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Abstract – For some years now, there has been an 

increasing interest in modeling and analyzing the spread of 

epidemics in both human and computer networks. The 

obvious advantage a computer simulation of the epidemic 

spread offers is that the answer is delivered in short time 

and the number of hosts included in simulation can 

approach their real-world number. This paper presents a 

CUDA (Compute Unified Device Architecture) technology 

based  implementation of the simulation algorithm for 

modeling of the epidemic spread on a network. Spreading of 

the epidemics over the network is modeled using discrete 

SIR (Susceptible - Infected - Recovered) model. This 

implementation offers selection of a starting node and 

monitoring of the epidemic spread in each cycle. Compared 

to a common CPU implementation,   the CUDA version 

achieves about 10x faster execution time in the worst case. 

That speed up is of great significance when running tests on 

large networks. The implementation was tested on real 

social networks consisting of more than 5 million nodes. 

Hence, we believe it can be of a practical value in analysis of 

the epidemic spreading over large networks. To the best of 

our knowledge, this is only implementation of SIR model on 

CUDA. 

I. INTRODUCTION 

Understanding the spread of epidemic in populations is 
a key to controlling them. Computational simulations of 
epidemics provide a valuable tool for the study of 
dynamics of epidemics. In such simulations, populations 
are represented by networks, where hosts and their 
interactions among each other are represented by nodes 
and links. SIR (Susceptible – Infected – Recovered) 
compartment model is used for monitoring epidemic 
spread in network where each host in a population can 
belong to the one of three compartments. Those 
compartments are Susceptible (consisting of hosts who 
can get infected), Infected (consisting of hosts who are 
infected and can infect others) and Recovered (holding 
hosts who have recovered and are immune). For realistic 
scenarios it is necessary to simulate on large numbers of 
nodes. When dealing with extremely large networks it is 
crucial to achieve a reasonable execution time of a 
conducted simulation. In public health studies, realistic 
epidemic simulations (EpiFast [1], EpiSims [2] and 

EpiSindemics [3]) that include a lot of parameters are 
widely used. Basic underlying simulation algorithms 
Naive SIR and FastSIR are described in [5]. Since these 
algorithms are CPU implementations, in this study we are 
trying to outperform them using parallelization of the 
Naïve SIR algorithm using CUDA architecture.  

CUDA (Compute Unified Device Architecture) is a 
parallel computing architecture developed by Nvidia. It is 
a computing engine in Nvidia GPUs (Graphics 
Processing Units) that is accessible to software developers 
through different programming languages. Through 
CUDA developers get access to the virtual instruction set 
and memory of the parallel computational elements in 
CUDA GPUs, making them accessible for computation 
just like CPUs. Unlike CPUs, however, GPUs have a 
parallel throughput architecture that emphasizes executing 
many concurrent threads slowly, rather than executing a 
single thread very quickly. With a certain range of 
problems, this becomes a more natural and more time-
efficient way of implementing a solution.  

We define a network as an undirected and non-
weighted graph G(N, L) (N -set of nodes,  L -set of links). 
Link (u, v) exists only if the two nodes u and v are in 
contact during epidemic time. We also assume that the 
network is static during epidemic process, meaning that 
the set of links L does not change during simulation. In 
other words, links cannot appear or disappear. To simulate 
the epidemic propagation through the network, we used 
the discrete stochastic SIR model. The initial conditions 
that will determine the course of simulation are start node 
and the epidemic parameters p and q. Parameter p is a 
probability that the infected node u infects adjacent 
susceptible node v in one discrete time step. Parameter q is 
a probability that the infected node recovers in one 
discrete time step. In this model each node at the same 
time can be in only one  of the following states: 
susceptible (S), infected(I) and recovered(R). When there 
are no more infected nodes simulation is over. 

Section Methods describes the general idea behind 
implementation. In section Results we present the speedup 
achieved over Naive SIR and FastSIR on a specific test 
case.  The last section (Discussion and conclusion) 



proposes some ideas for eventual further research related 
to this paper.  

