
CUDA implementation of the algorithm for

simulating the epidemic spreading over large

networks

Matija Šošić*, Mile Šikić **, ***
* Faculty of Electrical Engineering and Computing, Zagreb, Croatia

** Faculty of Electrical Engineering and Computing/Department of Electronic Systems and Information Processing,

Zagreb, Croatia

***Bioinformatics Institute, A*STAR, Singapore

{ matija.sosic@fer.hr, mile.sikic@fer.hr }

Abstract – For some years now, there has been an

increasing interest in modeling and analyzing the spread of

epidemics in both human and computer networks. The

obvious advantage a computer simulation of the epidemic

spread offers is that the answer is delivered in short time

and the number of hosts included in simulation can

approach their real-world number. This paper presents a

CUDA (Compute Unified Device Architecture) technology

based implementation of the simulation algorithm for

modeling of the epidemic spread on a network. Spreading of

the epidemics over the network is modeled using discrete

SIR (Susceptible - Infected - Recovered) model. This

implementation offers selection of a starting node and

monitoring of the epidemic spread in each cycle. Compared

to a common CPU implementation, the CUDA version

achieves about 10x faster execution time in the worst case.

That speed up is of great significance when running tests on

large networks. The implementation was tested on real

social networks consisting of more than 5 million nodes.

Hence, we believe it can be of a practical value in analysis of

the epidemic spreading over large networks. To the best of

our knowledge, this is only implementation of SIR model on

CUDA.

I. INTRODUCTION

Understanding the spread of epidemic in populations is
a key to controlling them. Computational simulations of
epidemics provide a valuable tool for the study of
dynamics of epidemics. In such simulations, populations
are represented by networks, where hosts and their
interactions among each other are represented by nodes
and links. SIR (Susceptible – Infected – Recovered)
compartment model is used for monitoring epidemic
spread in network where each host in a population can
belong to the one of three compartments. Those
compartments are Susceptible (consisting of hosts who
can get infected), Infected (consisting of hosts who are
infected and can infect others) and Recovered (holding
hosts who have recovered and are immune). For realistic
scenarios it is necessary to simulate on large numbers of
nodes. When dealing with extremely large networks it is
crucial to achieve a reasonable execution time of a
conducted simulation. In public health studies, realistic
epidemic simulations (EpiFast [1], EpiSims [2] and

EpiSindemics [3]) that include a lot of parameters are
widely used. Basic underlying simulation algorithms
Naive SIR and FastSIR are described in [5]. Since these
algorithms are CPU implementations, in this study we are
trying to outperform them using parallelization of the
Naïve SIR algorithm using CUDA architecture.

CUDA (Compute Unified Device Architecture) is a
parallel computing architecture developed by Nvidia. It is
a computing engine in Nvidia GPUs (Graphics
Processing Units) that is accessible to software developers
through different programming languages. Through
CUDA developers get access to the virtual instruction set
and memory of the parallel computational elements in
CUDA GPUs, making them accessible for computation
just like CPUs. Unlike CPUs, however, GPUs have a
parallel throughput architecture that emphasizes executing
many concurrent threads slowly, rather than executing a
single thread very quickly. With a certain range of
problems, this becomes a more natural and more time-
efficient way of implementing a solution.

We define a network as an undirected and non-
weighted graph G(N, L) (N -set of nodes, L -set of links).
Link (u, v) exists only if the two nodes u and v are in
contact during epidemic time. We also assume that the
network is static during epidemic process, meaning that
the set of links L does not change during simulation. In
other words, links cannot appear or disappear. To simulate
the epidemic propagation through the network, we used
the discrete stochastic SIR model. The initial conditions
that will determine the course of simulation are start node
and the epidemic parameters p and q. Parameter p is a
probability that the infected node u infects adjacent
susceptible node v in one discrete time step. Parameter q is
a probability that the infected node recovers in one
discrete time step. In this model each node at the same
time can be in only one of the following states:
susceptible (S), infected(I) and recovered(R). When there
are no more infected nodes simulation is over.

Section Methods describes the general idea behind
implementation. In section Results we present the speedup
achieved over Naive SIR and FastSIR on a specific test
case. The last section (Discussion and conclusion)

proposes some ideas for eventual further research related
to this paper.

