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Newton's iterative method
Continued fra
tions give good rational approximations of arbitrary � 2 R .Newton's iterative method xk+1 = xk � f (xk)f 0(xk) for solving nonlinear equa-tions f (x) = 0 is another approximation method.Let � = 
 +pd , 
 , d 2 Q , d > 0 and d is not a square of a rationalnumber. It is well known that regular 
ontinued fra
tion expansion of �is periodi
, i.e. has the form � = [ a0, a1, ... , ak , ak+1, ak+2, ... , ak+` ℄.Here ` = `(�) denotes the length of the shortest period in the expan-sion of �. Conne
tions between these two approximation methods weredis
ussed by several authors. Let pnqn be the nth 
onvergent of �. Theprin
ipal question is: Let f (x) = (x � �)(x � �0), where �0 = 
 �pdand x0 = pnqn , is x1 also a 
onvergent of �?It is well known that for � = pd , d 2 N , d 6= �, and the 
orrespondingNewton's approximant Rn = 12�pnqn + dqnpn � it follows thatRk`�1 = p2k`�1q2k`�1, for k � 1. (1)It was proved by Mikusi�nski [5℄ that if ` = 2t, thenRkt�1 = p2kt�1q2kt�1, for k � 1. (2)These results imply that if `(pd) � 2, then all approximants Rn are 
on-vergents of pd . Dujella [1℄ proved the 
onverse of this result. Namely, if`(pd) > 2, we know that some of approximants Rn are not 
onvergents.He showed that being again a 
onvergent is a periodi
 and a palindromi
property. Formulas (1) and (2) suggest that Rn should be 
onvergentwhose index is twi
e as large when it is a good approximant. However,this is not always true. Dujella de�ned the number j(pd) as a distan
efrom two times larger index, and pointed out that j(pd) is unbounded.In 2011, the author [6℄ proved the analogous results for � = 1+pd2 ,d 2 N , d 6= � and d � 1 (mod 4).Sharma [8℄ observed arbitrary quadrati
 surd � = 
 + pd , 
 , d 2 Q ,d > 0, d is not a square of a rational number, whose period beginswith a1. He showed that for every su
h � and the 
orresponding New-ton's approximant Nn = p2n���0q2n2qn(pn�
qn) it holds Nk`�1 = p2k`�1q2k`�1, for k � 1,and when ` = 2t and the period is palindromi
 then it holds Nkt�1 =p2kt�1q2kt�1, for k � 1. Frank and Sharma [3℄ dis
ussed generalization ofNewton's formula. They showed that for every �, whose period beginswith a1, for k , n 2 N it holdspnk`�1qnk`�1 = �(pk`�1 � �0qk`�1)n � �0(pk`�1 � �qk`�1)n(pk`�1 � �0qk`�1)n � (pk`�1 � �qk`�1)n , (3)and when ` = 2t and the period is palindromi
 then for k , n 2 N it holdspnkt�1qnkt�1 = �(pkt�1 � �0qkt�1)n � �0(pkt�1 � �qkt�1)n(pkt�1 � �0qkt�1)n � (pkt�1 � �qkt�1)n . (4)
For detailed proofs and explanation of the rest of the poster see [7℄.

Householder's iterative methods
Householder's iterative method (see e.g. [4, x4.4℄) of order p for root-solving: xn+1 = H(p)(xn) = xn+p � (1=f )(p�1)(xn)(1=f )(p)(xn) , where (1=f )(p) denotesp-th derivation of 1=f . Householder's method of order 1 is just Newton'smethod. For Householder's method of order 2 one gets Halley's method,and Householder's method of order p has rate of 
onvergen
e p + 1.It is not hard to show that for f (x) = (x � �)(x � �0) it holds:H(m+1)(x) = xH(m)(x)� ��0H(m)(x) + x � �� �0, for m 2 N . (5)Let us de�neR(1)n def= pnqn , and for m > 1 R(m)n def= H(m�1)�pnqn�.We will say that R(m)n is good approximation, if it is a 
onvergent of �.Formula (3) shows that for arbitrary quadrati
 surd, whose period beginswith a1 and k ,m 2 N , it holdsR(m)k`�1 = pmk`�1qmk`�1, (6)and when ` = 2t and period is periodi
, from (4) it followsR(m)kt�1 = pmkt�1qmkt�1.

