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Abstract. There are numerous classification methods developed in the field of 

machine learning. Some of these methods, such as artificial neural networks and 

support vector machines, are used extensively in biomedical time-series classi-

fication. Other methods have been used less often for no apparent reason. The 

aim of this work is to examine the applicability of decision tree ensembles as 

strong and practical classification algorithms in biomedical domain. We consid-

er four common decision tree ensembles: AdaBoost.M1+C4.5, Multi-

Boost+C4.5, random forest, and rotation forest. The decision tree ensembles are 

compared with SMO-based support vector machines classifiers (linear, squared 

polynomial, and radial kernel) on three distinct biomedical time-series datasets. 

For evaluation purposes, 10x10-fold cross-validation is used and the classifiers 

are measured in terms of sensitivity, specificity, and speed of model construc-

tion. The classifiers are compared in terms of statistically significant wins-

losses-ties on the three datasets. We show that the overall results favor decision 

tree ensembles over SMO-based support vector machines. Preliminary results 

suggest that AdaBoost.M1 and MultiBoost are the best of the examined classi-

fiers, with no statistically significant difference between them. These results 

should encourage the use of decision tree ensembles in biomedical time-series 

datasets where optimal model accuracy is sought. 

1 Introduction 

Biomedical time-series (BTS) are series of measurements taken from a complex bio-

logical system with the basic purpose of diagnosis and treatment of the disorders pre-

sent in the system. The most common types of BTS measured today are: heart 

rhythm, electrocardiogram (ECG), electroencephalogram (EEG), electromyogram 

(EMG), pulse oxymetry, and others [1]. Any analysis of BTS needs to include specif-

ic measures (features) that describe it in a way that is the most suitable for discerning 

different disorder patterns. The cardinality of the feature space of almost any type of 

BTS is infinite. A "good" set of selected features is the one that would allow the re-

searcher to differentiate the patterns present in the series with ease. Obtaining such a 

set is highly dependent on the following: type of BTS, types of analyzed patterns, 

noise present in the BTS, and availability of patient data. In general, the researchers 



do not agree on the optimal set of features for a specific disorder, and clinical guide-

lines provide only limited recommendations about the use of particular features [2]. 

Arguably, the most common type of BTS analysis is classification, wherein the re-

searcher seeks a model that would allow him to accurately classify two or more disor-

ders present in the BTS. Many approaches to classification of BTS have been present-

ed in literature. Some of the more common ones include various types of artificial 

neural networks (ANN) [3,4] and support vector machines (SVM) [5,6]. Other meth-

ods such as Bayesian networks [7] and decision trees (CART) [8] are used occasional-

ly. From the perspective of both the algorithm's accuracy and speed, it is mostly un-

clear why various forms of decision trees are not used more often for classification of 

BTS. One of the possible reasons may be that the researchers regard only a single 

decision tree such as C4.5 or CART (due to interpretability), which is not strong 

enough to compare to the classification results of ANN or SVM. Another reason is 

that ANN and SVM are theoretically more well-founded. Nevertheless, the research-

ers in the field of BTS analysis might not be aware of more recent development in 

decision tree based classifiers. 

In this work, we focus on ensembles of decision trees classifiers and compare them 

with the SVM classifiers. Some of the known ensembles include AdaBoost, Multi-

Boost, random forest, and rotation forest. Decision tree ensembles tend to produce 

very accurate results on a variety of datasets due to the reduction in both bias and 

variance component of the generalization error of the base classifier [9]. Previous 

work indicated that some of the decision tree ensembles (AdaBoost.M1+C4.5 and 

random forest) may have advantages over ANN and SVM classifiers in classification 

of heart rhythm time-series in terms of speed and accuracy [10]. SVM classifiers are 

known to have some advantages over ANN, particularly in terms of accuracy and 

overfitting avoidance [11]. Therefore, in this paper, we focus on SVM and reserve the 

consideration of ANN algorithms for future work. This paper aims to determine: 1) 

whether decision tree ensembles are comparable to or better than SVM algorithms in 

terms of accuracy and speed of BTS classification models, and 2) which of the in-

spected decision tree ensembles gives the best results for BTS classification.  