II. METHODS

At the beginning of the epidemic simulation all nodes
in the graph G are in the susceptible state, except for the
arbitrarily chosen starting node. It is initially infected and
it attempts to transfer the infection to its neighbors with
probability p. Infected nodes in the next step attempt to
transfer the infection to their neighbors. After finishing its
infection step, each node attempts to recover with
probability q. Simulation continues until each node is
either susceptible or recovered.

The Naive SIR [5] algorithm sequentially loops
through the infected nodes and then attempts to infect
their adjacent nodes by sequential looping through a list of
their neighbors. Infected nodes which have to be
processed in a current step maintain a frontier. The Naive
SIR algorithm uses a queue as a frontier. When a node
gets infected, it is assigned a number of current time step
and is added to the end of the queue. A node can leave the
queue when it successfully recovers. The simulation is
over when the frontier is empty. We notice that this
algorithm exposes its parallel nature on two levels: it is
possible to process many infected nodes simultaneously
and for each of infected nodes the neighbors can also get
infected simultaneously. If information of the step in
which the node changes state is preserved, the parallel
nature of the executing algorithm will not affect the result
in any way.

The FastSIR algorithm [5] uses probability
distributions of the number of infected nodes to speed up
recovery time of infected nodes to one discrete step during
a simulation of the epidemic spreading to reduce running

time. The speed up of the FastSIR algorithm compared
with the Naive SIR algorithm is proportional to the
average value of the infectious period. However, the
FastSIR algorithm does not follow the epidemic
dynamics. It only provides information of the final
number of infected nodes during simulation.

The described simulation problem resembles graph
traversal problem [6], but in this case it is not necessary
that each node gets “visited”. For example, with a high
value of q and low value of p, an epidemic stops spreading
shortly after start and most of the nodes will never leave
the susceptible state. The simplest case is when p and q
are set to 1. This simplifies the described problem to the
well known BFS (Breadth First Search) as the each node
gets visited exactly once. In general case where p and q
are arbitrary values from the interval [0, 1] the algorithm
resembles BFS, but with different propagation conditions.
That is why implementing BFS on CUDA is a great step
to final algorithm for epidemics spreading. GPUs have
shown promising results in accelerating computationally
challenging network problems but their performance
depends heavily on the structure of the network. When a
network has a highly irregular structure, as most real-
world networks tend to have, it can significantly slow
down the program execution. CUDA BFS [7] algorithm,
upon which we built our solution, addresses this problem
quite successfully. The main idea is to divide nodes into
groups of equal size. Then, to each node group is assigned
a group of threads. In CUDA terminology, group of
threads is usually called a warp. Each thread from warp
sequentially inspects nodes from its node group. If
inspected node is infected, each thread from a warp
“attacks” one of its neighbors (or more, if there are less
threads in a warp than there are nodes in a node group),
trying to infect it. As multiple warps are executed at the

Figure 1. CUDA SIR pseudo code

same time on different processing units of CUDA GPU,
two-level parallelization is achieved. First level of
parallelization is processing multiple infected nodes at the
same time. The second level is parallel processing
(attempting to infect them) of neighbors or the infected
node. Although it may seem more efficient to assign warp
to single node and evade sequential „walk“ through a
group of nodes, in real CUDA system it would result with
too many inactive threads causing underutilization and
therefore slowing the performance.

As the frontier is a thread-shared resource, it would be
inconvenient to implement it as a queue. Such a structure
would require thread-safe operations of adding/taking
element. That would result in serializing all queries
towards it as only one thread can access it at a time in
order to preserve correctness of the algorithm. In our
solution we do not explicitly maintain a frontier, but store
the information about the current state of each node. For
every node it is enough to store in which step they got
infected and whether they are currently immune. We
eliminate the need for storing information on the node’s
susceptibility by simple reasoning: if a node is not
infected, but also is not immune, then it is susceptible.
Internally, we store this information in two arrays of size
|N| - Levels and Immune, while overall structure is named
Nodes (used in Figure 1). As a consequence, frontier does
not exist independently but is scattered in Nodes. Because
of that, in each step it is necessary to loop through all the
nodes and process only those marked as infected.

In this implementation the network is represented as
an adjacency list. Since we always access all of the
neighbors, we do not need to know whether two specific
nodes are linked. Further optimization of this
representation is achieved by packing rows of adjacency
list into a single large array making it more convenient to
store and use on GPU. In this way, a network is being held
in two arrays, N and L. Figure 2 visualizes this data
structure. Array L holds rows of adjacency list merged
sequentially. At N[i] is stored position in L where first
neighbor of i-th node is stored. The described data
structure is also known as compressed sparse row (CSR)
in sparse – matrix computation domain [4].