Good approximants are periodi
 andpalindromi

Formula [8, (8)℄ says: For k 2 N it holds(a` � a0)pk`�1 + pk`�2 = qk`�1(d � 
2), (7)(a` � a0)qk`�1 + qk`�2 = pk`�1 � 2
qk`�1, (8)

and formula (5) saysR(m+1)n = R(1)n R(m)n � ��0R(1)n + R(m)n � 2
 , for m 2 N , n = 0, 1, ... . (9)Lemma 1 For m, k 2 N and i = 1, 2, ... , `, when the period begins witha1, it holds R(m)k`+i�1 = R (m)k`�1R (m)i�1���0R (m)k`�1+R (m)i�1�2
 .Proof. For m = 1, statement of the lemma is proven in [2, Thm. 2.1℄.Using mathemati
al indu
tion and (9) it is not hard to show that thestatement of the lemma holds too.When period is palindromi
 and begins with a1, formulas (7) and (8)be
ome a0pk`�1 + pk`�2 = 2
pk`�1 + qk`�1(d � 
2), (10)a0qk`�1 + qk`�2 = pk`�1. (11)Lemma 2 For m, k 2 N and i = 1, 2, ... , ` � 1, when period is palin-dromi
 and begins with a1, it holds R(m)k`�i�1 = R (m)k`�1(R (m)i�1�2
)+��0R (m)i�1�R (m)k`�1 .Proof. For m = 1 we have:R(1)k`�i�1 = pk`�i�1qk`�i�1 = 0 � pk`�i + pk`�i�10 � qk`�i + qk`�i�1 = [ a0, ... , ak`�i , 0 ℄= [ a0, ... , ak`�i , ak`�i�1, ... , ak`�1, a0, 0,�a0,�a1, ... ,�ai�1 ℄= h a0, ... , ak`�i , ak`�i�1, ... , ak`�1, a0 � pi�1qi�1 i= pk`�1�a0 � R(1)i�1� + pk`�2qk`�1�a0 � R(1)i�1� + qk`�2 (10)=(11) R(1)k`�1�R(1)i�1 � 2
�+ ��0R(1)i�1 � R(1)k`�1 .
Using mathemati
al indu
tion and (9) it is not hard to show that thestatement of the lemma holds too.Proposition 1 Let m 2 N . When period begins with a1, for i =1, 2, ... , `� 1 and �(m)i = �pmi�1�R (m)i�1qmi�1pmi�R (m)i�1qmi , it holds

R(m)k`+i�1 = �(m)i pm(k`+i) + pm(k`+i)�1�(m)i qm(k`+i) + qm(k`+i)�1, for all k � 0,
and when period is palindromi
, then

R(m)k`�i�1 = pm(k`�i)�1 � �(m)i pm(k`�i)�2qm(k`�i)�1 � �(m)i qm(k`�i)�2, for all k � 1.
Proof. We have �(m)i = � 0,�ami ,�ami�1, ... ,�a1,�a0 + R(m)i�1 �.If k = 0 we have�(m)i pmi + pmi�1�(m)i qmi + qmi�1 = � a0, ... , ami ,�(m)i �

= � a0, ... , ami , 0,�ami ,�ami�1, ... ,�a1,�a0 + R(m)i�1 � = R(m)i�1,and similarly if k > 0 we have�(m)i pm(k`+i) + pm(k`+i)�1�(m)i qm(k`+i) + qm(k`+i)�1 = � a0, ... , amk`�1, amk` � a0 + R(m)i�1 �
= pmk`�1�amk` � a0 + R(m)i�1� + pmk`�2qmk`�1�amk` � a0 + R(m)i�1� + qmk`�2(7),(6)=(8) R(m)k`�1R(m)i�1 + d � 
2R(m)k`�1 + R(m)i�1 � 2
 Lm. 1= R(m)k`+i�1.When period is palindromi
 we have:pm(k`�i)�1 � �(m)i pm(k`�i)�2qm(k`�i)�1 � �(m)i qm(k`�i)�2 = � a0, ... , am(k`�i)�1,� 1�(m)i

�
= � a0, ... , am(k`�i)�1, am(k`�i), am(k`�i)+1, ... , amk`�1, a0 � R(m)i�1 �= pmk`�1�a0 � R(m)i�1�+ pmk`�2qmk`�1�a0 � R(m)i�1�+ qmk`�2 (10),(6)=(11) R(m)k`�1(R(m)i�1 � 2
) + 
2 � dR(m)i�1 � R(m)k`�1 ,
whi
h is using Lemma 2 equal to the R(m)k`�i�1.Analogously as in [1, Lm. 3℄, from Proposition 1 it follows:Theorem 1 To be a good approximant is a periodi
 property, i.e. for allr 2 N it holdsR(m)n = pkqk () R(m)r`+n = prm`+kqrm`+k ,and when period is palindromi
, it is also a palindromi
 property, i.e. itholds: R(m)n = pkqk () R(m)`�n�2 = pm`�k�2qm`�k�2.

