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The clustering problem
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Graph notation

G = (V, E) is a simple, finite, undirected, weighted graph
where:

V = {1, 2, 3, ..., n} is a set of vertices and

E is a set of edges {i, j}, i, j ∈ V, with weights wij ∈ R
+.

The weighted adjacency matrix of G is a n × n matrix

W = [wij].

wij = 0 means vertices i and j are not connected by an edge.
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Graph cut

Let V1, V2 ⊂ V, V1, V2 6= ∅. We define

cut(V1, V2) = ∑
i∈V1,j∈V2

wij,

di =
n

∑
j=1

wij,

vol(Vl) = ∑
i∈Vl

di = ∑
i∈Vl

∑
j∈V

wij = cut(Vl , V \ Vl) + within(Vl).
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Partitioning functions

Let π = {V1, V2} be the partition of V.

Ratio cut∗

R(V1, V2) =
cut(V1, V2)

|V1|
+

cut(V1, V2)

|V2|

favors partitions into sets with equal number of vertices.

Normalized cut∗∗

N(V1, V2) =
cut(V1, V2)

vol(V1)
+

cut(V1, V2)

vol(V2)

favors partitions into sets with equal weights of edges within
subsets.

∗ Hagen and Kahng, 1992
∗∗ Shi and Malik, 2000
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Graph Laplacian

L = [lij] is a real n × n matrix, s.t.

lij =







n

∑
k=1

wik , i = j

−wij , i 6= j
.

The matrix L satisfies the following properties:

→ L = D − W, where D is a degree matrix (diagonal matrix with
degrees d1, d2, · · · , dn on its diagonal);

→ L is symmetric and positive semi-definite;

→ L1 = 0 for 1 = [1, ..., 1]T;

→ The multiplicity k of the eigenvalue 0 equals the number of
connected components in the graph;

→ L has n real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
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Normalized graph Laplacian

Ln = [lnij ] is a n × n matrix, s.t.

(ln)ij =







1 , i = j

− wij√
di

√
dj

, i 6= j
.

In other words,

Ln = D−1/2(D − W)D−1/2.

Ln is symmetric and positive semi-definite matrix with the smallest

eigenvalue 0 and corresponding eigenvector D
1
2 1.



Motivation

Graph model

Graph Laplacians and their

basic properties

Solving the discrete

optimization problem

» Relaxation of the discrete

problem

» The Theorem

» The solution (1)

» The solution (2)

» Constructing the partition
» Recursive bipartitioning - the

algorithm

Clustering term × document

matrix

Determination of the number of

clusters

Examples

Conclusion

June 9, 2008 iwasep 7, Dubrovnik 2008 - p. 9/31

Relaxation of the discrete problem

The partition π = {V1, V2} of V is determined by a vector y s.t.

yi =







1
2 za i ∈ V1

− 1
2 za i ∈ V2

The Ratio cut problem:

min
yi∈{− 1

2 , 1
2 }

|yT 1|≤β

1

2 ∑
i,j

(

yi − yj

)2
wij

The Normalized cut problem:

min
yi∈{− 1

2 , 1
2 }

|yT D1|≤β

1

2 ∑
i,j

(

yi − yj

)2
wij
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Relaxation of the discrete problem
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The Theorem

Theorem 1 Let A ∈ R
n×n be a symmetric matrix with eigenvalues

λ1 < λ2 < λ3 ≤ · · · ≤ λn and eigenvectors v1, v2, ..., vn. For a fixed
0 ≤ α < 1, the problem

min
y∈Rn

|yT v[1] |≤α

yT y=1

yT Ay

has the solution y = ±αv1 ±
√

1 − α2v2.
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The solution (1)

Corollary 1 For 0 ≤ β <
n
2 the relaxed Ratio Cut problem

min
y∈Rn

|yT 1|≤ 2β√
n

yT y=1

yT Ly

has the solution

y = ± 2β√
n

1 ±
√

1 − 4
β2

n2
v2.

v2 is the Fiedler vector of the Laplacian L.
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The solution (2)

Corollary 2 For 0 ≤ β <

√
θn

∥

∥

∥
D

1
2 1

∥

∥

∥

2
the relaxed normalized cut

problem

min
y∈Rn

|yT D1|≤ β√
θn

yT Dy=1

yT Ly

has the solution

y = ± β
√

θn
∥

∥

∥
D

1
2 1

∥

∥

∥

2

2

1 ±
√

√

√

√

√

1 − β2

θn
∥

∥

∥
D

1
2 1

∥

∥

∥

2

2

D− 1
2 w2,

D− 1
2 w2 is the normalized Fiedler vector (of the normalized Laplacian).
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Constructing the partition

According to the definition, the sets V1 and V2 are determined
by

V1 = {i : v2 (i) < 0}, V2 = {i : v2 (i) ≥ 0},

for the Ratio Cut, and

V1 = {i : D− 1
2 w2 (i) < 0}, V2 = {i : D− 1

2 w2 (i) ≥ 0}

for the Normalized Cut.
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Recursive bipartitioning - the algorithm

Input : Adjacency matrix W, number of clusters k to construct.
Output : Cluster indicator vector y.

