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Newton's iterative method
Continued frations give good rational approximations of arbitrary � 2 R .Newton's iterative method xk+1 = xk � f (xk)f 0(xk) for solving nonlinear equa-tions f (x) = 0 is another approximation method.Let � =  +pd ,  , d 2 Q , d > 0 and d is not a square of a rationalnumber. It is well known that regular ontinued fration expansion of �is periodi, i.e. has the form � = [ a0, a1, ... , ak , ak+1, ak+2, ... , ak+` ℄.Here ` = `(�) denotes the length of the shortest period in the expan-sion of �. Connetions between these two approximation methods weredisussed by several authors. Let pnqn be the nth onvergent of �. Theprinipal question is: Let f (x) = (x � �)(x � �0), where �0 =  �pdand x0 = pnqn , is x1 also a onvergent of �?It is well known that for � = pd , d 2 N , d 6= �, and the orrespondingNewton's approximant Rn = 12�pnqn + dqnpn � it follows thatRk`�1 = p2k`�1q2k`�1, for k � 1. (1)It was proved by Mikusi�nski [5℄ that if ` = 2t, thenRkt�1 = p2kt�1q2kt�1, for k � 1. (2)These results imply that if `(pd) � 2, then all approximants Rn are on-vergents of pd . Dujella [1℄ proved the onverse of this result. Namely, if`(pd) > 2, we know that some of approximants Rn are not onvergents.He showed that being again a onvergent is a periodi and a palindromiproperty. Formulas (1) and (2) suggest that Rn should be onvergentwhose index is twie as large when it is a good approximant. However,this is not always true. Dujella de�ned the number j(pd) as a distanefrom two times larger index, and pointed out that j(pd) is unbounded.In 2011, the author [6℄ proved the analogous results for � = 1+pd2 ,d 2 N , d 6= � and d � 1 (mod 4).Sharma [8℄ observed arbitrary quadrati surd � =  + pd ,  , d 2 Q ,d > 0, d is not a square of a rational number, whose period beginswith a1. He showed that for every suh � and the orresponding New-ton's approximant Nn = p2n���0q2n2qn(pn�qn) it holds Nk`�1 = p2k`�1q2k`�1, for k � 1,and when ` = 2t and the period is palindromi then it holds Nkt�1 =p2kt�1q2kt�1, for k � 1. Frank and Sharma [3℄ disussed generalization ofNewton's formula. They showed that for every �, whose period beginswith a1, for k , n 2 N it holdspnk`�1qnk`�1 = �(pk`�1 � �0qk`�1)n � �0(pk`�1 � �qk`�1)n(pk`�1 � �0qk`�1)n � (pk`�1 � �qk`�1)n , (3)and when ` = 2t and the period is palindromi then for k , n 2 N it holdspnkt�1qnkt�1 = �(pkt�1 � �0qkt�1)n � �0(pkt�1 � �qkt�1)n(pkt�1 � �0qkt�1)n � (pkt�1 � �qkt�1)n . (4)
For detailed proofs and explanation of the rest of the poster see [7℄.

Householder's iterative methods
Householder's iterative method (see e.g. [4, x4.4℄) of order p for root-solving: xn+1 = H(p)(xn) = xn+p � (1=f )(p�1)(xn)(1=f )(p)(xn) , where (1=f )(p) denotesp-th derivation of 1=f . Householder's method of order 1 is just Newton'smethod. For Householder's method of order 2 one gets Halley's method,and Householder's method of order p has rate of onvergene p + 1.It is not hard to show that for f (x) = (x � �)(x � �0) it holds:H(m+1)(x) = xH(m)(x)� ��0H(m)(x) + x � �� �0, for m 2 N . (5)Let us de�neR(1)n def= pnqn , and for m > 1 R(m)n def= H(m�1)�pnqn�.We will say that R(m)n is good approximation, if it is a onvergent of �.Formula (3) shows that for arbitrary quadrati surd, whose period beginswith a1 and k ,m 2 N , it holdsR(m)k`�1 = pmk`�1qmk`�1, (6)and when ` = 2t and period is periodi, from (4) it followsR(m)kt�1 = pmkt�1qmkt�1.