Whi
h 
onvergents may appear?
Let us de�ne 
oprime positive numbers P(m)n , Q(m)n byP(m)nQ(m)n def= R(m)n .

From (9) it is not hard to show that it holdsP(m)n � �Q(m)n = �P(1)n � �Q(1)n �m = (pn � �qn)m.Lemma 3 R(m)n < � if and only if n is even and m is odd. Therefore,R(m)n 
an be an even 
onvergent only if n is even and m is odd.Similarly as in [1℄, if R(m)n = pkqk , we 
an de�ne j (m) = j (m)(�, n) as thedistan
e from 
onvergent with m times larger index:j (m) = k + 1�m(n + 1)2 . (12)This is an integer, by Lemma 3. Using Theorem 1 we have j (m)(�, n) =j (m)(�, k`+n), and in palindromi
 
ase: j (m)(�, n) = �j (m)(�, `�n�2).From now on, let us observe only quadrati
 irrationals of the form� = pd , d 2 N , d 6= �. It is well known that period of su
h � ispalindromi
 and begins with a1.Theorem 2 ��R(m)n+1 �pd�� < ��R(m)n �pd ��.
Proposition 2When d 6= �, for n � 0 we have ��j (m)(pd , n)�� <m(`=2�1)2 .
Lemma 4 Let Fk denote the k-th Fibona

i number. Let n 2 N andk > 1, k � 1, 2 (mod 3). For dk(n) = �(2n+1)Fk+12 �2+(2n+1)Fk�1+1it holds pdk(n) = h (2n�1)Fk+12 , 1, 1, ... , 1, 1| {z }k�1 times , (2n � 1)Fk + 1 i, and`�pdk(n)� = k.
Theorem 3 Let F` denote the `-th Fibona

i number. Let ` > 3, ` ��1 (mod 6). Then for d` = �F`�3F`+12 �2 + F`�3F`�1 + 1 and M 2 Nit holds `(pd`) = ` andj (3M�1)(pd`, 0) = j (3M)(pd`, 0) = j (3M+1)(pd`, 0) = `�32 �M .Proof. By (12), we have to proveR(3M�1)0 = pM`�2qM`�2, R(3M)0 = pM`�1qM`�1, R(3M+1)0 = pM`qM`.We have a0 = F`�3F`+12 , and by Lemma 4 it holds pd` =� a0, 1, 1, ... , 1, 1| {z }`�1 times , 2a0 �. From Cassini's identity, it follows

R(1)0 = p0q0 = a0, R(2)0 = a0 + F`�2F`�1 = p`�2q`�2,R(3)0 = a0 + F`�1F 3̀�2F 2̀�1F 2̀�2 + F 2̀�2 = a0 + F`�1F` = p`�1q`�1. (13)
Let us prove the theorem using indu
tion on M . For proving the indu
tivestep, �rst observe that from (9) for m � 3 we have:

R(m)k = R(2)k R(m�2)k + dR(2)k + R(m�2)k , R(m)k = R(3)k R(m�3)k + dR(3)k + R(m�3)k . (14)
Suppose that for some i 2 f0, `� 2, `� 1g it holds p(M�1)`+iq(M�1)`+i = R(m�3)0 .We have:pM`+iqM`+i = h a0, 1, 1, ... , 1, 1| {z }`�1 times , a0 + R(m�3)0 i =

(10)=(11) p`�1R(m�3)0 + dq`�1q`�1R(m�3)0 + p`�1 (13)= R(3)0 R(m�3)0 + dR(3)0 + R(m�3)0 (14)= R(m)0 .
Corollary 1 For ea
h m � 2 it holdssup�jj (m)(pd , n)j	 = +1,

lim sup�jj (m)(pd , n)j`(pd) � � m6 .
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