1. Bipartition V. Set counter kc = 2.
2. If kc < k then
3. For each subset of V compute the optimal bipartition.
4. Within all (kc + 1)-partitions, choose the one

with the smallest value of the partitioning function.
5. Set kc = kc + 1 and proceed recursively with step 2.
6. Stop.
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Bipartite graph

Undirected bipartite graph G is a triplet G = (T, D, E).
T = {t1, · · · , tm} and D = {d1, ..., dn} are two sets of vertices and

E = {{ti, dj} : ti ∈ T, dj ∈ D}

is a set of edges.

For example, D is a set of documents, T is a set of terms and edge
{ti, dj} exists if document dj contains term ti.

The adjacency matrix has the form

W =





0 A

AT 0



 ,

where A is the term × document matrix.
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Connection to SVD ∗

Let

D =





D1 0

0 D2



 , L =





D1 −A

−AT D2



 .

Then

Ln = D− 1
2





D1 −A

−AT D2



 D− 1
2 =





I −D
− 1

2

1 AD
− 1

2
2

−D
− 1

2
2 AD

− 1
2

1 I



 .

∗Inderjit Dhillon, 2001
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Connection to SVD (2)

Let

w =

[

u

v

]

, u ∈ R
m, v ∈ R

n,

be an eigenvector of the normalized Laplacian,

D− 1
2 LD− 1

2 w = λw.

Then

D
− 1

2
1 AD

− 1
2

2 v = (1 − λ)u,

D
− 1

2
2 ATD

− 1
2

1 u = (1 − λ)v.



Motivation

Graph model

Graph Laplacians and their

basic properties

Solving the discrete

optimization problem

Clustering term × document

matrix

» Bipartite graph

» Connection to SVD∗

» Advantages and

disadvantages of SC

Determination of the number of

clusters

Examples

Conclusion

June 9, 2008 iwasep 7, Dubrovnik 2008 - p. 18/31

Connection to SVD (3)

Instead of computing the Fiedler vector of Ln, we compute the
left and right singular vector of the normalized matrix

An = D
− 1

2
1 AD

− 1
2

2

which correspond to the second largest singular value,

Anv2 = σ2u2,

where σ2 = 1 − λ2

This is more stable!

D
− 1

2
1 u2 partitions terms and D

− 1
2

2 v2 partitions documents!
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Advantages and disadvantages of SC

� Does not make assumptions on the form of the clusters (k-means
can recognize only convex sets);

� Possible to implement efficiently for large data sets as long as the
similarity graph is sparse;

� There are no issues of getting stuck in local minima or restarting
the algorithm for several times with different initializations;

� Only two singular vectors need to be calculated.

But

� The number of clusters has to be predefined;

� The choice of similarity function and its parameters can affect the
results of clustering a lot;

� Cannot serve as a "black box algorithm" which automatically
detects the correct clusters in any given set.
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The coupling matrix

In [1] the authors introduce a spectral clustering algorithm for
calculating the number of metastable states of Markov chains
based on a concept of block diagonal dominance.

Definition 1 Let π = {V1, · · · , Vk} be the partition of V. Let
Wml = W(Vm, Vl), m, l ∈ {1 · · · , k}, be blocks of the
corresponding block decomposition of stochastic matrix W. The
coupling matrix of the decomposition is matrix B defined by

Bml = ‖Wml‖1 =
1

|Vm| ∑
i∈Vm,j∈Vl

|wij|.

[1] An SVD Approach to Identifying Metastable States of Markov Chains,

D. Fritzsche, V. Mehrmann, D. Szyld, E. Virnik
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Identification of nearly decoupled bloks - the INDB algorithm

Input : Stochastic matrix W, treshold thr (= 1 − δ).
Output : Number k and sizes ni, i = 1, · · · , k, of identified blocks in W,
a permutation matrix P such that PWPT is bd-dominant.
1. Compute the second left and right singular vectors of W, u2 and v2.

2. Sort it and use the resulting permutation P to permute the matrix
W.

3. Identify two potential blocks W11 and W22 by using the change in
sign in u2 and v2.

4. The hight of the first (second) block is the number of negative
(positive) values in u2, the width of the first (second) block is the
number of negative (positive) values in v2.