We will restrict the work presented in this paper to multiclass classification of a 

single output class categorical attribute (disorder type), with input attributes being 

BTS features of either categorical or numerical type. This covers most of the BTS 

classification datasets. Also, the restriction is on classification methods that have 

models with no clear interpretation, with the aim of maximum model accuracy. The 

analysis will be empirical, as the algorithms will be compared on three distinct da-

tasets. The first one is the well-known "Arrhythmia" dataset from UCI repository [12] 

that contains 16 categories of patient disorders. The dataset is mostly based on ECG 

time-series with some additional patient information. The second and third datasets 

are based only on features of heart rate variability extracted from freely available 

PhysioNet databases [13] with different classification goals. 

The structure of this paper is as follows. In Section 2, we describe the employed 

machine learning algorithms. An overview of the datasets and the classification pro-

cedure are given in Section 3. The results of the comparison between the constructed 

classifiers are presented and discussed in Section 4. Conclusion is given in Section 5. 



2 Classification methods 

2.1 AdaBoost.M1+C4.5 

AdaBoost.M1 (AB) is a well-known algorithm for boosting weak classifiers [14]. AB 

is a member of a broader family of iterative machine learning algorithms that build 

the final classifier through a finite series of improvements to the classifier. The idea of 

the AB algorithm is to penalize the instances in the training set that are correctly clas-

sified by the classifier. The penalized instances then have a smaller chance to be re-

selected for the training set. The algorithm focuses on the more problematic instances 

in each successive step. 

Let K be the number of successive steps of the AB algorithm. In the first step, the 

algorithm selects N (N is the number of instances in the training set) instances to form 

the first training set by randomly taking instances with equal chance from the initial 

set with replacement (bootstrap method). Each instance may be selected more than 

once or may not be selected at all. The algorithm then trains the base classifier and 

classifies the instances. The instances that are correctly classified receive the penalty 

to their weight for the next step: 

����� ≔ ��� ���	��,   �� = ∑ ����(��)���� ,   ����� = �1, ��
������� = ��0, ��������� ≠ ��             (1), 

where  ��������� denotes the i-th classifier built by the classification algorithm Alg 

(e.g. C4.5). Additional modifications of the weights are possible in cases where error 

exceeds 50% or drops to 0. The algorithm terminates after a number of successive 

steps K is reached. A weight is contributed to each constructed classifier. In the test-

ing phase, each classifier in row gives a prognosis for the target class. Each time a 

target class is selected, its weight is increased depending on the weight of the classifi-

ers. Finally, voting is performed that selects the target class with the highest weight.  

The reason why AB is so successful is because it significantly lowers both the clas-

sifier variance and bias errors [9]. High variance error is typical for most of the deci-

sion tree algorithms, including C4.5. Originally, AdaBoost.M1 used a very simple 

decision tree, decision stump, as base classifier. Some researchers noticed that better 

classification results might be obtained if C4.5 is used as the base classifier instead of 

the stump. C4.5 can deal with weights associated to instances. AB has been shown to 

significantly improve the results of the basic C4.5 algorithm on a variety of datasets, 

including biomedical data [9,15]. 

2.2  MultiBoost+C4.5 

MultiBoost (MB) is regarded as an extension to AdaBoost that combines the AB algo-

rithm with the wagging procedure, which is itself extension of the basic bagging 

method [16]. Instead of K single classifiers used by the AB algorithm, MB constructs 

a number of sub-committees consisting of a number of trees. Each sub-committee has 

its own specific iteration �� ≤ !,∑ �� = !�   in which it terminates. Sub-committee is 

formed by AB using wagging instead of bootstrap. Wagging works by setting random 



weights of instances to those drawn from an approximation of the continuous Poisson 

distribution. After the weights are assigned, the vector of weights is always standard-

ized to sum to N. All instances in the training set are used to train the base classifier 

using the designated weights. The weights are corrected in each subsequent step of 

constructing the sub-committee by using (1). All other steps of MB are equal to the 

AB algorithm, including the testing phase. Using C4.5 as the base classifier for MB is 

straightforward, as C4.5 handles weights associated to instances. Wagging is shown 

to be particularly successful in reducing the variance error. Therefore, the combina-

tion of wagging and AB can, in principle, lead to better results. MB can also be paral-

lelized at the sub-committee level. 

2.3 Random forest 

Random forest (RF) is a decision tree ensemble learner developed by Breiman [17]. 

RF supports classification, regression, feature selection, prototyping, and other data 

mining methods. Decision trees that compose the forest are constructed by choosing 

their splitting attributes from a random subset of k attributes at each internal node. 