Good approximants are periodi andpalindromi
Formula [8, (8)℄ says: For k 2 N it holds(a` � a0)pk`�1 + pk`�2 = qk`�1(d � 2), (7)(a` � a0)qk`�1 + qk`�2 = pk`�1 � 2qk`�1, (8)

and formula (5) saysR(m+1)n = R(1)n R(m)n � ��0R(1)n + R(m)n � 2 , for m 2 N , n = 0, 1, ... . (9)Lemma 1 For m, k 2 N and i = 1, 2, ... , `, when the period begins witha1, it holds R(m)k`+i�1 = R (m)k`�1R (m)i�1���0R (m)k`�1+R (m)i�1�2 .Proof. For m = 1, statement of the lemma is proven in [2, Thm. 2.1℄.Using mathematial indution and (9) it is not hard to show that thestatement of the lemma holds too.When period is palindromi and begins with a1, formulas (7) and (8)beome a0pk`�1 + pk`�2 = 2pk`�1 + qk`�1(d � 2), (10)a0qk`�1 + qk`�2 = pk`�1. (11)Lemma 2 For m, k 2 N and i = 1, 2, ... , ` � 1, when period is palin-dromi and begins with a1, it holds R(m)k`�i�1 = R (m)k`�1(R (m)i�1�2)+��0R (m)i�1�R (m)k`�1 .Proof. For m = 1 we have:R(1)k`�i�1 = pk`�i�1qk`�i�1 = 0 � pk`�i + pk`�i�10 � qk`�i + qk`�i�1 = [ a0, ... , ak`�i , 0 ℄= [ a0, ... , ak`�i , ak`�i�1, ... , ak`�1, a0, 0,�a0,�a1, ... ,�ai�1 ℄= h a0, ... , ak`�i , ak`�i�1, ... , ak`�1, a0 � pi�1qi�1 i= pk`�1�a0 � R(1)i�1� + pk`�2qk`�1�a0 � R(1)i�1� + qk`�2 (10)=(11) R(1)k`�1�R(1)i�1 � 2�+ ��0R(1)i�1 � R(1)k`�1 .
Using mathematial indution and (9) it is not hard to show that thestatement of the lemma holds too.Proposition 1 Let m 2 N . When period begins with a1, for i =1, 2, ... , `� 1 and �(m)i = �pmi�1�R (m)i�1qmi�1pmi�R (m)i�1qmi , it holds

R(m)k`+i�1 = �(m)i pm(k`+i) + pm(k`+i)�1�(m)i qm(k`+i) + qm(k`+i)�1, for all k � 0,
and when period is palindromi, then

R(m)k`�i�1 = pm(k`�i)�1 � �(m)i pm(k`�i)�2qm(k`�i)�1 � �(m)i qm(k`�i)�2, for all k � 1.
Proof. We have �(m)i = � 0,�ami ,�ami�1, ... ,�a1,�a0 + R(m)i�1 �.If k = 0 we have�(m)i pmi + pmi�1�(m)i qmi + qmi�1 = � a0, ... , ami ,�(m)i �

= � a0, ... , ami , 0,�ami ,�ami�1, ... ,�a1,�a0 + R(m)i�1 � = R(m)i�1,and similarly if k > 0 we have�(m)i pm(k`+i) + pm(k`+i)�1�(m)i qm(k`+i) + qm(k`+i)�1 = � a0, ... , amk`�1, amk` � a0 + R(m)i�1 �
= pmk`�1�amk` � a0 + R(m)i�1� + pmk`�2qmk`�1�amk` � a0 + R(m)i�1� + qmk`�2(7),(6)=(8) R(m)k`�1R(m)i�1 + d � 2R(m)k`�1 + R(m)i�1 � 2 Lm. 1= R(m)k`+i�1.When period is palindromi we have:pm(k`�i)�1 � �(m)i pm(k`�i)�2qm(k`�i)�1 � �(m)i qm(k`�i)�2 = � a0, ... , am(k`�i)�1,� 1�(m)i

�
= � a0, ... , am(k`�i)�1, am(k`�i), am(k`�i)+1, ... , amk`�1, a0 � R(m)i�1 �= pmk`�1�a0 � R(m)i�1�+ pmk`�2qmk`�1�a0 � R(m)i�1�+ qmk`�2 (10),(6)=(11) R(m)k`�1(R(m)i�1 � 2) + 2 � dR(m)i�1 � R(m)k`�1 ,
whih is using Lemma 2 equal to the R(m)k`�i�1.Analogously as in [1, Lm. 3℄, from Proposition 1 it follows:Theorem 1 To be a good approximant is a periodi property, i.e. for allr 2 N it holdsR(m)n = pkqk () R(m)r`+n = prm`+kqrm`+k ,and when period is palindromi, it is also a palindromi property, i.e. itholds: R(m)n = pkqk () R(m)`�n�2 = pm`�k�2qm`�k�2.

