
Active Graph Rewriting Rules for
Modeling Multi-Agent Organizational Dynamics

Markus Schatten
University of Zagreb

Faculty of Organization and Informatics

Pavlinska 2, 42000 Varaždin, Croatia

E-mail: markus.schatten@foi.hr

Abstract
The field of multi agen systems’ (MAS) organizational design deals with providing methods for
building organizational architecture of MAS organizations. Herein, an active graph grammar
(AGG) formalism, inspired by current research in graph and active database theory is intro-
duced and applied to modeling MAS organizational structure. By defining organizational units
in a recursive way, it is shown that labeled graphs and hypergraphs can be used to model various
levels of organizational structure. The newly developed method is graphical, event-driven and
applicable in a distributed MAS environment.

Keywords: multi agent systems, organizational dynamics, active graph grammar, organiza-
tional architecture, graphical method

JEL classification: C0, C61, C88

1. Introduction
Multi agent systems (MAS) are a well established abstraction for modeling distributed comput-
ing systems. MAS consist of a number of interacting agents, which act according to the goals
and motives of their users. In order to achieve their goals, agents need the abilities of coopera-
tion, negotiation as well as coordination. An important issue in MAS design is the development
of agents, which are able to interact with other agents, in order to achieve their goals. This is
the field of MAS organizational design.

In the following we will focus on this problem by using a well established formalism,
namely graph grammars (GGs) which allow us to capture and program structural regularities
(Nagl, 1979). The idea of applying GGs to MAS is not a new one. For example Nagendra
Prasad et al. (1996) present a GG based task structure specification language for the TÆMS
agent models. They went on and extended GGs with stochastic and attributed productions. Na-
gendra Prasad and Lesser (1999) later on used this tool to model the topological relationships
occurring in task structures, as did Lesser et al. (1999) to implement a MAS for managing an in-
telligent environment as part of the intelligent home project (IHome). Giese et al. (2003) employ
story diagrams introduced by Fischer et al. (2000)1, to model safety-critical MAS macro- and

1Story patterns in fact illustrate graph grammar formulae.

180

micro-architectures in UML. Later Becker et al. (2006) extend the approach to develop a veri-
fication technique for arbitrarily large multi-agent systems in mechatronics. Smith et al. (2009)
use embedded graph grammars to deploy and coordinate robots (agents) in various (physical)
formations. They introduce an agreement protocol for agents to agree mutually before applying
a production rule.

While these studies provide important particular insights into the matter, herein we will
introduce a more holistic approach. Firstly, we shall define MAS organizations in terms of or-
ganizational architecture2. Thus MAS are not only collections of agents structured in a certain
way, but an agent organization consisting of organizational structure, organizational culture,
strategy, processes and individual agents (human resources in humane organizations). These
five perspectives represent important and different views of the same (agent or humane) organi-
zation:
Organizational structure defines the decision and information flows of an organization.

Organizational culture defines important intangible aspects of an organization including knowl-
edge, social norms, reward systems etc.

Strategy defines the overall objectives of an organization as well as tools on how to measure
success.

Processes define the activities and procedures of an organization.

Individual agents define the most important asset of any organization - the individuals actually
performing the work.

All of these perspectives are subject to changes due to changes in the environment of the
organization. Organizational change is probably one of the most important aspect of successful
organizations. In the following we will restrain ourselves on organizational dynamics of orga-
nizational structure, but with smaller modifications most of the approach outlined herein can be
applied to all the other perspectives.

The previous outlined studies, deal mostly with individual agents as part of an agent orga-
nization, whereby each agent takes a certain role. Herein we will use the fractal organization
principle (Warnecke, 1992) which allows us to define organizational units recursively.

Definition 1 An organizational unit is defined as follows:
• Any agent is an organizational unit.

• If O = {o1,o2, ...,o3} is a set of organizational units which collaborate with a common
objective, then O is an organizational unit.

This definition is very subtle since it allows us to deal with agents, groups/teams of agents,
organizations of agents, networks of organizations of agents as well as virtual organizations
of agents3 in the same way. Note that the term objective here is arbitrary and could easily be
replaced with function, goal, mission, unit name etc.

