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Abstract—This paper deals with automated design of combi-
natorial circuits with the use of Cartesian Genetic Programming
(CGP). The synthesis is based on user specifications of network
functionality, while the network structure may be predefined.
The results show that CGP approach is able to match the
desired functionality while preserving other performance criteria,
such as latency and number of gates. Additionally, the evolution
process may use Verilog network descriptions as input files,
which facilitates the design for larger number of inputs and test
patterns.

I. INTRODUCTION

The design of combinatorial electronic circuits is a com-
plex task requiring a significant effort and time cost of the
involved experts. This process may include the identification
of appropriate target gate type and technology, minimization
and optimization subject to various domain specific constraints
(such as timing, number of gates, etc.) and mapping the design
onto the target device [1]. Lately, this problem has been
addressed with a black-box approach where evolutionary algo-
rithms, such as genetic algorithms and genetic programming,
have been used to evolve the desired functionality and other
aspects of the target circuitry. This approach has come to be
known as Evolvable Hardware, which is a generic term used
to denote various methods of designing electronic circuits with
evolutionary metaheuristics [2][3].

In this paper we present an application of Cartesian Ge-
netic Programming (CGP) to design combinatorial circuits
and evaluate its efficiency. The procedure is fully automated,
without the need for human expert intervention in the process.
The target circuitry is evolved based on the desired logical
functionality. The definition of the circuit functionality is
based on two components: first a behavioral description of
the network is defined in Verilog. The system then internally
builds the executable simulation module and the internal truth
table which is used in the evolution process. The results show
that the presented approach may produce solutions with full
compliance with desired functionality.

The rest of this paper is organized as follows: Section II
briefly revises this area, while in Section III we describe the
CGP and the structure of our evolutionary system. Section IV
describes the use of Verilog for the specification of circuit
functionality, and Section V gives examples of the application
and the obtained results.

II. AUTOMATIC SYNTHESIS OF COMBINATORIAL
CIRCUITS

As the production of electronic circuits increases, the de-
mand in both financial and time resources calls for different
design methods. The traditional approach includes assigning
human experts for the development of functional components,
but this may quickly become inefficient for a large number
of networks with even slightly different requirements [2].
Partial or complete automation of this task has become an
active area of research which includes various algorithms and
technologies.

One possible approach to this problem is the use of evolu-
tionary algorithms (EA), in which the desired functionality is
automatically constructed using the principles of evolution. In
an EA, a set (population) of possible solutions (individuals) are
created and modified in a sequence of iterations (generations),
to yield improved properties over time (in the evolution
process). In each generation, all the individuals are evaluated
and their quality is usually represented with a single fitness
value (e.g., the number of correctly mapped outputs for a set
of input vectors). Individuals undergo random changes using
a mutation operator and they combine their structure creating
new solutions with a crossover operator. Finally, based on their
fitness, the selection operator imitates the natural evolution by
selecting better individuals for the next generation.

The evolution process is stopped when a predefined criterion
is met, e.g. when a ’satisfactory’ solution is evolved or after a
predefined time has elapsed. The final solution is usually the
best individual from the last generation.

This approach is stochastic, and does not guarantee finding
an optimal solution in every run (e.g. a circuit with full
functionality). On the other hand, the evolution can be repeated
many times with no additional effort, which can produce
acceptable solutions with variable success rate. Although this
method may be used to synthesize various types of electronic
circuits, in this work we concentrate on combinatorial circuits
only.

A common method of evaluation of candidate combinatorial
circuits includes a set of input vectors and a corresponding set
of output values. The number of successfully mapped outputs
may be directly used as a fitness measure.

However, there are other network properties that may be
taken into account, such as the total number of gates, number
of levels, propagation delay etc. These properties may be
explicitly included in the fitness function, which can lead



to multi-objective evolutionary algorithms. In this work we
consider a single fitness value based only on functionality, as is
the case in most of similar applications [4][5][6], but additional
properties are also examined and reported. One advantage
of evolutionary synthesis is that it offers a set of potential
solutions (instead of just one); if there are more individuals
with the same level of functionality, we may choose the one
which exhibits better performance in the desired secondary
objective.

III. NETWORK DESIGN WITH CARTESIAN GENETIC
PROGRAMMING

A. Cartesian Genetic Programming

The Cartesian Genetic Programming (CGP) was actually
inspired by the structure of FPGA components [1][7][8]. In
CGP, a representation (also known as genotype) of a potential
solution is a vector of constant length consisting of natural
numbers. The vector is used to construct a directed graph,
which in turn can be interpreted as an FPGA structure,
where cells are represented with graph nodes and connections
with arcs in the graph. An example CGP individual and a
corresponding directed graph are shown in Fig. 1.

