
Comparison of Statistical Model-Based
Voice Activity Detectors for Mobile Robot

Speech Applications ?
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Abstract: This paper deals with the problem of voice activity detection in adverse acoustic
conditions, namely high and varying noise scenarios. For robotic applications, we need the voice
activity detector to be computationally light, robust to varying levels of background noise, and
have a low latency, especially if we are tracking moving speakers. We analyze three voice activity
detectors—two model the discrete Fourier transform coefficients by Gaussian and generalized
Gaussian distribution, while the third models the spectral envelope as having either Rayleigh or
Rice distribution—and we present them in a unifying and consistent manner, with respect to a
statistical hypotheses ratio measure and a joint noise spectrum estimation algorithm. Moreover,
we compare the performance under various noise conditions; three types of noises, three different
signal-to-noise ratios and six different speakers, by means of receiver operating characteristic
curves and area under a curve score. The results showed that the Rayleigh-Rice model had on
average better results and medium computational demand.
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1. INTRODUCTION

Voice activity detection is a technique in speech process-
ing by which presence of speech is detected in a given
signal frame. This problem can be seen as a dual hy-
pothesis problem, where a signal frame is classified as
either containing speech or containing noise. In a voice
activity detector (VAD), the absence of speech usually
presumes presence of noise only. This system is not only
of great importance for many applications, like mobile tele-
phony, Internet telephony, hearing aid devices, but also for
robotics if speech oriented systems are utilized like speaker
localization, speech and speaker recognition. For most of
the stated research problems, it is indispensable to save
on bandwidth resources by coding noise with significantly
less bits, while for others it is mandatory to completely
ignore frames with noise.

A VAD must provide a robust and reliable decision proce-
dure in varying acoustical conditions. This task gets quite
formidable with the varying level and type of background
noise, like in the case of a mobile robot. Furthermore, voice
activity detection often serves as a front-end algorithm
for other applications and it is difficult to set algorithm
constrains without knowing what the total system will
be like. But for some applications, like speaker tracking,
the detector should be computationally light and have
low latency in order to keep a feasible track, while for
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applications like speech recognition, where a big delay is
already present, low latency and real-time operation might
not be so crucial.

Approaches to voice activity detection mostly differ in the
type of the extracted features and in the decision models
used to reach a speech/non-speech decision based on those
features. A lot of attention is given to statistical model-
based VADs, in which certain probabilistic properties are
assumed on the coefficients of the discrete Fourier trans-
form (DFT). For an example, in Sohn et al. (1999) they are
assumed to have Gaussian distribution and this approach
was further developed in Cho et al. (2001); Chang and
Kim (2003); Chang et al. (2004); Ramı́rez et al. (2007)
and Górriz et al. (2010). Furthermore, special attention
is given to derivation of various noise robust features and
decision rules in Woo et al. (2000); Li et al. (2002) and
Marzinzik and Kollmeier (2002). However, VAD is not
necessarily limited to single channel processing. In Valin
et al. (2007) the authors used multichannel post-filter
for speech recognition of multiple speakers. Although the
multichannel approach can undoubtedly further enhance
VADs, in the present paper we have focused on the com-
parison of statistical model-based VADs.

In this paper, we have implemented and compared three
statistical model-based VAD algorithms that were origi-
nally presented by Sohn et al. (1999); Chang et al. (2004)
and Mumolo et al. (2003), respectively. The three VAD
algorithms are presented in a unifying and consistent man-
ner by using a joint noise spectrum estimation technique.
Performance of the algorithms is tested and compared un-



der varying noise conditions, namely three types of noises
and three different signal-to-noise ratios (SNRs).

The rest of the paper is organized as follows. Section 2
presents the statistical model-based VADs. In Section 3,
the implemented algorithms for noise spectrum estimation
and a priori signal-to-noise ratio are presented. Section 4
presents the experimental comparison of the algorithms,
and Section 5 concludes the paper.