II. METHODS 

At the beginning of the epidemic simulation all nodes 
in the graph G are in the susceptible state, except for the 
arbitrarily chosen starting node. It is initially infected and 
it attempts to transfer the infection to its neighbors with 
probability p. Infected nodes in the next step attempt to 
transfer the infection to their neighbors.  After finishing its 
infection step, each node attempts to recover with 
probability q. Simulation continues until each node is 
either susceptible or recovered. 

The Naive SIR [5] algorithm sequentially loops 
through the infected nodes and then attempts to infect 
their adjacent nodes by sequential looping through a list of 
their neighbors. Infected nodes which have to be 
processed in a current step maintain a frontier. The Naive 
SIR algorithm uses a queue  as a frontier. When a node 
gets infected, it is assigned a number of current time step 
and is added to the end of the queue. A node can leave the 
queue when it successfully recovers. The simulation is 
over when the frontier is empty. We notice that this 
algorithm exposes its parallel nature on two levels: it is 
possible to process many infected nodes simultaneously 
and for each of infected nodes the neighbors can also get 
infected simultaneously. If information of the step in 
which the node changes state is preserved, the parallel 
nature of the executing algorithm will not affect the result 
in any way. 

The FastSIR algorithm [5] uses probability 
distributions of the number of infected nodes to speed up 
recovery time of infected nodes to one discrete step during 
a simulation of the epidemic spreading to reduce running 

time. The speed up of the FastSIR algorithm compared  
with the Naive SIR algorithm is proportional to the 
average value of the infectious period.  However, the 
FastSIR algorithm does not follow the epidemic 
dynamics. It only provides information of the final 
number of infected nodes during simulation.  

The described simulation problem resembles graph 
traversal problem [6], but in this case it is not necessary 
that each node gets “visited”. For example, with a high 
value of q and low value of p, an epidemic stops spreading 
shortly after start and most of the nodes will never leave 
the susceptible state. The simplest case is when p and q 
are set to 1. This simplifies the described problem to the 
well known BFS (Breadth First Search) as the each node 
gets visited exactly once. In general case where p and q 
are arbitrary values from the interval [0, 1] the algorithm 
resembles BFS, but with different propagation conditions. 
That is why implementing BFS on CUDA is a great step 
to final algorithm for epidemics spreading. GPUs have 
shown promising results in accelerating computationally 
challenging network problems but their performance 
depends heavily on the structure of the network. When a 
network has a highly irregular structure, as most real-
world networks tend to have, it can significantly slow 
down the program execution. CUDA BFS [7] algorithm, 
upon which we built our solution, addresses this problem 
quite successfully. The main idea is to divide nodes into 
groups of equal size. Then, to each node group is assigned 
a group of threads. In CUDA terminology, group of 
threads is usually called a warp. Each thread from warp 
sequentially inspects nodes from its node group. If 
inspected node is infected, each thread from a warp 
“attacks” one of its neighbors (or more, if there are less 
threads in a warp than there are nodes in a node group), 
trying to infect it. As multiple warps are executed at the 

 
Figure 1. CUDA SIR pseudo code 

 



same time on different processing units of CUDA GPU, 
two-level parallelization is achieved. First level of 
parallelization is processing multiple infected nodes at the 
same time. The second level is parallel processing 
(attempting to infect them) of neighbors or the infected 
node. Although it may seem more efficient to assign warp 
to single node and evade sequential „walk“ through a 
group of nodes, in real CUDA system it would result with 
too many inactive threads causing underutilization and 
therefore slowing the performance. 

As the frontier is a thread-shared resource, it would be 
inconvenient to implement it as a queue. Such a structure 
would require thread-safe operations of adding/taking 
element. That would result in serializing all queries 
towards it as only one thread can access it at a time in 
order to preserve correctness of the algorithm. In our 
solution we do not explicitly maintain a frontier, but store 
the information about the current state of each node. For 
every node it is enough to store in which step they got 
infected and whether they are currently immune. We 
eliminate the need for storing information on the node’s 
susceptibility by simple reasoning: if a node is not 
infected, but also is not immune, then it is susceptible. 
Internally, we store this information in two arrays of size 
|N| - Levels and Immune, while overall structure is named 
Nodes (used in Figure 1).  As a consequence, frontier does 
not exist independently but is scattered in Nodes. Because 
of that, in each step it is necessary to loop through all the 
nodes and process only those marked as infected. 