Fig. 1: CGP example; mapping genotype (vector) to phenotype
(directed graph) with 6 inputs, 3 outputs and 3 functions in
squares (0 as summation, 1 as subtraction and 2 as multiplica-
tion). Grey nodes represent unconnected nodes to the outputs.

In this example, each node has an equal number of inputs
(3) and a single output. Each node performs one function
from a set of predefined functions (descriptive symbols are
in brackets), which is denoted with a single index value. In
this way, each node is represented with four values in the
vector: the first three are the inputs, and the fourth one is
the function index. The position of those values in the vector
corresponds to the node placement in the graph (top to bottom,
from left to right). Node outputs are connected to input(s) of
nodes in the next column (or further than the next one); nodes
in the same column cannot be connected. The node inter-
connectivity is defined by the levels back parameter, which

determines how many previous columns of nodes may have
their outputs connected to a node in the current column (the
primary inputs are treated in the same way as node outputs).
In this example, levels back parameter is two columns.

The CGP allows for redundancy in its representation, which
may be caused with the following [9]:

• node redundancy occurs if a node is not connected
(directly or through other nodes) to any of the outputs;

• functional redundancy is caused with a number of nodes
comprising a function that could be represented with a
smaller number of nodes;

• input redundancy occurs if an input is not connected with
any of the nodes.

Node and input redundancy are considered beneficial, since
they allow neutrality. Neutrality represents presence of mul-
tiple different vectors with the same fitness value during
evolution process. Functional redundancy, on the other hand, is
undesirable since it increases the solution size and the problem
search space.

An important component in using CGP is the definition
of parameters, since they may have a great influence on the
quality of solutions. The parameters that are inherent to the
CGP include the number of rows and the number of columns in
the representation, as well as the number of input connections
for nodes in the graph. The choice for these parameters should
be guided with the expected complexity of the combinatorial
circuit we are trying to synthesize; this is a crucial decision
and the one which needs the greatest amount of domain
knowledge.

Additional parameters must be defined that are a part of the
initial problem, such as the number of inputs and outputs of
the network, the set of functions that can be used as graph
nodes and levels back parameter.

B. Evolution of Combinatorial Circuits

In the process of evolution, first an initial population of
solutions is created randomly, following predefined rules for
generating valid individuals [9]. The population size must be
defined beforehand, and it remains constant during the entire
run. In each generation, all the individuals are evaluated (more
detailed in Sec. IV) and being subjected to genetic operators
- mutation, crossover and selection.

The CGP defines common crossover and mutation opera-
tors, which allows this genotype structure to be used in any
evolutionary algorithm. There are many variations of these,
but here we only describe the variant used in this work. The
mutation operator chooses a random point in the vector that
represents an individual, and randomly changes the value at
the chosen position. Following predefined rules, the change in
the chosen value will depend on the position in the vector (i.e.
whether it represents an input of a node or its function), so
the operator always yields a valid individual [9].

The crossover operator creates a single new individual
(child) from two existing individuals (parents). The opera-
tor itself is relatively simple, due to the CGP structure: a
single crossover point is selected as a random position in



both parental vectors. The first part of the child, before the
crossover point, is taken from one of the parents and the other
part is taken from the other parent. No additional conditions
are verified, because this operation always produces a valid
individual.

The selection operator is a part of the evolutionary algorithm
and is not inherent to the CGP itself. In our experiments a
simple roulette-wheel selection was used for parent selection
[10].

IV. CIRCUIT SPECIFICATION USING VERILOG

As mentioned in Section II, the circuit functionality may be
defined with the truth table which defines the desired output
for every possible input. However, if the number of inputs
and outputs is larger, the truth table becomes cumbersome
to handle and construct, especially when devising multiple
circuits. An alternative way of defining the circuit function -
and not its internal structure - is using a hardware description
language. The approach and implementation presented in this
work allows circuit description in Verilog [11].

The choice of Verilog as a description language was guided
with the availability of tools for conversion of Verilog spec-
ification into program code that could be used within the
CGP evolutionary algorithm. CGP was implemented with the
help of Evolutionary Computation Framework (ECF), which
is a C++ framework implementation of various evolutionary
techniques [10]. The conversion from Verilog to a C++ code
was made possible with the Verilator tool [12][13].

Verilator takes as the input a Verilog description of the
circuit and generates C++ code that is able to simulate the
desired network behaviour. Additional functionality is added,
in the form of wrapper files, that allow the simulator to be
called from the evolutionary system [9]. The simulator can be
called every time a potential solution needs to be evaluated,
and the simulator output is compared to the output of candidate
circuit from the population.