Whih onvergents may appear?
Let us de�ne oprime positive numbers P(m)n , Q(m)n byP(m)nQ(m)n def= R(m)n .

From (9) it is not hard to show that it holdsP(m)n � �Q(m)n = �P(1)n � �Q(1)n �m = (pn � �qn)m.Lemma 3 R(m)n < � if and only if n is even and m is odd. Therefore,R(m)n an be an even onvergent only if n is even and m is odd.Similarly as in [1℄, if R(m)n = pkqk , we an de�ne j (m) = j (m)(�, n) as thedistane from onvergent with m times larger index:j (m) = k + 1�m(n + 1)2 . (12)This is an integer, by Lemma 3. Using Theorem 1 we have j (m)(�, n) =j (m)(�, k`+n), and in palindromi ase: j (m)(�, n) = �j (m)(�, `�n�2).From now on, let us observe only quadrati irrationals of the form� = pd , d 2 N , d 6= �. It is well known that period of suh � ispalindromi and begins with a1.Theorem 2 ��R(m)n+1 �pd�� < ��R(m)n �pd ��.
Proposition 2When d 6= �, for n � 0 we have ��j (m)(pd , n)�� <m(`=2�1)2 .
Lemma 4 Let Fk denote the k-th Fibonai number. Let n 2 N andk > 1, k � 1, 2 (mod 3). For dk(n) = �(2n+1)Fk+12 �2+(2n+1)Fk�1+1it holds pdk(n) = h (2n�1)Fk+12 , 1, 1, ... , 1, 1| {z }k�1 times , (2n � 1)Fk + 1 i, and`�pdk(n)� = k.
Theorem 3 Let F` denote the `-th Fibonai number. Let ` > 3, ` ��1 (mod 6). Then for d` = �F`�3F`+12 �2 + F`�3F`�1 + 1 and M 2 Nit holds `(pd`) = ` andj (3M�1)(pd`, 0) = j (3M)(pd`, 0) = j (3M+1)(pd`, 0) = `�32 �M .Proof. By (12), we have to proveR(3M�1)0 = pM`�2qM`�2, R(3M)0 = pM`�1qM`�1, R(3M+1)0 = pM`qM`.We have a0 = F`�3F`+12 , and by Lemma 4 it holds pd` =� a0, 1, 1, ... , 1, 1| {z }`�1 times , 2a0 �. From Cassini's identity, it follows

R(1)0 = p0q0 = a0, R(2)0 = a0 + F`�2F`�1 = p`�2q`�2,R(3)0 = a0 + F`�1F 3̀�2F 2̀�1F 2̀�2 + F 2̀�2 = a0 + F`�1F` = p`�1q`�1. (13)
Let us prove the theorem using indution on M . For proving the indutivestep, �rst observe that from (9) for m � 3 we have:

R(m)k = R(2)k R(m�2)k + dR(2)k + R(m�2)k , R(m)k = R(3)k R(m�3)k + dR(3)k + R(m�3)k . (14)
Suppose that for some i 2 f0, `� 2, `� 1g it holds p(M�1)`+iq(M�1)`+i = R(m�3)0 .We have:pM`+iqM`+i = h a0, 1, 1, ... , 1, 1| {z }`�1 times , a0 + R(m�3)0 i =

(10)=(11) p`�1R(m�3)0 + dq`�1q`�1R(m�3)0 + p`�1 (13)= R(3)0 R(m�3)0 + dR(3)0 + R(m�3)0 (14)= R(m)0 .
Corollary 1 For eah m � 2 it holdssup�jj (m)(pd , n)j	 = +1,

lim sup�jj (m)(pd , n)j`(pd) � � m6 .
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