2. STATISTICAL MODEL-BASED DETECTORS

These VADs rely on statistical modeling of the DFT
coefficients. All the statistical model-based VADs assume
a two hypotheses scenario. Since speech is degraded with
uncorrelated additive noise, the two hypotheses are as
follows:

H0 : speech absent⇒ X = N

H1 : speech present⇒ X = N + S,
(1)

where X = [X0, X1, . . . , XK−1]T, N = [N0, N1, . . . , NK−1]T

and S = [S0, S1, . . . , SK−1]T are the DFT coefficients of a
K-point DFT of the noisy speech, noise, and clean speech,
respectively.

The form of the probability density function (pdf) of X
conditioned on the hypotheses, i.e. p(X|H0) and p(X|H1),
depends on the distribution used to model each DFT
coefficient. In this paper three different distributions are
presented and analyzed.

After the pdfs p(X|H0) and p(X|H1) are determined,
usually a likelihood ratio (LR) on all the DFT coefficient
indices k is calculated:

Λk =
p(Xk|H1)

p(Xk|H0)
, (2)

where Λk becomes a vector of length K. This information
is then used to calculate the geometric mean which is then
compared to a certain threshold in order to reach a final
decision in favor of either the hypothesis H0 or H1:

log Λ =
1

K

K−1∑
k=0

log Λk
H1

≷
H0

η. (3)

The goal of statistical model-based VADs is to model
the DFT coefficients, or their derivatives, as faithfully as
possible and in essence, the advantage of each model would
be in the representation faithfulness thereof.

2.1 Gaussian distribution statistical model

This VAD was first proposed by Sohn et al. (1999), where
the DFT coefficients are asymptotically independent and
zero-mean complex Gaussian random variables. Let us
look at the DFT of the clean speech signal. In the complex
Gaussian speech model, both the real and the imaginary
parts of the DFT, Sk = SR,k+jSI,k, are independent zero-
mean Gaussian random variables, each with a variance of
λs,k/2. The pdfs of the coefficients are:

p(SR,k) =
1√
πλs,k

exp

{
−
S2
R,k

λs,k

}
, (4)

p(SI,k) =
1√
πλs,k

exp

{
−
S2
I,k

λs,k

}
. (5)

Since real and imaginary coefficients are independent, joint
pdf can be written in the following form:

p(Sk) = p(SR,k)p(SI,k) =
1

πλs,k
exp

(
−
S2
R,k + S2

I,k

λs,k

)

=
1

πλs,k
exp

(
−|Sk|

2

λs,k

)
. (6)

Similar derivation can be done for the pdf of the noise
coefficients.

When both speech and noise are present, we have for each
coefficient a sum of independent Gaussian variables, thus
resulting with a pdf of variance λx,k = λn,k + λs,k. Hence,
the conditional pdfs of Xk on hypotheses H0 and H1 are
as follows:

p(Xk|H0) =
1

πλn,k
exp

{
−|Xk|2

λn,k

}
, (7)

p(Xk|H1) =
1

π(λn,k + λs,k)
· exp

{
− |Xk|2

λn,k + λs,k

}
. (8)

Under the Gaussian distribution model, the LR is simply
calculated as the ratio of (8) and (7):

ΛGD
k =

p(Xk|H1)

p(Xk|H0)
=

1

1 + ξk
exp

{
γkξk

1 + ξk

}
, (9)

where ξk = λs,k/λn,k is the a priori SNR, and γk =
|Xk|2/λn,k is the a posteriori SNR. The algorithms for
estimation of these values are presented in Section 3.

2.2 Generalised Gaussian distribution statistical model

In Chang and Kim (2003) statistical model-based VAD
was improved by incorporating a complex Laplacian
model. The analysis in the latter paper showed that the
Laplacian provides a better model of the distribution of
noisy speech spectra, than the Gaussian model. Further-
more, VAD based on generalized Gaussian distribution
(GGD), which includes the Gaussian and Laplacian model
as special cases, was proposed by Chang et al. (2004),
where it was also experimentally verified that VAD based
on GGD outperforms the VAD based on the Laplacian
model. Following the same train of thought as in Sec-
tion 2.1, joint GGD of the DFT coefficients for clean
speech signal is given by:

p(Sk) =
ν2α2(ν)