To avoid repeated simulation for the same input vector
(repeating the calculation to obtain the same output), a separate
input generator module is devised that uses the simulator to
generate an internal truth table of the predefined size [9].
This allows faster evaluation of different individuals and is
a complete automatic process (invisible to the user).

The input generator accepts an additional parameter that
defines the percentage of the truth table that will be used
(and generated) for fitness evaluation, which may be denoted
as domain coverage [9]. For instance, if the coverage is
50%, only one half (randomly chosen) of possible inputs
and corresponding outputs will be used for candidate circuits
functionality evaluation. This feature is added since for larger
number of inputs the truth table may be of considerable
size and can greatly slow down the evolution process. It is
important to note that, if the domain coverage is less than
100%, in every generation a new partial truth table is generated
randomly which covers the denoted percentage of test vectors.

The final output of the evaluation is an integer fitness value
in the range of [0, n], where n is the actual size of the internal

truth table.

A. Limitations

It is obvious that the Verilog language allows the definition
of different types of networks and with different modes of de-
scription. Verilog description that is of interest here should be
behavioral, where only the functionality is defined and not the
internal structure (as opposed to a synthesizable description)
[11]. Furthermore, only combinatorial circuits must be defined,
with no memory elements (e.g. a description containing a reg
keyword). This condition is not checked automatically, and we
rely on the designer to be able to specify the behaviour of a
combinatorial circuit only.

V. RESULTS AND ANALYSIS

The experiments described in this section were designed to
answer the following questions:

• Is the CGP able to provide a functionally correct net-
work?

• What is the influence of CGP parameters (such as number
of rows and columns) to the quality of results?

• What is the quality of the results considering internal
structure, in comparison with human-made circuits?

All the experiments are made with a 100% domain cover-
age, i.e. all the possible input combinations are included in
the truth table. The following parameter settings are used in
the experiments, unless stated otherwise:

• population size of 50 individuals;
• termination condition is 200 generations without im-

provement of the best individual;
• number of repetitions is at least 10 for each parameter

set;
• the initial function set contains functions AND, OR and

NOT.

A. Test Case: binaryToESeg_Behavioral

This test case covers the conversion of a binary coded
digit to 8-segmented display, with only the signal for the "E"
segment as shown in Fig. 2 [11]. The number of inputs is 4,
thus covering 16 possible input vectors, and a single bit is the
output. An example of a human-made solution is shown in
Fig. 3.

Fig. 2: 8-segmented display with only the "E" segment func-
tional signals.

The CGP system was executed with different genotype
sizes (row and column number) and different levels back
parameter values. Population size was set to 100 individuals.
The convergence of the CGP system is described using the



Fig. 3: Human-made solution to the "E" segment problem
(binaryToESeg_Behavioral).

maximum and average results of best individuals out of all
repetitions for each parameter setting. The results for this
experiment are shown in Table I.

TABLE I: Results for test case: binaryToESeg

CGP parameters Fitness value
Rows Columns Levels back Mean Maximum

4 4 1 14.7 15
4 4 2 14.6 15
4 4 4 13.9 15
4 8 1 14.3 15
4 8 4 14.7 16
4 8 8 14 15
8 8 4 14.9 16
8 4 1 14.7 16
8 4 2 14.8 16
8 4 4 14.2 15
8 8 1 14.8 16
8 8 8 14.2 15

CGP was able to produce five correct solutions (functionally
correct), with three solutions better than human-made solution;
an example of a correctly produced circuit is given in Fig. 4. It
can be seen that the best obtained CGP solution incorporates
a smaller number of nodes and the same number of levels as
the human-made solution.

B. Test Case: synCaseWithDefault

This example from [11] takes 3 single-bit inputs and a single
output, comprising the truth table of size 8. The human-made
solution to this problem is shown in Fig. 5.

The first experiment obtained results with average quality
shown in Table II.

Total number of correct solutions (with fitness 8) was five,
with one solution as good as human-made solution and two
solution better than human-made solution (one of them is
shown in Fig. 6).

In this case an additional experiment was made with ex-
tended function set, comprising AND, OR, NOT, XOR and

Fig. 4: Solution produced by CGP for the "E" segment problem
(binaryToESeg_Behavioral).

Fig. 5: Human-made solution to the 3 single-bit input and
single bit output problem (synCaseWithDefault).