The best split is taken among these randomly chosen attributes and the trees are built 

without pruning, as opposed to C4.5. The quality of the split at an attribute  is deter-

mined by its Gini impurity index. RF avoids overfitting due to two sources of ran-

domness - the aforementioned random attribute subset selection and bootstrap training 

set sampling. Breiman has shown that if one constructs the forest consisting of a large 

enough number of such decision trees, the overall classification error will be mini-

mized and the accuracy will reach a plateau. RF is widely used in various classifica-

tion problems, especially in domains with larger numbers of attributes and instances, 

because of its high speed and accuracy [17]. 

2.4 Rotation forest 

Rotation forest (RTF) is a more recent decision tree ensemble method proposed by 

Rodriguez et al. [18]. The ensemble is capable of both classification and regression, 

depending on the base classifier. In most applications, C4.5 algorithm is used as the 

base learner. Algorithm focuses on presenting transformed data to the classifier by 

using a projection filter. The most common projection filter and the one that has been 

shown to be the main factor for the success of the ensemble is the principal compo-

nent filter [19]. 

Let the number of base classifiers be given as K. In order to create the training set 

for each base classifier, the instances are first sampled using the bootstrap method. 

Next, the feature set is randomly split into M subsets and principal component analy-

sis is applied to each subset. All of the eigenvectors are retained as the new features in 

order to preserve the variance in the data. The idea why these M data transformations 

are performed is to encourage simultaneously individual accuracy and diversity of 

classifiers within the ensemble, as this is the most important precondition for a suc-

cessful ensemble [17]. Diversity is achieved through random splitting of the feature 

set, and accuracy is sought by retaining all the principal components.  



2.5 Support vector machines 

Support vector machines (SVM) is a kernel based machine learning family of meth-

ods that are used to accurately classify both linearly separable and linearly inseparable 

data [20]. The basic idea when the data is not linearly separable is to transform them 

to a higher dimensional space by using a transformation kernel function. In this new 

space the samples can usually be classified with higher accuracy. Many types of ker-

nel functions have been developed, with the most used ones being polynomial and 

radial-based.  

In this work, three types of SVM are considered: linear SVM, squared polynomial 

SVM, and radial-based SVM. As the learning method, sequential minimal optimiza-

tion (SMO) type algorithm will be used. The proposed algorithm efficiently resolves 

quadratic programming optimization problem that arises when determining the maxi-

mum margin hyperplane of the support vector machines classifier. Original work on 

SMO by Platt was later optimized by Keerthi et al. [21], and this optimization, which 

is implemented in Weka platform [22], will be used. We also considered the LIBSVM 

[23] implementation of C-SVC in Java as proposed by Fan et al. [24]; however train-

ing times were an order of magnitude higher than the Keerthi's method with no im-

provement in accuracy of the models.  

Because SMO is a binary classification algorithm, for multiclass classification pur-

poses it is adapted such that it performs n*(n-1)/2 binary classifications. The SVM 

algorithm is parametric and deterministic. The most significant parameters are the 

cost of the margin and the radial kernel parameter gamma (γ). 

3 Datasets and evaluation specifics 

3.1 Datasets 

The first considered dataset is the "Arrhythmia" dataset from UCI repository [14]. 

Arrhythmia dataset contains a total of 452 instances of 12-lead ECG measurements. 

275 features are extracted from each ECG and additional four patient features are 

taken into consideration (age, sex, height, weight) to a total of 279 predictive attrib-

utes. ECG features include mostly morphological characteristics of observed ECG 

waves and wave to wave interval durations. Most features are numerical (206), and 

the rest are categorical or binary (73). There is a single output attribute (ECG class), 

with 16 possible types, out of which 13 are actually present in the dataset. The majori-

ty of the dataset is covered by examples of normal ECGs. Due to the lack of data for 

some of the ECG disorders, this dataset is considered by some to be difficult for clas-

sification, with reported results achieving only 62% total classification accuracy [25].  

The second dataset is obtained by extracting features from heart rate variability 

(HRV) records from two MIT-BIH databases (Arrhythmia and Supraventricular Ar-

rhythmia), available from PhysioNet [13]. For feature extraction, we used the 

HRVFrame framework of Jović and Bogunović [26]. We extracted a total of 230 

numerical features from 125 patient records from both databases. The features includ-

ed linear time domain, frequency domain, time-frequency, and a large number of 



nonlinear features. A total of 8843 instances were obtained for time-segments of 20 s, 

which is known to be near-optimal segment duration for arrhythmia detection [6,10]. 