5. if The norm of the diagonal blocks is larger than thr then

6. Separate two found blocks.

7. Proceed recursively with step 1. applied to each of the blocks.

8. else The current block cannot be further reduced.
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Automatization

If the noise is not too large, a block diagonally dominant
structure can be successfully recovered by proposed algorithm.

But, there is still a parametar thr to be predetermined.
Variation of the idea would be to stop with recursive normalized
spectral bipartitioning when the corresponding coupling matrix
fails to be diagonally dominant.

Definition 2 The matrix B is (strictly) diagonally dominant if

|bii| > ∑
j,j 6=i

|bij|

for all i.
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Where to stop?

In examples with very small between-cluster similarity we
needed even stronger criteria - we stopped when the matrix
failed to satisfy

|bii| > ∑
j,k

j 6=k

|bjk|.

We also observed diagonal dominance of the scaled coupling
matrices

Br = D−1B,

Bc = BD−1,

Ba = D−1/2BD−1/2,

where D = diag B.
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Example - full matrices

The Classic∗ collection of abstracts (Medline - 1033 medical abstracts,
Cranfield - 1400 aeronautical systems abstracts and Cisi - 1460
information retrieval abstracts) is naturally divided in three clusters.
The data is clustered by the recursive normalized spectral clustering
algorithm for k = 2, k = 3 and k = 4.

Classic30 − original matrix

10 20 30
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400

600

800

1000

k = 2

10 20 30

200

400
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1000

k = 3

10 20 30

200
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600

800
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k = 4

10 20 30

200

400

600

800

1000

∗ http://www.cs.utexas.edu/ftp/pub/inderjit/Data/Text/small data set/
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Example - full matrices (2)

In the following table we give a number of clusters found by different
criteria:

B Bscal (dds) B (thr)

dd dds r c a 0.5 0.6 0.7 0.8 0.9

Classic30 (1073 × 30) 18 3 5 5 5 21 21 21 17 2

Classic150 (3652 × 150) 10 3 4 4 4 105 103 73 5 1

Classic300 (5577 × 300) 7 3 3 3 3 200 98 29 1 1

Random4 (770 × 795) 7 4 4 4 4 6 4 3 3 1

Random8 (930 × 880) 10 8 8 8 8 8 6 6 5 2

Mat1 (3213 × 146) 6 1 1 3 2 2 1 1 1 1

dd - diagonal dominance
dds - diagonal dominance (stronger criteria)
Bscal - scaled matrix (r - row, c - column, a - all)
thr - threshold as a measure of diagonal dominance (INDB algorithm)
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Example - full matrices(3)

Number of clusters as a result of different thresholds.
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Example Imaginable

An example∗ of 300 words graded by 149 people on how imaginable
these words are. Grades are scaled from 1 to 7.

The data is clustered by the recursive normalized spectral clustering
algorithm for k = 2 and k = 3.

k = 2
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k = 3
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∗ The data was provided by Fekete Istvan, BME, Department of Cognitive

Science
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Example Imaginable (2)

The result of 3-clustering (representative words):

cluster 1 cluster 2 cluster 3

(146) (69) (85)

co f f ee dance f aith

apple dream f ate

table cinema love

dog clothes hope

computer congressman f reedom

bird coastline time

honey night responsibility

tea decrease beauty

book proposal f riendship

bed line culture

.

.

.

.

.

.

.

.

.

B Bscal (dds) B (thr)

dd dds r c a 0.1 0.2 0.3 0.6

Imaginable(300 × 149) 2 1 1 1 1 9 5 2 1
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Example - sparse matrix

Matrix (570166 × 99899) represents big store receipts registered
during one month.
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nz = 69304

k = 2
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Example - sparse matrix (2)

0 2 4 6 8

x 10
4

0

1

2

3

4

5

x 10
5

nz = 69304

k = 3

0 2 4 6 8

x 10
4

0

1

2

3

4

5

x 10
5

nz = 69304

k = 4

B Bscal (dds) B(thr)

dd dds r c a 0.01 0.005

(570166 × 99899) > 8 3 > 8 > 8 > 8 1 1
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Conclusion

� Clustering according to normalized singular vectors of
normalized similarity matrix outperforms the unnormalized
version of spectral clustering.

� It can be hard to predict the treshold value in INDB algorithm
that will result with good number of clusters.

� Diagonal dominance as a stoping criteria in recursive
normalised spectral clustering works if the perturbation is
not too large.

� In examples with very small between-cluster similarity we
needed stronger criteria.

� Scaling the coupling matrix showed no effect on
determination of the number of clusters.
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