In this implementation the network is represented as 
an adjacency list. Since we always access all of the 
neighbors, we do not need to know whether two specific 
nodes are linked. Further optimization of this 
representation is achieved by packing rows of adjacency 
list into a single large array making it more convenient to 
store and use on GPU. In this way, a network is being held 
in two arrays, N and L. Figure 2 visualizes this data 
structure. Array L holds rows of adjacency list merged 
sequentially. At N[i] is stored position in L where first 
neighbor of i-th node is stored. The described data 
structure is also known as compressed sparse row (CSR) 
in sparse – matrix computation domain [4]. 

Before starting the simulation part of the algorithm, 
random number generator (RNG) has to be initialized for 
the each thread. RNGs are used to simulate probability of 
occurrence of an infection transfer and recovery of a node, 
represented by p and q respectively. CUDA provides its 
own library for generating random numbers and it is 
recommended that each thread uses its own generator to 
evade possible determinism. The following two 
procedures, loading of the network from a file and 
initializing an array of RNGs, have to be executed every 
time the program is started. Time needed for this depends 
on the size of the network and the CPU used in system. In 
our test case for LiveJournal network [8] it took about 20 
seconds. Once network is loaded into RAM and RNGs are 
initialized, an arbitrary number of independent simulations 
can be executed, so the amount of time spent for those two 
steps can usually be ignored due to large number of 
conducted simulations. 

 

Figure 2. Graph data structure used in in the implementation 

 
The simulation is executed in steps, where for each of 

the steps a suitable CUDA function is called. Between 
every two steps of the simulation, CPU analyses 
information about the current state in the network and 
decides which CUDA function has to be called next. Each 
node is assigned a certain level, presenting in which step it 
was infected. Node levels are stored in the array Levels. If 
the node is not infected, its level is considered to be 
infinite. Node that is chosen to be the source of infection 
has level of 0. Figure 3 shows an example of the first three 
steps in the epidemic spread, presuming p is 1. The 
brightest node with level 0 is the source of epidemic. In 
the first GPU call the frontier consists only of this node. 
As p is 1 in this example, four nodes are infected in the 
first step and thus assigned level of 1. Algorithm 
continues in the similar manner producing final state of 
the network shown in Figure 3. 

CUDA function which operates on GPU alternates 
between two phases: SISD (Single Instruction Single 
Data) and SIMD (Single Instruction Multiple Data) phase, 
as it is shown in Figure 4. In the SISD phase all threads in 
a warp execute the same instruction on the same data 
assuring there is no divergence slowing the performance. 
Moreover, in this phase each thread group copies its 
portion of the data from the slow global to the fast shared 
memory. Accessing global memory in CUDA architecture 
takes around 300 cycles while access to shared memory 
takes only few [8]. In SISD phase all threads in a warp 
loop sequentially through assigned nodes. If the currently 
inspected node is infected, SIMD phase is applied to its 
neighbors. In SIMD phase the threads from the same warp 
execute the same instructions but on the different data. In 
this case array holding the node neighbors is being 
processed simultaneously by the whole warp. Thread 
divergence is present in SIMD phase, but due to the nature 
of the problem it cannot be evaded.  Figure 4 depicts 
cooperation of SIMD and SISD phases more clearly.  



 

Figure 3. Steps in epidemic spread,  the node marked with 0 is source, p 

equals 1 

 
Example in Figure 4 presumes size of warp to be 3 

and number of nodes assigned to it to be 6. Only the 
fourth node is infected. All three threads are in SISD 
phase until they reach the infected node, when SIMD 
phase is initiated. Threads split and each one tries to infect 
different neighbor. After all neighbors of infected node 
have been processed (tried to get infected), the algorithm 
returns to SISD phase. Another problem is determining 
optimal sizes for a warp and assigned group of nodes. 
Warp size is partially determined by certain architectural 
traits of underlying CUDA system (should be multiplier of 
8), but both parameters mostly depend on structure of the 
given network. So far, we have determined optimal 
parameters purely experimentally, but it would be 
interesting to see if they can be predicted from input 
network characteristics. 