Before starting the simulation part of the algorithm,
random number generator (RNG) has to be initialized for
the each thread. RNGs are used to simulate probability of
occurrence of an infection transfer and recovery of a node,
represented by p and q respectively. CUDA provides its
own library for generating random numbers and it is
recommended that each thread uses its own generator to
evade possible determinism. The following two
procedures, loading of the network from a file and
initializing an array of RNGs, have to be executed every
time the program is started. Time needed for this depends
on the size of the network and the CPU used in system. In
our test case for LiveJournal network [8] it took about 20
seconds. Once network is loaded into RAM and RNGs are
initialized, an arbitrary number of independent simulations
can be executed, so the amount of time spent for those two
steps can usually be ignored due to large number of
conducted simulations.

Figure 2. Graph data structure used in in the implementation

The simulation is executed in steps, where for each of

the steps a suitable CUDA function is called. Between
every two steps of the simulation, CPU analyses
information about the current state in the network and
decides which CUDA function has to be called next. Each
node is assigned a certain level, presenting in which step it
was infected. Node levels are stored in the array Levels. If
the node is not infected, its level is considered to be
infinite. Node that is chosen to be the source of infection
has level of 0. Figure 3 shows an example of the first three
steps in the epidemic spread, presuming p is 1. The
brightest node with level 0 is the source of epidemic. In
the first GPU call the frontier consists only of this node.
As p is 1 in this example, four nodes are infected in the
first step and thus assigned level of 1. Algorithm
continues in the similar manner producing final state of
the network shown in Figure 3.

CUDA function which operates on GPU alternates
between two phases: SISD (Single Instruction Single
Data) and SIMD (Single Instruction Multiple Data) phase,
as it is shown in Figure 4. In the SISD phase all threads in
a warp execute the same instruction on the same data
assuring there is no divergence slowing the performance.
Moreover, in this phase each thread group copies its
portion of the data from the slow global to the fast shared
memory. Accessing global memory in CUDA architecture
takes around 300 cycles while access to shared memory
takes only few [8]. In SISD phase all threads in a warp
loop sequentially through assigned nodes. If the currently
inspected node is infected, SIMD phase is applied to its
neighbors. In SIMD phase the threads from the same warp
execute the same instructions but on the different data. In
this case array holding the node neighbors is being
processed simultaneously by the whole warp. Thread
divergence is present in SIMD phase, but due to the nature
of the problem it cannot be evaded. Figure 4 depicts
cooperation of SIMD and SISD phases more clearly.

Figure 3. Steps in epidemic spread, the node marked with 0 is source, p

equals 1

Example in Figure 4 presumes size of warp to be 3

and number of nodes assigned to it to be 6. Only the
fourth node is infected. All three threads are in SISD
phase until they reach the infected node, when SIMD
phase is initiated. Threads split and each one tries to infect
different neighbor. After all neighbors of infected node
have been processed (tried to get infected), the algorithm
returns to SISD phase. Another problem is determining
optimal sizes for a warp and assigned group of nodes.
Warp size is partially determined by certain architectural
traits of underlying CUDA system (should be multiplier of
8), but both parameters mostly depend on structure of the
given network. So far, we have determined optimal
parameters purely experimentally, but it would be
interesting to see if they can be predicted from input
network characteristics.

In a case when q is very small and p high, network
quickly comes to a state where the infected nodes do not
have any susceptible neighbors. In that particular case it is
redundant to spend time on visiting neighbors of the
infected node just to find out that none are susceptible.
When this state occurs in the network algorithm
recognizes it and changes its behavior by calling another
CUDA function, which then assigns only one thread to
each of the infected nodes. In Figure 1 it is achieved by
recoverOnly function.

Figure 4. SISD and SIMD phases alternate during algorithm execution

When there are no more infected nodes left, the

simulation is finished. It is possible to reconstruct the
epidemics spread from array Levels which holds the
moment of the infection for each node.

III. RESULTS

Purpose of this section is to show the execution time in
comparison to Naive SIR and FastSIR algorithms. Tests
were conducted on server with Nvidia 570 GTX GPU and
Intel Core2 6400@2.13 GHz with 4 GB RAM.