4λs,kΓ2(1/ν)
·

· exp

{
−αν(ν)

[∣∣∣∣∣ SR,k√
λs,k

∣∣∣∣∣
ν

+

∣∣∣∣∣ SI,k√
λs,k

∣∣∣∣∣
ν]}

, (10)

with

α(ν) =

√
Γ(3/ν)

Γ(1/ν)
, (11)

where Γ(·) denotes the Gamma function, and ν denotes
parameter controlling the distribution shape. For ν = 1
and 2 the GGD becomes the Laplacian and Gaussian
density, respectively.

The shape parameter ν needs to be continuously esti-
mated. By letting m1 and m2 be the first and the sec-
ond moment of |Xk| (cf. Chang et al. (2004)), ν can be
estimated by solving the following equation:



ν̂ = F−1

(
m1

m2

)
, (12)

where

F (x) =
Γ(2/x)√

Γ(1/x)Γ(3/x)
. (13)

The (12) is the inverse of (13) and is usually solved by
precomputing a lookup table.

From the previous discussion we can write the distribution
of Xk conditioned on the hypotheses H0 and H1 as follows:

p(Xk|H0) =
ν2n,kα

2(νn,k)

4λn,kΓ2(1/νn,k)
exp

{
− ανn,k(νn,k)

·

[∣∣∣∣∣ XR,k√
λn,k

∣∣∣∣∣
νn,k

+

∣∣∣∣∣ XI,k√
λn,k

∣∣∣∣∣
νn,k
]}

(14)

p(Xk|H1) =
ν2s,kα

2(νs,k)

4(λs,k + λn,k)Γ2(1/νs,k)
exp

{
− ανn,k(νn,k)

·

[∣∣∣∣∣ XR,k√
λs,k + λn,k

∣∣∣∣∣
νn,k

+

∣∣∣∣∣ XI,k√
λs,k + λn,k

∣∣∣∣∣
νn,k
]}

, (15)

where νn,k and νs,k are shape parameters related to H0

and H1 of noisy speech on frequency bin k, respectively.
In order to compute these parameters, the corresponding
(mn

1,k,m
n
2,k) and (ms

1,k,m
s
2,k) are calculated recursively

from |Xk| as proposed in Chang et al. (2004).

Finally, we can write the LR for the GGD model:

ΛGGD
k =

1

1 + ξk
·
ν2s,kα

2(νs,k)Γ2(1/νn,k)

ν2n,kα
2(νn,k)Γ2(1/νs,k)

exp

{

− ανs,k(νs,k)

 |XR,k|νs,k + |XI,k|νs,k(√
λn,k(1 + ξk)

)νs,k
+

+ανn,k(νn,k)

[
|XR,k|νn,k + |XI,k|νn,k(√

λn,k
)νn,k

]}
.

(16)

2.3 Rayleigh and Rice distribution statistical model

In the approach proposed by Mumolo et al. (2003), derived
from McAulay and Malpass (1980), the DFT coefficients
are still modelled as having a Gaussian distribution, but
instead of using their joint distribution, the distribution
of the signal envelope is used. The envelope of a signal,

|Xk| =
√
X2
R,k +X2

I,k, is actually the euclidean norm of

the real and imaginary coefficients. Therefore, instead of
looking at the distribution of the coefficients, the distribu-
tion of the signal envelope is analysed.

