HOUSEHOLDER’S APPROXIMANTS AND

| Newton’s iterative method I

Continued fractions give good rational approximations of arbitrary a € R.

f(xx)

Newton's iterative method x; 1 = x4 — F(x,) for solving nonlinear equa-

tions f(x) = 0 is another approximation method.

let a = c+Vd, ¢, d € Q, d > 0 and d is not a square of a rational
number. It is well known that regular continued fraction expansion of «
is periodic, i.e. has the form a = [ag, a1, ..., ak, 3k+1, Fkr2: -+ 3kt |-
Here ¢/ = /(a) denotes the length of the shortest period in the expan-
sion of a. Connections between these two approximation methods were

discussed by several authors. Let % be the nth convergent of a. The

principal question is: Let f(x) = (x — a)(x — o), where o/ = ¢ — V/d

and xp = %, Is x1 also a convergent of o
n

It is well known that foraa = v/d, d € N, d = [, and the corresponding
Newton's approximant R, = %(& + %) it follows that

dn Pn
Rep_q = 2K for k> 1. (1)
a2ki—1
It was proved by Mikusinski [5] that if / = 2t, then
R = P2K=1 g k> 1. (2)
Q2kt—1

These results imply that if £(v/d) < 2, then all approximants R, are con-
vergents of v/d. Dujella [1] proved the converse of this result. Namely, if
¢(+/d) > 2, we know that some of approximants R, are not convergents.
He showed that being again a convergent is a periodic and a palindromic
property. Formulas (1) and (2) suggest that R, should be convergent
whose index is twice as large when it is a good approximant. However,
this is not always true. Dujella defined the number j(v/d) as a distance

from two times larger index, and pointed out that j(v/d) is unbounded.

In 2011, the author [6] proved the analogous results for a@ = 1+2\/3,

deN, d#and d =1 (mod 4).

Sharma [8] observed arbitrary quadratic surd o = ¢ ++/d, ¢, d € Q
d > 0, d is not a square of a rational number, whose period begins
with aj. He showed that for every such a and the corresponding New-

ton’s approximant N, = py—00'q; it holds N/ = Bki-L - for ko>
QQn(Pn—CQn) kt—1 q2ke—1’ —

and when ¢ = 2t and the period is palindromic then it holds N;;_1 =

—Zgl/:j, for k > 1. Frank and Sharma [3] discussed generalization of

Newton's formula. They showed that for every «, whose period begins
with ay, for k, n € N it holds

Pokt—1 _ (Pe—1 — @' qke—1)" — o' (Pre—1 — qhe—1)" 3)
Gnkt—1  (Pre—1 — @ qre—1)" — (Pre—1 — aqre—1)"

and when ¢ = 2t and the period is palindromic then for k, n € N it holds
Prkt—1 _ (Pke—1 — &'qe—1)" — o' (Phe—1 — aqge—1)" (4)
Gnkt—1  (Pkt—1 — @' qre—1)" — (Pke—1 — @qke—1)"

For detailed proofs and explanation of the rest of the poster see [7].

| Householder’s iterative methods I

Householder's iterative method (see e.g. [4, §4.4]) of order p for root-

solving: xp.1 = HP)(xp) = xpn+p- (H;')C()p(;)l())(f;), where (1/£)(P) denotes

p-th derivation of 1/f. Householder's method of order 1 is just Newton's
method. For Householder's method of order 2 one gets Halley's method,
and Householder's method of order p has rate of convergence p + 1.

