On Spectral Bipartite Clustering Algorithm and Automatic Determination of the Number of Clusters

by Ivančica Mirošević and Nevena Jakovčević Stor

Faculty of EE, ME and Naval Arch.

University of Split

The clustering problem

Recovering the structure

Graph notation

Motivation

Graph model

» Graph notation

» Graph cut

» Partitioning functions

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering term \times document matrix

Determination of the number of clusters

Examples

Conclusion

G = (V, E) is a simple, finite, undirected, weighted graph where:

 $V = \{1, 2, 3, ..., n\}$ is a set of vertices and

E is a set of edges $\{i, j\}$, $i, j \in V$, with weights $w_{ij} \in \mathbb{R}^+$.

The weighted adjacency matrix of G is a $n \times n$ matrix

$$W = [w_{ij}].$$

 $w_{ij} = 0$ means vertices i and j are not connected by an edge.

Graph cut

Motivation

Graph model

» Graph notation

» Graph cut

» Partitioning functions

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering term \times document matrix

Determination of the number of clusters

Examples

Conclusion

Let $V_1, V_2 \subset V, V_1, V_2 \neq \emptyset$. We define

 $\operatorname{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} w_{ij},$

$$d_i = \sum_{j=1}^n w_{ij},$$

$$\operatorname{vol}(V_l) = \sum_{i \in V_l} d_i = \sum_{i \in V_l} \sum_{j \in V} w_{ij} = \operatorname{cut}(V_l, V \setminus V_l) + \operatorname{within}(V_l).$$

Partitioning functions

Motivation

Graph model

» Graph notation

» Graph cut

» Partitioning functions

Graph Laplacians and their basic properties

Solving the discrete optimization problem

 $\begin{array}{l} \text{Clustering } \textit{term} \times \textit{document} \\ \text{matrix} \end{array}$

Determination of the number of clusters

Examples

Conclusion

Let $\pi = \{V_1, V_2\}$ be the partition of V.

Ratio cut*

$$R(V_1, V_2) = \frac{\operatorname{cut}(V_1, V_2)}{|V_1|} + \frac{\operatorname{cut}(V_1, V_2)}{|V_2|}$$

favors partitions into sets with equal number of vertices. Normalized cut**

$$N(V_1, V_2) = \frac{\operatorname{cut}(V_1, V_2)}{\operatorname{vol}(V_1)} + \frac{\operatorname{cut}(V_1, V_2)}{\operatorname{vol}(V_2)}$$

favors partitions into sets with equal weights of edges within subsets.

* Hagen and Kahng, 1992** Shi and Malik, 2000

Graph Laplacian

Motivation

Graph model

Graph Laplacians and their basic properties

» Graph Laplacian

» Normalized graph Laplacian

Solving the discrete optimization problem

```
Clustering term \times document matrix
```

```
Determination of the number of clusters
```

Examples

Conclusion

 $L = [l_{ii}]$ is a real $n \times n$ matrix, s.t.

$$l_{ij} = \begin{cases} \sum_{k=1}^{n} w_{ik} , & i = j \\ -w_{ij} , & i \neq j \end{cases}.$$

The matrix *L* satisfies the following properties:

- $\rightarrow L = D W$, where D is a degree matrix (diagonal matrix with degrees d_1, d_2, \dots, d_n on its diagonal);
- \rightarrow L is symmetric and positive semi-definite;
- $\rightarrow L\mathbf{1} = 0 \text{ for } \mathbf{1} = [1, ..., 1]^T;$
- \rightarrow The multiplicity k of the eigenvalue 0 equals the number of connected components in the graph;
- \rightarrow *L* has *n* real-valued eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

Normalized graph Laplacian

Motivation

Graph model

Graph Laplacians and their

basic properties » Graph Laplacian

» Normalized graph Laplacian

Solving the discrete optimization problem

Clustering	term	\times	document
matrix			

Determination of the number of clusters

Examples

Conclusion

 $L_n = [l_{n_{ij}}]$ is a $n \times n$ matrix, s.t.

$$(l_n)_{ij} = \begin{cases} 1 , & i = j \\ -\frac{w_{ij}}{\sqrt{d_i}\sqrt{d_j}} & , & i \neq j \end{cases}.$$

In other words,

$$L_n = D^{-1/2} (D - W) D^{-1/2}.$$

 L_n is symmetric and positive semi-definite matrix with the smallest eigenvalue 0 and corresponding eigenvector $D^{\frac{1}{2}}\mathbf{1}$.