Under hypothesis H0 the signal is only noise, which means
that the DFT coefficients are both independent, zero-
mean Gaussian variables with variance λn,k/2 = E[|Nk|2].
Under that assumption, the pdf of the euclidean distance
of such DFT coefficients is a Rayleigh distribution:

p(Xk|H0) =
2|Xk|
λn,k

exp

{
−|Xk|2

λn,k

}
. (17)

Under hypothesisH1, the envelope is the euclidean norm of
two independent, non-zero-mean Gaussian variables. Such
pdf is a Rician:

p(Xk|H1) =
2|Xk|
λn,k

exp

{
− 1

λn,k

(
|Xk|2 + |Ak|2

)}
· I0
{

2|Ak||Xk|
λn,k

}
=

2|Xk|
λn,k

exp

{
−|Xk|2

λn,k
− ξk

}
· I0

{
2

√
ξk
|Xk|2
λn,k

}
,

(18)

where Ak is the amplitude of the clean speech spectrum,
ξk = |Ak|2/λn,k is the a priori SNR and I0(·) is the
modified Bessel function of the first kind and order zero.
In Mumolo et al. (2003) this VAD was implemented by
calculating the a posteriori probability p(H1|Xk) of voice
activity from (17) and (18) via Bayes’ formula. Since in this
paper the a priori SNR estimation, presented in Section
3, for all frequency bins is implemented, we are proposing
the LR instead of the a posteriori probability p(H1|Xk).

Finally, we derive the LR for Rayleigh and Rice distribu-
tion (RRD) model:

ΛRRD
k = exp {−ξk} I0

{
2
√
ξkγk

}
. (19)

3. NOISE SPECTRUM ESTIMATION

We can see from previous sections that all VADs require
estimation of the noise spectrum λn,k and the a priori
SNR ξk. First we shall address the estimation of λn,k and
then the estimation of ξk.

In most VADs the noise spectrum estimation is done in a
way to assume that in the first several frames only noise
is present and for that time λn,k is estimated by time
averaging the spectrum of the recorded signal. Then, the
VAD itself is used to discriminate between frames where
speech is present and where only noise is present. When
only noise is detected, λn,k is again estimated in a time-
averaging fashion.

In this paper the minima-controlled recursive averaging
(MCRA) algorithm, proposed by Cohen and Berdugo
(2001) and Cohen (2003), is used since it performs well in
varying noise situations and it allows estimation from all
frames, and not just the ones where no speech is detected.

3.1 Minima-controlled recursive averaging

As stated earlier, a common technique for noise spectrum
estimation is to apply temporal recursive smoothing dur-
ing the frames when only noise is present. Now, we have
the following hypotheses:

H0 : λn,k(l + 1) = anλn,k(l) + (1− an)|Xk(l)|2,
H1 : λn,k(l + 1) = λn,k(l),

(20)

where 0 < an < 1 is a smoothing parameter.

Let ps,k(l) = p(H1|Xk(l)) denote the conditional speech
presence probability at time frame l. Hence, we can write
(20) as follows:

λn,k(l + 1) =λn,k(l)ps,k(l) + [anλn,k(l)+

+ (1− an)|Xk(l)|2
]

(1− ps,k(l))

=ãn,k(l)λn,k(l) + (1− ãn,k(l))|Xk(l)|2,
(21)



where
ãn,k(l) = an + (1− an)ps,k(l) (22)

is a time-varying smoothing parameter. We can see that
the noise spectrum is estimated by averaging past power
spectral values, using a smoothing parameter that is
adjusted by the speech presence probability ps,k(l). In
order to determine ps,k(l), speech absence is calculated by
looking at the ratio of the local energy of the noisy signal
and its minimum within a certain time frame.

Firstly, the squared magnitude of the spectrum is defined:

Sf,k(l) = |Xk(k)|2, (23)

which could be smoothed in the frequency domain, but
we have omitted this step due to the increase it brings
to computational complexity. However, we do smooth the
spectrum in the time domain:

Sk(l) = αsSk(l − 1) + (1− αs)Sf,k(l), (24)

where 0 < αs < 1 is a smoothing parameter. The minimum
of the local energy of the noisy signal is calculated by first
initializing the minimum and temporary local variable:
Smin,k(0) = Sk(0) and Stmp,k(0) = Sk(0), respectively.
Then, the minimum value of the squared amplitude spec-
trum is tracked in time:

Smin,k(l) = min{Smin,k(l − 1), Sk(l)}, (25)

Stmp,k(l) = min{Stmp,k(l − 1), Sk(l)}. (26)

Whenever the number of frames reaches an arbitrarily
chosen M , the temporary variable is initialized by:

Smin,k(l) = min{Stmp,k(l − 1), Sk(l)}, (27)

Stmp,k(l) = Sk(l). (28)

We can see that the parameter M determines the scope of
the local minima search, and that the temporary variable
insures that the minimum will be adapted to a change in
the noise level.

