Initial tree depth parameter

The purpose of this experiment is to empirically estimate
the appropriate initial tree depth that any solution may attain.
This parameter is one of the most influential ones in genetic
programming [5]. On one hand, it should be large enough to
allow the creation of the programs of needed complexity, i.e.
the ones that can represent the solution to the problem. On the
other hand, it should not be too large so the search space is
appropriately limited and so that the complexity is maintained
at the lowest possible level.

The experiment was conducted by learning on 10 manu-
ally selected rooms and summing the fitness function of the
same program on all the rooms. The convergence results are
presented as the average score of best individuals in all the
repetitions (i.e. average fitness value of best individuals at
a certain generation across all repetitions). The convergence
rates are shown in Fig. 4, and the corresponding average
number of time steps in Fig. 5. The actual values for best
individuals at the end of runs are given in Table I.

While the solutions with initial depth of 3 are clearly
worse than the others, the results show that there is no
significant statistical difference between solutions with depth
of 4-7. On the other hand, the average size (number of nodes)
of solutions with initial depths greater than 4 was several
thousand, whereas with depth 4 it averaged on a few hundred
at most. For these reasons, the initial depth of 4 was chosen
for the remaining experiments.



Figure 4. Average score for different initial tree depth

Figure 5. Average time steps for different initial tree depth

B. The influence of memory functions

In this experiment we tried to estimate the influence of
implemented memory functions (IMEM1, IMEM2, Sec. III)
on the efficiency of the evolved control programs. A total of 4
configurations are investigated with learning on 10 different
rooms as in the previous experiment, with the following
notation:

• MEM0: memory functions are not used;
• MEM1: function IMEM1 is included in the function set;
• MEM2: function IMEM2 is included in the function set;
• MEM3: both functions IMEM1 and IMEM2 are in the

function set.
The convergence results for these configurations are given in
Fig. 6, and the corresponding average time steps in Fig. 7.
Table II shows the fitness values of best individuals and their
distribution at the end of the runs. The results indicate that the
inclusion of IMEM2 function is beneficial to the evolution of

Table I
FITNESS VALUES OF BEST INDIVIDUALS FOR DIFFERENT INITIAL TREE

DEPTH

Depth 3 4 5 6 7
Min 74.8 91.2 94.2 95.4 95.4

Average 82.5 95.8 96.5 97.3 97.8
Max 89.8 97.7 98.2 99.0 99.1

Figure 6. Average score for different memory configurations

Figure 7. Average time steps for different memory configurations

control programs, while the IMEM1 function can even degrade
the average solution quality. This suggests that, while it may
complicate the development and implementation, a memory
function such as IMEM2 is highly desirable in achieving
complex behaviors.

C. Single-population and multiple-population GP

Since the evolution process may be quite time-consuming,
and it should also be repeated a number of times to obtain the
best possible result, a common extension to many evolutionary
systems is their parallelization [7], [8]. In this work we chose
to implement a distributed algorithm, which may be deployed
on a network of computing nodes, as well as on a single multi-
core machine [9].

Apart from the speedup, the parallelization may also result
with different algorithm properties, such as the improved
convergence rate or probability of finding the global optimum.

Table II
FITNESS VALUES OF BEST INDIVIDUALS FOR DIFFERENT MEMORY

CONFIGURATIONS

Mode MEM0 MEM1 MEM2 MEM3
Min 91.2 89.2 97.8 97.9

Average 95.8 93.6 98.7 98.6
Max 97.7 96.8 99.3 99.3



Figure 8. Average score for sequential and distributed algorithm

Figure 9. Average time steps for sequential and distributed algorithm

In this experiment we compared the following configurations:
• single population (single island), 2000 individuals;
• 5 subpopulations (islands), 400 individuals each.

In the distributed version, the migration interval is 5 genera-
tions, the number of migrants is 10% of the island population,
and the migration pattern is a fully connected graph. The
convergence results and number of time steps are shown
in Fig. 8 and Fig. 9. The difference in fitness values are
negligible in this experiment, since both variants exhibited
similar average score. On the other hand, the solutions evolved
in the distributed version achieved better results in terms of
total number of time steps, which is shown in more detail in
Table III. This indicates that the distributed version may have
the potential to generate better solutions in terms of program
efficiency, while maintaining the same fitness value level.