Relaxation of the discrete problem

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem » Relaxation of the discrete

problem

» The Theorem

» The solution (1)

» The solution (2)

» Constructing the partition

» Recursive bipartitioning - the algorithm

Clustering term \times document matrix

Determination of the number of clusters

Examples

Conclusion

The partition $\pi = \{V_1, V_2\}$ of *V* is determined by a vector **y** s.t.

$$y_i = egin{cases} rac{1}{2} & \mathsf{za} \ i \in V_1 \ -rac{1}{2} & \mathsf{za} \ i \in V_2 \end{cases}$$

The Ratio cut problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\} \\ |\mathbf{y}^T \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} \left(y_i - y_j \right)^2 w_{ij}$$

The Normalized cut problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\} \\ |\mathbf{y}^T D \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} \left(y_i - y_j \right)^2 w_{ij}$$

Relaxation of the discrete problem

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem » Relaxation of the discrete

problem

» The Theorem

» The solution (1)

» The solution (2)

» Constructing the partition

» Recursive bipartitioning - the algorithm

Clustering term \times document matrix

Determination of the number of clusters

Examples

Conclusion

The partition $\pi = \{V_1, V_2\}$ of *V* is determined by a vector **y** s.t.

$$y_i = egin{cases} rac{1}{2} & \mathsf{za} \ i \in V_1 \ -rac{1}{2} & \mathsf{za} \ i \in V_2 \end{cases}$$

 \Rightarrow

The Ratio cut problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\}\\ |\mathbf{y}^T \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} \left(y_i - y_j \right)^2 w_{ij}$$

 $\min_{\substack{y \in \mathbb{R}^n \\ |\mathbf{y}^T \mathbf{1}| \le \frac{2\beta}{\sqrt{n}} \\ \mathbf{y}^T \mathbf{y} = 1}} \mathbf{y}^T L \mathbf{y}$

The Normalized cut problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\} \\ |\mathbf{y}^T D \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} \left(y_i - y_j \right)^2 w_{ij}$$

Relaxation of the discrete problem

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem » Relaxation of the discrete

- problem
- » The Theorem
- » The solution (1)
- » The solution (2)
- » Constructing the partition

» Recursive bipartitioning - the algorithm

Clustering term \times document matrix

Determination of the number of clusters

Examples

Conclusion

The partition $\pi = \{V_1, V_2\}$ of *V* is determined by a vector **y** s.t.

$$y_i = egin{cases} rac{1}{2} & \mathsf{za} \ i \in V_1 \ -rac{1}{2} & \mathsf{za} \ i \in V_2 \end{cases}$$

 \Rightarrow

 \Rightarrow

The Ratio cut problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\} \\ |\mathbf{y}^T \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} \left(y_i - y_j \right)^2 w_{ij}$$

 $\min_{\substack{y \in \mathbb{R}^n \\ |\mathbf{y}^T \mathbf{1}| \le \frac{2\beta}{\sqrt{n}} \\ \mathbf{y}^T \mathbf{y} = 1 } \mathbf{y}^T L \mathbf{y}$

The Normalized cut problem:

$$\min_{\substack{y_i \in \{-\frac{1}{2}, \frac{1}{2}\} \\ |\mathbf{y}^T D \mathbf{1}| \le \beta}} \frac{1}{2} \sum_{i,j} \left(y_i - y_j \right)^2 w_{ij}$$

$$\min_{\substack{y \in \mathbb{R}^n \\ |\mathbf{y}^T D \mathbf{1}| \leq \frac{\beta}{\sqrt{\theta n}} \\ \mathbf{v}^T D \mathbf{v} = 1}} \mathbf{y}^T L \mathbf{y}$$

The Theorem

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem

» Relaxation of the discrete problem

» The Theorem

» The solution (1)

» The solution (2)

» Constructing the partition

» Recursive bipartitioning - the algorithm

 $\begin{array}{l} \text{Clustering } \textit{term} \times \textit{document} \\ \text{matrix} \end{array}$

Determination of the number of clusters

Examples

Conclusion

Theorem 1 Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1 < \lambda_2 < \lambda_3 \leq \cdots \leq \lambda_n$ and eigenvectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$. For a fixed $0 \leq \alpha < 1$, the problem

$$\min_{\substack{\mathbf{y} \in \mathbb{R}^n \\ |\mathbf{y}^T \mathbf{v}^{[1]}| \le \alpha \\ \mathbf{y}^T \mathbf{y} = 1}} \mathbf{y}^T A \mathbf{y}$$

has the solution $y = \pm \alpha \mathbf{v}_1 \pm \sqrt{1 - \alpha^2} \mathbf{v}_2$.