For calculating the conditional speech presence probability
ps,k(l) a decision rule based on the ratio of the local
energy of the noisy signal and its minimum, Sr,k(l) =
Sk(l)/Smin,k(l), is needed:

Sr,k(l)
H1

≷
H0

δ. (29)

In Cohen and Berdugo (2001) the following estimator for
ps,k(l) was proposed:

ps,k(l) = αpps,k(l − 1) + (1− αp)Ik(l), (30)

where 0 < αp < 1 is a smoothing parameter, and Ik(l) is an
indicator function for the result in (29), i.e. Ik(l) = 1,∀k
if Sr,k(l) > δ and Ik(l) = 0,∀k if Sr,k(l) < δ. At this
point, we have calculated all the variables needed for the
estimation of the noise spectrum via (21).

3.2 Decision directed a priori SNR estimation

The decision directed (DD) estimation approach for the
estimation of ξk, the a priori SNR, was proposed in
Ephraim and Malah (1984). Firstly, the Wiener gain is
introduced as the following ratio:

ζk =
ξk

ξk + 1
. (31)

Now, we can define the estimator for ξk:

ξk(l) = αaζk(l− 1)2γk(l− 1) + (1− αa) max{γk(l)− 1, 0},
(32)

where 0 < αa < 1 is a smoothing parameter.

The noise spectrum λn,k and the a priori SNR ξk are
continuously updated via the MCRA and DD methods,
respectively, and are afterwards used in the VAD algo-
rithms.

4. EXPERIMENTAL COMPARISON OF THE VAD
ALGORITHMS

In order to analyze the VADs and their performance, we
used the NOIZEUS speech corpus by Hu and Loizou
(2007). Although the corpus was originally created for
testing speech enhancement algorithms, we used it for the
following reasons: (i) the recordings are of high quality
and were made in a sound-proof booth, (ii) it offers
eight different types of noises from AURORA database
by Pearce and Hirsch (2000) which corrupt the original
recordings at four different SNR levels, (iii) the recordings
were made by six different speakers – three male and three
female, (iv) it uses the IEEE sentence database which
contains phonetically-balanced sentences with relatively
low word-context predictability, and (v) the corpus is
available to researchers free of charge.

The recordings were sampled at the rate of 25 kHz and
were later downsampled to 8 kHz. The total length of all
the recordings was 80.04 s, which offered, with overlap
and frame length of L = 256, in total 5000 frames
for detection. The percentage of the speech segments
amounted to 61.28%, which is as twice as high as compared
to Sohn et al. (1999), and Chang and Kim (2003), but less
than 5% higher than in the cases of Chang et al. (2004)
and Górriz et al. (2010).

Usually, in order to test the algorithms, the speech seg-
ments are hand-labeled. However, in the present work we
used signal energy calculated via Parseval’s theorem as
the indicator of speech presence, which enabled automatic
frame labeling. We find this approach justifiable in the case
of the NOIZEUS corpus, since the clean recordings were
made in a sound-proof booth resulting with the speech-
absent frames having energy a thousand times lower than
the weakest speech frame.

4.1 Receiver operating characteristics

When analyzing detector performance it is common to
utilize receiver operating characteristics (ROC) curves.
The ROC curves give a practical representation of the
detector performance, by depicting the relationship of the
following two rates: speech detection rate (SDR)—the
rate of correctly detected speech frames in speech-labeled
frames, and false alarm rate (FAR)—the rate of frames
detected as speech in noise-labeled frames. To compare
different detectors it is practical to reduce the information
in the ROC curve to a single scalar value. A common
method is to evaluate the area under an ROC curve
(AUC).