The goal was to classify 9 types of commonly occurring heart rhythm patterns found 

in the databases. To our knowledge, there exists no previously published research that 

used these two databases. 

The third dataset is obtained by extracting HRV features from six MIT-BIH data-

bases, which include: MIT-BIH Normal Sinus Rhythm, Normal Sinus Rhythm RR 

Interval, MIT-BIH Arrhythmia, MIT-BIH Supraventricular Arrhythmia, BIDMC 

Congestive Heart Failure, and Congestive Heart Failure RR-interval [13]. A total of 

3317 instances from 237 records were obtained for time segments of 5 min with in-

tention of finding potentially accurate models for distinction of the three patient 

groups: healthy persons, arrhythmic patients, and congestive heart failure (CHF, of 

different severity level). For feature extraction, we also employed the HRVFrame 

framework of Jović and Bogunović [26] and extracted a total of 237 numerical fea-

tures. The features included linear time domain, frequency domain, time-frequency, 

and a large number of nonlinear features. Previously reported accuracy on this dataset 

for four-class classification (supraventricular arrhythmia was considered as a separate 

class of arrhythmia) was 72% [27]. Distribution of instances for all three datasets is 

shown in Table 1. More on these disorders can be found in [28]. 

3.2 Evaluation specifics 

For evaluation of the classifiers on each dataset, we use 10x10-fold cross-validation. 

Evaluation measures used are standard in BTS analyses: sensitivity (SENS), and spec-

ificity (SPEC): 

"#$" = %&
%&�'( ,  ")#* = %(

%(�'&                                  (2), 

where TP, TN, FP, and FN are the numbers of: true positives, true negatives, false 

positives, and false negatives, respectively. For multiclass case, these measures can be 

obtained from the confusion matrix by comparing numbers of instances for each class 

in the matrix against instances of all the other classes. The reported values have been 

weighted and averaged among classes.  

Parameters of the algorithms were modified in order to obtain the best possible re-

sult using systematic approach on the first 10-fold iteration. The other nine 10-fold 

Table 1. Distribution of disorders/rhythm patterns in the two analyzed datasets 

Dataset (instance count) Disorder (instance count) 

Arrhythmia (452) 

Normal (245), CAD (44), Old anterior MI (15), Old inferior MI 

(15), Tachycardia (13), Bradycardia (25), PVC (3), PAC (2), 

LBBB (9), RBBB (50), LV hypertrophy (4), AFIB or AFL (5), 

Other (22) 

HRV (8843) 
NSR (4121), PAC (1065), PVC (1466), AFIB (749), VBI (375), 

VTR (299), ABI (272), ATR(178), PACE(318) 

CHF (3317) Healthy (1182), Arrhythmic (1328), Congestive heart failure (827) 



iterations are used for obtaining classification results. Possible combinations of pa-

rameters were evaluated by increasing their values step-wise in Weka until an optimal 

setting (with respect to maximum model sensitivity) on the first 10-fold iteration was 

found. The searching set for each parameter differed, thus, e.g. number of iterations of 

AB started from 10 and continued to 100 with the step of 10, while cost parameter C 

for SVM started at 0.01 and continued to 2048 but with a nonlinear step increase. 

For the analyzed datasets, only the best parameters for the SVM classifiers dif-

fered. For other classifiers, the optimal parameters on all three datasets were: AB: 40 

iter., C4.5 pruning conf. = 0.4; MB: 40 iter., 5 sub-committees, C4.5 pruning conf. = 

0.4; RF: 100 trees, max. depth = 20; RTF: 30 iter., 8 max. and 8 min. group members. 

SVM: Arrhythmia dataset (SVM lin.: C=1; SVM sq.: C=0.03, included first order, 

SVM rad.: C=5, γ=0.15), HRV dataset (SVM lin.: C=1; SVM sq.: C=0.03, included 

first order, SVM rad.: C=128, γ=0.01), CHF dataset (SVM lin.: C=10; SVM sq.: 

C=0.15, included first order, SVM rad.: C=512, γ=0.15). Variations in parameter 

values would probably be greater if the datasets had more diverse feature counts 

(around 200 features were present in all three datasets). 