The solution (1)

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem

» Relaxation of the discrete problem

» The Theorem

» The solution (1)

» The solution (2)

» Constructing the partition

» Recursive bipartitioning - the algorithm

 $\begin{array}{l} \text{Clustering } \textit{term} \times \textit{document} \\ \text{matrix} \end{array}$

Determination of the number of clusters

Examples

Conclusion

Corollary 1 For $0 \le \beta < \frac{n}{2}$ the relaxed Ratio Cut problem

$$\min_{\substack{\boldsymbol{y} \in \mathbb{R}^n \\ |\mathbf{y}^T \mathbf{1}| \le \frac{2\beta}{\sqrt{n}} \\ \mathbf{y}^T \mathbf{y} = 1 } \mathbf{y}^T L \mathbf{y}$$

has the solution

$$\mathbf{y} = \pm \frac{2\beta}{\sqrt{n}} \mathbf{1} \pm \sqrt{1 - 4\frac{\beta^2}{n^2}} \mathbf{v}_2.$$

 \mathbf{v}_2 is the Fiedler vector of the Laplacian *L*.

The solution (2)

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem

» Relaxation of the discrete problem

» The Theorem

» The solution (1)

» The solution (2)

```
    » Constructing the partition
    » Recursive bipartitioning - the algorithm
```

 $\begin{array}{l} \text{Clustering } \textit{term} \times \textit{document} \\ \text{matrix} \end{array}$

Determination of the number of clusters

Examples

Conclusion

Corollary 2 For $0 \le \beta < \sqrt{\theta n} \left\| D^{\frac{1}{2}} \mathbf{1} \right\|_2$ the relaxed normalized cut problem

$$\min_{\substack{\boldsymbol{y} \in \mathbb{R}^n \\ \mathbf{y}^T D \mathbf{1} | \leq \frac{\beta}{\sqrt{\theta n}} \\ \mathbf{y}^T D \mathbf{y} = 1 } \mathbf{y}^T L \mathbf{y}$$

has the solution

$$\mathbf{y} = \pm \frac{\beta}{\sqrt{\theta n} \left\| D^{\frac{1}{2}} \mathbf{1} \right\|_{2}^{2}} \mathbf{1} \pm \sqrt{1 - \frac{\beta^{2}}{\theta n} \left\| D^{\frac{1}{2}} \mathbf{1} \right\|_{2}^{2}} D^{-\frac{1}{2}} \mathbf{w}_{2}$$

 $D^{-\frac{1}{2}}\mathbf{w}_2$ is the normalized Fiedler vector (of the normalized Laplacian).

Constructing the partition

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem

» Relaxation of the discrete problem

» The Theorem

» The solution (1)

» The solution (2)

» Constructing the partition

» Recursive bipartitioning - the algorithm

 $\begin{array}{l} \text{Clustering } \textit{term} \times \textit{document} \\ \text{matrix} \end{array}$

Determination of the number of clusters

Examples

Conclusion

According to the definition, the sets V_1 and V_2 are determined by

$$V_1 = \{i : \mathbf{v}_2(i) < 0\}, \quad V_2 = \{i : \mathbf{v}_2(i) \ge 0\},$$

for the Ratio Cut, and

$$V_1 = \{i : D^{-\frac{1}{2}} \mathbf{w}_2(i) < 0\}, \quad V_2 = \{i : D^{-\frac{1}{2}} \mathbf{w}_2(i) \ge 0\}$$

for the Normalized Cut.

Recursive bipartitioning - the algorithm

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete

optimization problem

- » Relaxation of the discrete problem
- » The Theorem
- » The solution (1)
- » The solution (2)
- » Constructing the partition
 » Recursive bipartitioning the algorithm

Clustering term \times document matrix

Determination of the number of clusters

Examples

Conclusion

Input: Adjacency matrix W, number of clusters k to construct. **Output**: Cluster indicator vector y.