In a case when q is very small and p high, network 
quickly comes to a state where the infected nodes do not 
have any susceptible neighbors. In that particular case it is 
redundant to spend time on visiting neighbors of the 
infected node just to find out that none are susceptible. 
When this state occurs in the network algorithm 
recognizes it and changes its behavior by calling another 
CUDA function, which then assigns only one thread to 
each of the infected nodes. In Figure 1 it is achieved by 
recoverOnly function. 

 

Figure 4. SISD and SIMD phases alternate during algorithm execution 

 
When there are no more infected nodes left, the 

simulation is finished. It is possible to reconstruct the 
epidemics spread from array Levels which holds the 
moment of the infection for each node. 

III. RESULTS 

Purpose of this section is to show the execution time in 
comparison to Naive SIR and FastSIR algorithms. Tests 
were conducted on server with Nvidia 570 GTX GPU and 
Intel Core2 6400@2.13 GHz with 4 GB RAM.  

Tests were done on a real network example of a social 
network LiveJournal. LiveJournal is a free online 
community with almost 10 million members. LiveJournal 
allows members to maintain journals and to declare other 
members as friends. For the following test case a network 
representing friendship relations of this population (nodes 
represent users and links represent friendships) is used. 
Results for the Live Journal network [8] consisting of 5 
million nodes and 50 million links are shown in Table 1. 

The running time ratio for FastSIR and CUDA 
algorithm is especially interesting. The achieved speedup 
ranges from 5 to almost 30 times in some cases. On 
average, CUDA algorithm is about 16 times faster than 
FastSIR for the LiveJournal network. Figure 4 shows the 
calculated ratios for the different choices of p and q.  

TABLE I. RUNNING TIME IN SECONDS FOR 2000 SIMULATIONS FOR LIVE JOURNAL NETWORK 

q 
p = 0.2 p = 0.5 p = 0.8 

Naive SIR FastSir CUDA Naive SIR FastSir CUDA Naive SIR FastSir CUDA 

0.1 50683 6699 1160 48373 5635 960 47531 5078 820 

0.2 25841 7200 700 24398 6314 620 24067 5357 560 

0.3 18550 7200 500 16580 6841 460 16276 5609 420 

0.4 13686 6987 440 12870 7259 380 12329 5843 360 

0.5 13197 6704 380 10394 7591 360 9951 6060 320 

0.6 9394 6400 320 8720 7859 320 8345 6253 280 

0.7 8301 6073 220 7513 8072 280 7185 6429 280 

0.8 8744 5805 280 6622 8250 260 6293 6592 240 

0.9 7521 5508 200 5869 8555 180 5597 6749 240 

1 5291 5259 180 5064 8666 180 5082 7777 140 

 



 
Figure 5. Running time ratio for FastSIR and CUDA algorithm.  

Parameters: 2000 simulations, p = 0.2, q = 0.1 to 1 

 

    As it can be seen from Table 1 and Figure 5, the 

speedup gradually increases with the growth of the 

epidemic parameter q. It is important to notice that unlike 

CUDA SIR and Naïve SIR, the FastSIR algorithm does 

not follow epidemic dynamics in time. If we make a 

comparison with Naive SIR, we can see from Table 1 that 

CUDA SIR can be faster more than a few hundred folds. 

 

 

 

IV. DISCUSSION AND CONCLUSION 

In this paper we presented a general idea behind the 
parallel implementation of the SIR algorithm for 
simulating epidemic spread in networks. We have shown 
that it is possible to achieve significant speedups up to 30 
folds and a few hundred folds compared to FastSIR and 
Naive SIR respectively. This becomes more evident as the 
size of networks grows. In the future work it would be 
interesting to see a visualization tool for monitoring the 
progress of the simulation step by step. Additional 
speedup could be achieved by using multiple GPUs for the 
calculations and the MPI could be used for running more 
simulations at the same time. Current SIR model could be 
broadened by adding new events to the network, like 
disappearing link or dynamical changes of p and q in 
order to represent population and epidemic conditions 
more realistically. 
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