XNOR functions, which produced 29 correct solutions with
25 better than human-made solution. The purpose was to
investigate whether a better solution, in terms of the number
of nodes and levels, could be evolved. This proved to be
true, as CGP produced three solutions with only 4 nodes; the
convergence results are shown in Table III, and one of the best
obtained circuits is given in Fig. 7.

C. Test Case: oneBitFullAdder

This is an example of a full adder which takes 3 bit inputs
and 2 outputs [11], with the maximum fitness value of 16 (2
outputs for every input combination). A human-made solution
is shown in Fig. 8.

With the default set of parameters, the CGP was again able
to produce a correct solution, for combinations of row and
column numbers shown in Table IV.

The structure of three best CGP solutions was equal to the
human-made solution in this case, which is the best known
solution with this function set [11] (total number of correct
solutions was 17).

D. Test Case: decoder2To4

The final example is a 2 to 4 decoder with 3 inputs,
including the enable signal [15].



TABLE II: Results for test case: synCaseWithDefault (basic
function set)

CGP parameters Fitness value
Rows Columns Levels back Mean Maximum

3 3 1 6 6
3 3 3 6 6
3 5 1 6.6 7
3 5 2 6.2 7
3 5 5 6.1 7
5 3 1 6.2 7
5 3 3 6.1 7
5 5 1 6.7 8
5 5 2 6.4 8
5 5 5 6 6

Fig. 6: Solution produced by CGP with basic function set
for the 3 single-bit input and single bit output problem
(synCaseWithDefault).

The maximum fitness value is 32, which corresponds to 4
correct outputs for every combination of 3 inputs. The default
set of parameters was used, along with the population size of
100 individuals. In this experiment the CGP was also able to
produce 8 correct solutions, as shown in Table V. An example
of a CGP solution is given in Fig. 10.

In this case the CGP solution was not of the same quality as
the human made circuit, as shown in Fig. 9, since it includes
one additional level and a single additional node. However,
the functionality is still preserved with only a small difference
in network structure.

E. Discussion

The answer to the first question is clear: CGP is able to
provide multiple different functionally correct networks for
all test cases.

Considering the second question, the influence of CGP pa-
rameters to the quality of results, it shows that parameters close
to human-made solutions produce the best results. However,
if a better solution exists, human-made solutions can be used
as a starting point where parameters (such as number of rows
and columns) are gradually reduced until fitness value shows
to be increasing.

The third question about the quality of the results, con-
sidering internal structure in comparison with human-made
circuits, provides interesting results. The first test case (bina-
ryToESeg_Behavioral) and the second test case (synCaseWith-
Default) produced better solutions than human-made ones. The
third test case (oneBitFullAdder) produced solutions equal to

TABLE III: Results for test case: synCaseWithDefault (ex-
tended function set)

CGP parameters Fitness value
Rows Columns Levels back Mean Maximum

3 3 1 7.1 8
3 3 3 7.1 8
3 5 1 7.1 8
3 5 2 7.3 8
3 5 5 7.1 8
5 3 1 7.3 8
5 3 3 7 7
5 5 1 7.8 8
5 5 2 7.7 8
5 5 5 7.1 8

Fig. 7: Solution produced by CGP with extended function
set for the 3 single-bit input and single bit output problem
(synCaseWithDefault).

the human-made solution. However, the fourth test case (de-
coder2To4) did not produce any better solutions. Considering
the complexity of certain test cases, we can conclude that the
results reflect that complexity.

Since our primary goal was to find functionally correct
solutions (in which we succeeded), the fact that CGP can
also implicitly performs the optimization and produces better
solutions shows how neutrality is an important feature of CGP.

The only heavy downside was a time-consuming evolution
process, that depends on the size of the solutions (individuals
in population).

VI. CONCLUSIONS

This paper describes the use of Cartesian Genetic Program-
ming (CGP) for automatized synthesis of combinatorial cir-
cuits. The main purpose of this approach is the simplification
of the design process usually requiring human expertise. The
results show that the CGP-based evolutionary system is able
to produce solutions that satisfy the functional requirements.
Additionally, the results show good properties regarding the
total number of gates and network levels. The presented ap-
plication allows network behaviour specification with Verilog,
which can facilitate the design process for larger number of
input combinations.
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Fig. 9: Human-made solution to the decoder 2 to 4 problem
(decoder2To4).

TABLE V: Results for test case: decoder2To4

CGP parameters Fitness value
Rows Columns Levels back Mean Maximum

4 6 3 30.4 32
6 4 1 30 32
6 6 6 30.5 32
6 8 4 30.9 32
6 8 8 30.7 32

Fig. 10: Produced solution by CGP for the decoder 2 to 4
problem (decoder2To4).