The results are shown in Fig. 1. By analyzing Figures 1(a)
to 1(b) we can see that in the lower SNR scenarios the
GGD and RRD mostly outperform the GDVAD . On the
contrary, in Fig. 1(d) under very low SNR, the GD and
RRDVAD show similar performance, and basically better
results than the GGD VAD. More elaborate methods
for estimation of the shape parameter ν (cf. Kokkinakis
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(d) babble noise with SNR of 5 dB

Fig. 1. ROC curves for the three VADs. Each figure represents a different type of noise and a different SNR level.

and Nandi (2005)) could improve the performance of the
GGD VAD, but comparison of such methods is out of
the scope of the present paper. We can see that with the
changing SNR and noise type, the performance of the
VADs relative to each other changes. But still, from Fig. 1,
we can conclude that the RRDVAD shows equal or better
performance than the other VADs in all four scenarios,
and that preliminarily it seems as the best choice.

In Fawcett (2004), it is suggested to generate results from
several test subsets and average these results in order to
obtain a measure of variance. The ROC curves can be
either averaged vertically—by fixing FAR and averaging
over SDR, or by the threshold—for each threshold value
an SDR–FAR pair is found and their values are averaged
thus yielding both vertical and horizontal variance. The
test set for this experiment was constructed by concatenat-
ing the clean signal with its corrupted versions thus, with
frame length of L = 256 samples, yielding 50000 examples
for evaluation. In the present paper we used 10-fold cross-
validation procedure and threshold averaging. In Fig. 2
we can see the results of the experiment. Each point in the
ROC curve also depicts a horizontal and vertical error bars
which correspond to a value of three standard deviations.
Moreover, in the legend we can also seesd the AUC score
along with one standard deviation. By analyzing Fig. 2

we can assert that none of the detectors exhibited large
deviations and thus they all performed consistently on all
the subsets, and that the RRD VAD, on average, had the
best performance.

Another important parameter that should be analyzed is
the computational demand, since we can see that (9),
(16), and (19) differ in complexity. The execution times
of all the VADs (without the MCRA and the DD SNR
estimation), was measured for Matlab implementations on
an Intel Core2Quad processor with 2.33 GHz frequency
(only one core was used). The results were as follows:
the GGD, RRD, and GD VAD had the execution times
of 9.70 ms, 0.37 ms, and 0.21 ms, respectively. The reason
behind the much higher computational complexity of the
GGD VAD lies in the need to evaluate (12) via lookup
table twice. Without this step, the GGD VAD takes on
average 0.90 ms, which is still twice as much as the RRD
VAD. However, a faster time varying estimate of the shape
parameter ν could be utilized (cf. Krupiski and Purczyski
(2006)) to lower the computational complexity.

The reader should note at this point, that in the present
paper we have implemented the VADs somewhat differ-
ently than when they were first proposed by Sohn et al.
(1999); Chang et al. (2004) and Mumolo et al. (2003).
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Fig. 2. Threshold averaged ROC curves with AUC scores

Mostly, the difference is in the noise spectrum and the a
priori SNR estimation, and in the case of the RRD VAD,
in the introduction of the LR for that model. Furthermore,
the algorithms did exhibit some variance in performance
with respect to changes in some of the smoothing param-
eters, but however this did not cause a change in relative
performance of the detectors.

5. CONCLUSION

In this paper we have presented three different voice
activity detection algorithms in an unifying and consis-
tent manner, by incorporating noise spectrum and the
a priori signal-to-noise ratio estimation to their respec-
tive frameworks. Furthermore, we introduced the LR for
the Rayleigh and Rice distribution based detector. The
decision framework was based on a statistical hypothe-
sis ratio measure, and its geometric mean over all the
DFT coefficient indices. The algorithms were tested on
the NOIZEUS speech corpus which consisted of clean
recordings, and its versions corrupted with three types of
noises and three different SNRs. The performance analy-
sis was conducted using threshold averaged ROC curves
and AUC score. Based of the aforementioned parameters,
and the computational complexity, we concluded that the
VAD based on Rayleigh and Rice distribution showed
the best performance on average and is the most suitable
among the tested algorithms.
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