It is not hard to show that for f(x) = (x — a)(x — /) it holds:

xH(M)(x) — aq

Hm+1) (%) = . for me N. 5
() Hm(x) +x —a — o )
Let us define
R,gl) def &, and for m > 1 R,({") def py(m—1) <&)
dn dn

We will say that R,({") Is good approximation, if it is a convergent of .
Formula (3) shows that for arbitrary quadratic surd, whose period begins
with a; and kK, m € N, it holds
R/((Z?_)l _ Pmkf—l, (6)
Amki—1
and when ¢ = 2t and period is periodic, from (4) it follows
R/((T_)l _ Pmkt—l_
Amkt—1

Good approximants are periodic and
palindromic

Formula [8, (8)] says: For k € N it holds

>
(ap — a0)Pke—1 + Pre—2 = qre—1(d — ), (7)
(ar — a0)qke—1 + Gke—2 = Pri—1 — 2€qkr—1. (8)
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and formula (5) says

R,S’"“) — AZéi)Rr('m()m_) oo’  formeN, n=01,.... (9)
Lemma 1 For m, fne I\_TFCSZII :_12,C2, ..., U, when the period begins with
a1, it holds R\7). = gf;ffgnﬁi

PROOF. For m =1, statement of the lemma is proven in [2, Thm.2.1].
Using mathematical induction and (9) it is not hard to show that the
statement of the lemma holds too. 0

When period is palindromic and begins with aj, formulas (7) and (8)
become

2
a0Pk/—1+ Pke—2 = 2cpri—1 + qre—1(d — ), (10)
a0qk(—1 + Gki—2 = Pki—1- (11)
Lemma 2 For m,k € Nandi =1,2,...,¢ — 1, when period is palin-

. L . R (R —2¢)+aq
dromic and begins with a1, it holds rim uoa(Riy —2¢) Faa .
kl—i—1 R'(m1)—R;£Z7)1

PROOF. For m =1 we have:

1) Pri—i—1 O Pro—i+ Pro—i—1
R( . = = :[ao,...,akg_',O]
K==L qupic1 0 Qup—j + Gke—i—1 '
=lag, ..., akr—j akp—i—1,---» akp—1, a0, 0, —apg, —ay, ..., —aj_1|
pi—1
= [ao, s Akf—jr Bk(—i—1, -+ Akf—1, 80 — — }
di—1
1 1 1
_ pkf—l(ao B Ri(—)l) T Pk(—2 (10) Rl((f)—l(Ri(—)l o 2C) + ad/
- 1 11 1 1
aki-1(0— RP) + a2 D RY — R
Using mathematical induction and (9) it is not hard to show that the
statement of the lemma holds too. 0
Proposition 1 Let m € N. When period begins with ai, for i =
o plm)
1,2, 0—1and g\ = —Pma=Roadmit Gy pojgs
pmi_R,'_lqmi
R/((Z:)_,'_l _ Im) m(kl+i) m(kl+i) 1’ for all k > 0,
5/ Im(k+i) T Im(kl+i)—1
and when period is palindromic, then
Pty -1 — By Pt} 2
rim ookl T P2 k> 1.
/ (m)
Am(ki—i)—1 — Bi Am(ke—i)—2
PROOF. We have Bfm) = [O, —amij, —amj—1,---» —ai, —ag + Ri(inl) }
If Kk =0 we have
B b + Pmi1
) ML [ ag, e ami A
B Ami + Ami—1
= [ag, ey @miy 0, —amj» —ami—1, ..., —ai, —ag + Rl(inl)} = R/'(Tl)'
and similarly if kK > 0 we have
5(m)Pm kl+i) + Pm(kt+i)—1
'(m) Ll Ll |30, -+ Amk(—1s 3mkt — a0 T R,-(_ml)}
B; Am(kl+i) T Dm(ke+i)—1
o R(m)
B Pmkt—1(3mke — 30 + RiZ7) + Prmki—2
quf—l(amké — ag + R(Tl)) T Gmki—2

),(6) Mpp—1Mi—1 .1 p(m)
o (m) (m) kf+i—1
B) Ry i+ R -2
When period is palindromic we have:
N4 — 5(’") .
Pm(ké—i)—1— FPj Pm(kl—i)—2 1
(m) = | 900 1 m(kl—i)—1 — (m)
Am(ki—)—1 — B;  Am(ke—i)—2 j

= 20, -+ Am(kt—i)—1) Am(ki—7} Bm(kl—i)+1 -
_ Pmke—1(a0 — R,-Tl)) + Pmke—2 (10),(6) kg_l(R,-(i") —2c)+c*—d