Tests were done on a real network example of a social
network LiveJournal. LiveJournal is a free online
community with almost 10 million members. LiveJournal
allows members to maintain journals and to declare other
members as friends. For the following test case a network
representing friendship relations of this population (nodes
represent users and links represent friendships) is used.
Results for the Live Journal network [8] consisting of 5
million nodes and 50 million links are shown in Table 1.

The running time ratio for FastSIR and CUDA
algorithm is especially interesting. The achieved speedup
ranges from 5 to almost 30 times in some cases. On
average, CUDA algorithm is about 16 times faster than
FastSIR for the LiveJournal network. Figure 4 shows the
calculated ratios for the different choices of p and q.

TABLE I. RUNNING TIME IN SECONDS FOR 2000 SIMULATIONS FOR LIVE JOURNAL NETWORK

q
p = 0.2 p = 0.5 p = 0.8

Naive SIR FastSir CUDA Naive SIR FastSir CUDA Naive SIR FastSir CUDA

0.1 50683 6699 1160 48373 5635 960 47531 5078 820

0.2 25841 7200 700 24398 6314 620 24067 5357 560

0.3 18550 7200 500 16580 6841 460 16276 5609 420

0.4 13686 6987 440 12870 7259 380 12329 5843 360

0.5 13197 6704 380 10394 7591 360 9951 6060 320

0.6 9394 6400 320 8720 7859 320 8345 6253 280

0.7 8301 6073 220 7513 8072 280 7185 6429 280

0.8 8744 5805 280 6622 8250 260 6293 6592 240

0.9 7521 5508 200 5869 8555 180 5597 6749 240

1 5291 5259 180 5064 8666 180 5082 7777 140

Figure 5. Running time ratio for FastSIR and CUDA algorithm.

Parameters: 2000 simulations, p = 0.2, q = 0.1 to 1

 As it can be seen from Table 1 and Figure 5, the

speedup gradually increases with the growth of the

epidemic parameter q. It is important to notice that unlike

CUDA SIR and Naïve SIR, the FastSIR algorithm does

not follow epidemic dynamics in time. If we make a

comparison with Naive SIR, we can see from Table 1 that

CUDA SIR can be faster more than a few hundred folds.

IV. DISCUSSION AND CONCLUSION

In this paper we presented a general idea behind the
parallel implementation of the SIR algorithm for
simulating epidemic spread in networks. We have shown
that it is possible to achieve significant speedups up to 30
folds and a few hundred folds compared to FastSIR and
Naive SIR respectively. This becomes more evident as the
size of networks grows. In the future work it would be
interesting to see a visualization tool for monitoring the
progress of the simulation step by step. Additional
speedup could be achieved by using multiple GPUs for the
calculations and the MPI could be used for running more
simulations at the same time. Current SIR model could be
broadened by adding new events to the network, like
disappearing link or dynamical changes of p and q in
order to represent population and epidemic conditions
more realistically.

[1] G. K.R. Bisset, J. Chen, X. Feng, V.A. Kumar,M.V.Marathe,
Epifast: a fast algorithm for large scale realistic epidemic
simulations on distributed memory systems, in: Proceedings of the
23rd international conference on Supercomputing, ICS ’09, ACM,
New York, NY, USA, 2009, pp. 430–439.

[2] C.L. Barrett, K.R. Bisset, S.G. Eubank, X. Feng, M.V. Marathe,
EpiSimdemics: an efficient algorithm for simulating the spread of
infectious disease over large realistic social networks, in:
Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, SC ’08, IEEE Press, Piscataway, NJ, USA, 2008.

[3] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, J. Wiener, Graph structure in the Web,
Computer Networks 33 (2000) 309–320.

[4] N. Bell and M. Garland. Efficient sparse matrix-vector
multiplication on CUDA. In Proc. Conf. Supercomputing (SC’09).

[5] Nino Antulov-Fantulin, Alen Lancic, Mile Sikic, FastSIR
Algorithm: A Fast Algorithm for simulation of epidemic spread in
large networks by using SIR compartment model,
arXiv:1202.1639v1[cs.DS]

[6] T.H.Cormen, C.E.Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, The MIT Press, New York, 2011.

[7] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, Kunle
Olukotun, Accelerating CUDA Graph Algorithms at Maximum
Warp

[8] Stanford large network dataset collection,
http://snap.stanford.edu/data/index.html, 2009.

[9] NVIDIA CUDA C Programming Guide, version 4.0

	Untitled