4 Results 

The algorithms were compared by their mean values and standard deviations for 

each evaluation measure obtained on nine 10-fold cross-validation iterations. Results 

for the three datasets are shown in Fig. 1. It is noticeable that the boosting algorithms 

perform favorably to the other algorithms. Also, if one disregards the apparent failure 

of RF on the first dataset (probably because of too few examples for the random trees 

to learn from), all decision tree ensembles compare favorably to SVM algorithms, 

both for sensitivity and for specificity. To confirm this result statistically, win-loss-tie 

comparison of the algorithms based on sensitivity is presented in Table 2. Statistically 

significant wins and losses were obtained using two-sided paired Student t-test on the 

mean results for the nine 10-fold iterations, with significance level + = 0.05. Appar-

ently, SVM algorithms lose to decision tree ensembles on all three datasets (except to 

RF on the Arrhythmia dataset). Arguably, radial SVM gave the best results among the 

SVM SMO classifiers. RF and RTF seem to have similar results on average, and they 

lose to both AB and MB. There are no significant differences between the two best 

ensembles. 

The failure of SVM may be surprising, but it is probably due to the characteristics 

of the datasets that are common in this domain. All three datasets are multiclass and 

the samples are not linearly separable. Extending SVM to multiclass case is not 

straightforward [29], and the implemented SMO algorithms used pair-wise classifica-

tion. It would be interesting to see if one-vs.-all strategy would lead to better results.  

In Table 3, average times needed for classifier construction for the three datasets 

are shown. Random forest is the fastest algorithm overall. AdaBoost.M1+C4.5 and 

MultiBoost+C4.5 have reasonably satisfactory model construction times, although 

slower than most of the other algorithms. 

 



 

Fig. 1. Sensitivity and specificity of the classifiers' models for the three datasets 

Table 2. Win/loss/tie comparison of the algorithms based on sensitivity for the three datasets, 

Student's paired t-test, + = 0.05  

vs. AB MB RF RTF 
SVM 

linear 

SVM 

squared 

SVM 

radial 

AB - 0/0/3 2/0/1 2/0/1 3/0/0 3/0/0 3/0/0 

MB 0/0/3 - 2/0/1 2/0/1 3/0/0 3/0/0 3/0/0 

RF 0/2/1 0/2/1 - 1/1/1 2/1/0 2/0/1 2/0/1 

RTF 0/2/1 0/2/1 1/1/1 - 3/0/0 3/0/0 3/0/0 

SVM linear 0/3/0 0/3/0 1/2/0 0/3/0 - 1/2/0 1/1/1 

SVM squared 0/3/0 0/3/0 0/2/1 0/3/0 2/1/0 - 0/1/2 

SVM radial 0/3/0 0/3/0 0/2/1 0/3/0 1/1/1 1/0/2 - 

 



Table 3. Average classification model construction times (in seconds) for the three datasets 

Dataset AB MB RF RTF 
SVM 

linear 

SVM 

squared 

SVM 

radial 

Arrhythmia 21.8±0.1 22.4±0.3 2.8±0.2 48.4±2.6 0.7±0.1 1.0±0.1 1.0±0.1 

HRV 675.6±8.9 616.1±1.8 29.8±1.0 825.3±3.8 135.4±13.3 301.7±4.4 370.3±3.0 

CHF 177.3±2.8 177.0±4.2 8.7±0.1 192.5±4.2 77.2±3.4 63.3±0.2 81.9±3.6 

5 Conclusion 

This work examined the use of decision tree ensembles in biomedical time-series 

classification. These algorithms are shown to be accurate and fast, as they construct 

diverse classifiers in little time, and vote strongly for the target class.  

The analysis has been limited to only three biomedical time-series datasets, all 

three related to cardiac disorders. The preliminary results suggest that the ensembles 

compare favorably to SVM-based classifiers. Future work should inspect a larger 

number of cardiac disorders datasets as well as other biomedical time-series datasets 

to determine whether the analyzed methods achieve similar results. The results pre-

sented in this work clearly support the use of decision tree ensembles in biomedical 

time-series classification. In particular, AdaBoost.M1 and MultiBoost algorithms 

applied to C4.5 decision tree seem to be the most accurate with satisfactory model 

construction times. 
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