1. Bipartition V. Set counter $k_c = 2$.

- 2. If $k_c < k$ then
 - For each subset of V compute the optimal bipartition.
 - Within all $(k_c + 1)$ -partitions, choose the one with the smallest value of the partitioning function.

Set $k_c = k_c + 1$ and proceed recursively with step 2.

6. Stop.

3

4.

5.

Bipartite graph

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

 $\begin{array}{l} \text{Clustering } \textit{term} \times \textit{document} \\ \text{matrix} \end{array}$

» Bipartite graph

» Connection to SVD*
 » Advantages and

disadvantages of SC

Determination of the number of clusters

Examples

Conclusion

Undirected bipartite graph *G* is a triplet G = (T, D, E). $T = \{t_1, \dots, t_m\}$ and $D = \{d_1, \dots, d_n\}$ are two sets of vertices and

$$E = \{\{t_i, d_j\} : t_i \in T, d_j \in D\}$$

is a set of edges.

For example, *D* is a set of documents, *T* is a set of terms and edge $\{t_i, d_i\}$ exists if document d_i contains term t_i .

The adjacency matrix has the form

$$W = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix},$$

where A is the term \times document matrix.

Connection to SVD*

Motivation	
Graph model	Let
Graph Laplacians and their basic properties	
Solving the discrete optimization problem	
Clustering <i>term</i> × <i>document</i> matrix	
» Bipartite graph	
» Connection to SVD*	
» Advantages and disadvantages of SC	Then
Determination of the number of clusters	
	-

Examples

Conclusion

$$D = \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix}, \quad L = \begin{bmatrix} D_1 & -A \\ -A^T & D_2 \end{bmatrix}.$$

$$L_{n} = D^{-\frac{1}{2}} \begin{bmatrix} D_{1} & -A \\ -A^{T} & D_{2} \end{bmatrix} D^{-\frac{1}{2}} = \begin{bmatrix} I & -D_{1}^{-\frac{1}{2}}AD_{2}^{-\frac{1}{2}} \\ -D_{2}^{-\frac{1}{2}}AD_{1}^{-\frac{1}{2}} & I \end{bmatrix}$$

*Inderjit Dhillon, 2001

Connection to SVD (2)

otivation	
raph model	Let
raph Laplacians and their	
asic properties	
olving the discrete	
otimization problem	
lustering <i>term</i> $ imes$ <i>document</i> atrix	be
Bipartite graph	
Connection to SVD*	
Advantages and	
sadvantages of SC	
etermination of the number of usters	The
kamples	

Ν

b

0

С

E

Conclusion

 $\mathbf{w} = egin{bmatrix} \mathbf{u} \ \mathbf{v} \end{bmatrix}$, $\mathbf{u} \in \mathbb{R}^m$, $\mathbf{v} \in \mathbb{R}^n$,

be an eigenvector of the normalized Laplacian,

 $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}\mathbf{w} = \lambda \mathbf{w}.$

Then

$$D_1^{-\frac{1}{2}} A D_2^{-\frac{1}{2}} \mathbf{v} = (1 - \lambda) \mathbf{u},$$
$$D_2^{-\frac{1}{2}} A^T D_1^{-\frac{1}{2}} \mathbf{u} = (1 - \lambda) \mathbf{v}.$$

Connection to SVD (3)

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

 $\begin{array}{l} \text{Clustering } \textit{term} \times \textit{document} \\ \text{matrix} \end{array}$

» Bipartite graph

» Connection to SVD*

» Advantages and disadvantages of SC

Determination of the number of clusters

Examples

Conclusion

Instead of computing the Fiedler vector of L_n , we compute the left and right singular vector of the <u>normalized</u> matrix

$$A_n = D_1^{-\frac{1}{2}} A D_2^{-\frac{1}{2}}$$

which correspond to the second largest singular value,

$$A_n\mathbf{v}_2 = \sigma_2\mathbf{u}_2,$$

where $\sigma_2 = 1 - \lambda_2$

This is more stable!

 $D_1^{-\frac{1}{2}}\mathbf{u}_2$ partitions terms and $D_2^{-\frac{1}{2}}\mathbf{v}_2$ partitions documents!