D. GP generalization ability

The last experiment considers the quality of the evolved
solutions when used in an unseen environment. In the learning

Table III
TOTAL TIME STEPS FOR BEST INDIVIDUALS, SEQUENTIAL AND

DISTRIBUTED ALGORITHM

5 islands, 400 individuals each 1 island, 2000 individuals
Min 220 292

Average 359.55 536.95
Max 700 701

Figure 10. Average score for different number of learning rooms

Table IV
FITNESS VALUES OF BEST INDIVIDUALS, DIFFERENT NUMBER OF

LEARNING ROOMS

1 room 2 rooms 5 rooms 10 rooms
Min 6.85 3.85 45.6 16.8

Average 68.2 83.9 85.7 86.4
Max 100 100 100 100

process, the control programs are evolved using the simulation
of the robot in one or possibly more different rooms. After the
control program is evolved, it should be tested in a previously
unseen environment to asses its generality. The problem of
GP generalization ability has been studied before [10] and the
findings suggest that including a number of test cases (e.g.
simulated rooms) may be beneficial in the search for more
general solutions.

In this experiment a total of 60 rooms were available in
the learning process, and in each configuration a different
number of randomly selected rooms is used in every algorithm
run. The number of learning rooms assumed values of 1, 2,
5, and 10. After the learning process, following the standard
machine learning paradigm, the best solution from every run
is evaluated on a single room that was unavailable in the
evolution process. The results in terms of average fitness are
shown in Fig. 10 and in terms of total time steps in Fig. 11.

The presented results clearly indicate that the increased
number of learning rooms enables the control program to
behave better in an unseen environment. Note, however, that
this does not guarantee good behavior in every instance, since
the generalization ability depends greatly on the features of
rooms that are used in the learning process.

V. CONCLUSIONS

This paper presents the use of genetic programming in
the evolution of control programs for a robot in a simulated
environment. The results show that this method is able to pro-
duce control programs that satisfy the functional requirements
of robot behavior. Additional results may be summarized as
follows:



Figure 11. Average time steps for different number of learning rooms

• the memory capabilities of the control programs may be
beneficial and are necessary for certain complex behav-
iors;

• distributed genetic programming may produce results of
better quality;

• a larger number of learning instances is necessary for
successful generalization.

Further work in this area may include the implementation of
this approach for a real robot with actual sensor inputs. In this
paper only the simulation results are reported, but in a real-
world scenario the input noise must also be taken into account,
and its influence on the solution quality must be evaluated.

REFERENCES

[1] C. Lazarus and H. Hu, “Using genetic programming to evolve robot
behaviours,” Nature, no. April, 2001.

[2] P. Nordin and W. Banzhaf, “An on-line method to evolve behavior and
to control a miniature robot in real time with genetic programming,”
Adaptive Behavior, vol. 5, no. 2, pp. 107–140, 1997.

[3] ——, “Real time control of a khepera robot using genetic programming,”
CYBERNETICS AND CONTROL, vol. 26, pp. 533–561, 1997.

[4] J. Busch, J. Ziegler, C. Aue, A. Ross, D. Sawitzki, and W. Banzhaf,
“Automatic generation of control programs for walking robots
using genetic programming,” in Proceedings of the 5th European
Conference on Genetic Programming, ser. EuroGP ’02. London,
UK: Springer-Verlag, 2002, pp. 258–267. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646810.704243

[5] J. R. Koza, “Genetic programming - on the programming of computers
by means of natural selection.”

[6] ——, “Human-competitive results produced by genetic programming,”
Genetic Programming and Evolvable Machines, vol. 11, pp. 251–284,
September 2010. [Online]. Available: http://dx.doi.org/10.1007/s10710-
010-9112-3

[7] E. Cantú-Paz, “Efficient and accurate parallel genetic algorithms,” 2001.
[8] T. Alba, “A survey of parallel distributed genetic algorithms,” Complex-

ity, vol. 4, no. 4, 1999.
[9] E. Cantú-Paz, “Topologies, migration rates, and multi-population parallel

genetic algorithms,” in Banzhaf et al., eds, Proceedings of the Genetic
and Evolutionary Computation Conference, vol. 1, pp. 91–98.

[10] I. Kushchu, “Genetic programming and evolutionary generalization,”
Evolutionary Computation, IEEE Transactions on, vol. 6, no. 5, pp.
431 – 442, oct 2002.