') 1
qué—l(aO — R,(Tl)) T Amk(—2 (11) R/'(Tl) o R/((Z’Zl
which is using Lemma 2 equal to the Rl((r;zi—l' 0

Analogously as in [1, Lm. 3], from Proposition 1 it follows:

Theorem 1 To be a good approximant is a periodic property, i.e. for all
r € N it holds

Rr(;m) _ Pk PN ngjzn _ Prm€+k’
qdk Armi+k
and when period is palindromic, it is also a palindromic property, i.e. it
holds: b b
ngm) _ Pk PN Rér_nz_2 _ mf—k—Q.
dk Aml—k—2
Which convergents may appear? |
Let us define coprime positive numbers P,(,m), Q,S”’) by
Pr(;m) déf Rr(;m)-

Q(m)

n

From (9) it is not hard to show that it holds
Py — aQi™ = (P — a@)™ = (pn — agn)™.

Lemma 3 R,({") < « if and only if n is even and m is odd. Therefore,

n ’ can be an even convergent only if n is even and m is odd.

Similarly as in [1], if R,S’") = %, we can define j{™) = j(M)(q, n) as the

distance from convergent with m times larger index:
 k+1—-m(n+1)

(m) _
J > . (12)

This is an integer, by Lemma 3. Using Theorem 1 we have j(m)(a, n) =
j(m)(a, k{+n), and in palindromic case: j(m)(oz, n) = —j(m)(a, {—n—2).

From now on, let us observe only quadratic irrationals of the form
a=+vd deN d =# [1. It is well known that period of such « is
palindromic and begins with ay.

Theorem 2 ‘Rr()'_t)l — \/H| < ‘R,(,m) — \/3|

Proposition 2 When d # O, for n > 0 we have |[{™(Vd, n)| <
m({/2—1)
=,

Lemma 4 Let F, denote the k-th Fibonacci number. Let n € N and

2
k>1k=1,2 (mod 3). Ford,(n) = ((2n+12)Fk+1> +(2n+1)F,_1+1

it holds \/di(n) = [(2”‘12)’:”1,;,1,...,1,;,(2n—1)Fk+1], and

k—1 times
0(\/di(n)) = k.

Theorem 3 Let F; denote the (-th Fibonacci number. Let ¢ > 3,0 =
2
+1 (mod 6). Then for dy (Fﬂ—{f*l) +Fp_aFj_{+1and M €N
it holds £(\/dy) = ¢ and
My, 0) = By, 0) = PMII(/dp,0) = 52 m.

PROOF. By (12), we have to prove

R(()3M_1) _ PMmi-2 R(()3M) _ Pmi-1 R(()3M+1) _ M.

aMe—2 ame—1 ame
We have gy = F€—3§€+1, and by Lemma 4 it holds \/?g =
[ao,l, l,....,1,1 230}. From Cassini's identity, it follows
K—lﬁmes
F/)_ _
q0 Fr_1  q—
3
(3) _ Foabi, Fo—1 _ P
R, —30—|—F2 2 [, = ap + F . (13)
i~ T i ¢ qr-1

Let us prove the theorem using induction on M. For proving the inductive
step, first observe that from (9) for m > 3 we have:

(2) p(m—2) (3) p(m—3)
(m)  RRy T +d (m) R'Ry 7 +d
R e R S © B ) R
ko Ty kT Ry
- B B : pPmM—1)+i _ p(m—3)
\S/\L/Jpzose that for some i € {0,/ — 2,/ — 1} it holds Gt R, .
€ nave.
PMEL — T ap, 11, Ll ag+ R )| =
AMi+i /—1 times
3 3) (m—3
10) praRy" Yt dgr 1 (1) RORT 4 1) pim)
- _ - — = ™
(1) g 1RY™ % + pr_s Ry + R

Corollary 1 For each m > 2 it holds

sup {|{")(Vd, )|} = +oo,

. AW, )| m
I|msup{ Z(\/H) }Zg
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