Advantages and disadvantages of SC

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering term \times document matrix

» Bipartite graph

» Connection to SVD*

» Advantages and disadvantages of SC

Determination of the number of clusters

Examples

Conclusion

 Does not make assumptions on the form of the clusters (k-means can recognize only convex sets);

 Possible to implement efficiently for large data sets as long as the similarity graph is sparse;

There are no issues of getting stuck in local minima or restarting the algorithm for several times with different initializations;

Only two singular vectors need to be calculated.

But

- The number of clusters has to be predefined;
- The choice of similarity function and its parameters can affect the results of clustering a lot;
- Cannot serve as a "black box algorithm" which automatically detects the correct clusters in any given set.

The coupling matrix

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering term \times document matrix

Determination of the number of clusters

» The coupling matrix

 » Identification of nearly decoupled bloks - the algorithm
 » Automatization

» Where to stop?

Examples

Conclusion

In [1] the authors introduce a spectral clustering algorithm for calculating the number of metastable states of Markov chains based on a concept of block diagonal dominance.

Definition 1 Let $\pi = \{V_1, \dots, V_k\}$ be the partition of *V*. Let $W_{ml} = W(V_m, V_l), m, l \in \{1 \dots, k\}$, be blocks of the corresponding block decomposition of stochastic matrix *W*. The coupling matrix of the decomposition is matrix *B* defined by

$$B_{ml} = ||W_{ml}||_{\mathbf{1}} = \frac{1}{|V_m|} \sum_{i \in V_m, j \in V_l} |w_{ij}|.$$

[1] An SVD Approach to Identifying Metastable States of Markov Chains, D. Fritzsche, V. Mehrmann, D. Szyld, E. Virnik

Identification of nearly decoupled bloks - the INDB algorithm

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering term \times document matrix

Determination of the number of clusters

» The coupling matrix
 » Identification of nearly

decoupled bloks - the algorithm

» Automatization

» Where to stop?

Examples

Conclusion

Input: Stochastic matrix W, treshold $thr(= 1 - \delta)$.

Output: Number k and sizes n_i , $i = 1, \dots, k$, of identified blocks in W, a permutation matrix P such that PWP^T is bd-dominant.

- 1. Compute the second left and right singular vectors of W, \mathbf{u}_2 and \mathbf{v}_2 .
- 2. Sort it and use the resulting permutation *P* to permute the matrix *W*.
- 3. Identify two potential blocks W_{11} and W_{22} by using the change in sign in \mathbf{u}_2 and \mathbf{v}_2 .
- 4. The hight of the first (second) block is the number of negative (positive) values in \mathbf{u}_2 , the width of the first (second) block is the number of negative (positive) values in \mathbf{v}_2 .
- 5. if The norm of the diagonal blocks is larger than thr then
- 6. Separate two found blocks.
- 7. Proceed recursively with step 1. applied to each of the blocks.
- 8. else The current block cannot be further reduced.

Automatization

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering term \times document matrix

Determination of the number of clusters

» The coupling matrix

» Identification of nearly

decoupled bloks - the algorithm

» Automatization

» Where to stop?

Examples

Conclusion

If the noise is not too large, a block diagonally dominant structure can be successfully recovered by proposed algorithm.

But, there is still a parametar *thr* to be predetermined. Variation of the idea would be to stop with recursive normalized spectral bipartitioning when the corresponding coupling matrix fails to be diagonally dominant.

Definition 2 The matrix *B* is (strictly) diagonally dominant if

$$|b_{ii}| > \sum_{j,j \neq i} |b_{ij}|$$

for all i.

Where to stop?

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering *term* \times *document* matrix

Determination of the number of clusters

» The coupling matrix

» Identification of nearly

decoupled bloks - the algorithm

» Automatization

» Where to stop?

Examples

Conclusion

In examples with very small between-cluster similarity we needed even stronger criteria - we stopped when the matrix failed to satisfy

$$|b_{ii}| > \sum_{\substack{j,k\\ i \neq k}} |b_{jk}|.$$

We also observed diagonal dominance of the scaled coupling matrices

$$B_r = D^{-1}B,$$

 $B_c = BD^{-1},$
 $B_a = D^{-1/2}BD^{-1/2},$

where $D = \operatorname{diag} B$.

Example - full matrices

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering *term* \times *document* matrix

Determination of the number of	
clusters	
Examples	
» Example - full matrices	
» Example Imaginable	
» Example - sparse matrix	
Conclusion	

The *Classic*^{*} collection of abstracts (Medline - 1033 medical abstracts, Cranfield - 1400 aeronautical systems abstracts and Cisi - 1460 information retrieval abstracts) is naturally divided in three clusters. The data is clustered by the recursive normalized spectral clustering algorithm for k = 2, k = 3 and k = 4.

Example - full matrices (2)

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering *term* \times *document* matrix

Determination of the number of clusters

Examples

» Example - full matrices

» Example Imaginable

» Example - sparse matrix

Conclusion

In the following table we give a number of clusters found by different criteria:

		В				B _{scal} (dds)					B (thr)								
		dd		dds		r		С			а		0.5		0	.6	0.7	0.8	0.9
Classic30 (1	$073 \times 30)$	18		3		5		5			5		21		2	21	21	17	2
Classic150 (3	$552 \times 150)$	10		3		4		4			4		105	;	1	03	73	5	1
Classic300 (5	577 × 300)	7		3		3		3			3		200)	ç	8	29	1	1
Random4 (7	70 × 795)	7		4		4		4			4		6			4	3	3	1
Random8 (9	$30 \times 880)$	10		8		8		8			8		8			6	6	5	2
Mat1 (3213	3 × 146)	6		1		1		3			2		2			1	1	1	1

dd - diagonal dominance

dds - diagonal dominance (stronger criteria)

 B_{scal} - scaled matrix (r - row, c - column, a - all)

thr - threshold as a measure of diagonal dominance (INDB algorithm)

Example - full matrices(3)

Example Imaginable

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering *term* \times *document* matrix

Determination of the number of clusters

Examples

» Example - full matrices

» Example Imaginable

» Example - sparse matrix

Conclusion

An example^{*} of 300 words graded by 149 people on how imaginable these words are. Grades are scaled from 1 to 7.

The data is clustered by the recursive normalized spectral clustering algorithm for k = 2 and k = 3.

* The data was provided by Fekete Istvan, BME, Department of Cognitive

Science

Example Imaginable (2)

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering *term* \times *document* matrix

Determination of the number of clusters

Examples

» Example - full matrices

» Example Imaginable

» Example - sparse matrix

Conclusion

The result of 3-clustering (representative words):

cluster 1	cluster 2	cluster 3
(146)	(69)	(85)
coffee	dance	faith
apple	dream	fate
table	cinema	love
dog	clothes	hope
computer	congressman	freedom
bird	coastline	time
honey	night	responsibility
tea	decrease	beauty
book	proposal	friendship
bed	line	culture
	-	-
	-	- -

		В	B _s	cal (da	ls)	B (thr)				
	dd dds		r	С	а	0.1	0.2	0.3	0.6	
$Imaginable(300 \times 149)$	2	1	1	1	1	9	5	2	1	

Example - sparse matrix

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering *term* \times *document* matrix

Determination of the number of clusters

Examples

» Example - full matrices

» Example Imaginable

» Example - sparse matrix

Conclusion

Matrix (570166×99899) represents big store receipts registered during one month.

Example - sparse matrix (2)

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering *term* \times *document* matrix

Determination of the number of clusters

Examples

» Example - full matrices

» Example Imaginable

» Example - sparse matrix

Conclusion

	Ε	3	E	B _{scal} (dds	B(thr)		
	dd dds		r	С	а	0.01	0.005
(570166×99899)	> 8	3	> 8	> 8	> 8	1	1

Conclusion

Motivation

Graph model

Graph Laplacians and their basic properties

Solving the discrete optimization problem

Clustering term \times document matrix

Determination of the number of clusters

Examples

Conclusion

- Clustering according to normalized singular vectors of normalized similarity matrix outperforms the unnormalized version of spectral clustering.
- It can be hard to predict the treshold value in INDB algorithm that will result with good number of clusters.
- Diagonal dominance as a stoping criteria in recursive normalised spectral clustering works if the perturbation is not too large.
- In examples with very small between-cluster similarity we needed stronger criteria.
- Scaling the coupling matrix showed no effect on determination of the number of clusters.