In the following we will make use of this definition to apply a formalism for modeling
organizational dynamics in MAS. The rest of this article is organized as follows: in section 2
we formalize active graph rewriting rules where we will extend the previous GG approaches
with an active component. Section 3 gives a modeling example of the previously introduced
formalism. In section 4 we draw our final conclusions and give guidelines for future research.

2Please refer to (Žugaj and Schatten, 2005) for an in-depth discussion on organizational architecture.
3Please refer to (Barnatt, 1995) for our understanding of virtual organization as an overlay structure.

181

2. Active Graph Rewriting Rules
Inspired with active database theory, we will introduce active graph rewriting rules (AGRR)
over labeled graphs. We will define labeled graphs in an (unusual) object-oriented way.

Definition 2 A label is an ordered pair a : v in which a is an attribute and v is a value.

Definition 3 Let N be a set of nodes, E ⊆ N×N a set of edges, L = LN ∪LE a set of labels
(whereby LN is a set of node labels and LE a set of edge labels). Let furthermore ν ⊆ N×LN

and ε ⊆ E × LE be two corresponding relations which map nodes and edges to their labels
respectively. We denote the tuple (N,E,L,ν,ε) as a labeled graph.

To further foster object-orientation we will extend node labels with methods.

Definition 4 A method label is the ordered pair m/a : v in which m is a function of arity a and
v is a return value. Usually the first argument to the function is a reference to the current node.

In the following we will model MAS using labeled graphs, whereby organizational units are
denoted with nodes, and their interaction with edges. In order to model MAS organizations,
we will introduce two special labels: (1) c being an edge label denoting that two organizational
units (nodes) which are connected through such a label collaborate, and (2) g being a node label
which denotes the goal of the node. Note that g could easily be a method function for various
situations in which an organizational unit might be. To model organizational units of higher
order, we need to introduce labeled hypergraphs.

Definition 5 Let N be a set of nodes, Ξ⊆ P (N)×P (N) be a set of hyperedges (whereby P (N)
denotes the power set of N), and L = LN ∪ LΞ a set of labels (whereby LN is a set of node
labels and LΞ a set of hyperedge labels). Let furthermore ν ⊆ N×LN and ε ⊆ Ξ×LΞ be two
corresponding relations which map nodes and edges to their labels respectively. We denote the
tuple (N,Ξ,L,ν,ε) as a labeled hypergraph.

Note that hypergraphs allow us to express higher order relations between sets of organiza-
tional units. For example consider a MAS organization that consists of 6 agents (a1, ...,a6) as
shown on figure 1.

Figure 1. Left: Collaboration Graph; Right: Corresponding Organizational Unit Hypergraph

a1

a2

a3 a4

a5

a6 a1

a2

a3 a4

a5

a6
g1

g2

g3

Agents a1 and a2 collaborate together with a common (particular) goal g1. The same holds
for agents a3 and a4 with goal g2, as well as agents a5 and a6 with goal g3. We can model this
MAS organization either with the labeled graph on the left if we want to analyze the mutual
connections of individual agents, or with the hypergraph on the right to analyze organizational
units on a higher level. The organizational unit around objective g2 can be interpreted in various
ways, e.g. as a management team or a virtual overlay unit that integrates the other units.

To model reactive organizational behavior we have to introduce changes in the structure.
Changes are modeled with events. From our perspective there are four main types of events that

182

can occur over time on a graph: (1) update events (due to change of any part of the graph), (2)
temporal events (absolute, relative and periodical), (3) implicit events (any event regardless of
type that meets a given condition), and (4) complex events (a combination of events constructed
using the usual logic operators ∧, ∨, ¬,⇒,⇔).

Definition 6 With Gi we denote the state of graph G in time i (we assume a discrete time iso-
morphic to the set of natural numbers N). ∆(Gi) = Gi+1 means that Gi+1 is the result of a
changing state in Gi.
• An update event u(G) holds in Gi iff Gi 6= Gi−1. We can classify this type of event further

into various changes (insertion, deletion) of various parts of the graph (nodes, edges,
labels).

• An absolute temporal event �i(G) hold iff G is in state i.

• A relative temporal event �i+k(G) holds iff G is in state l and there exists a state i such
that i+ k = l.

• A periodic temporal event �% j(G) holds iff G is currently in state i and it holds that
i≡ 0% j

• An implicit event 2F(G) holds iff formula F holds (we read any event that satisfies F).

• If e1 and e2 are two events then:
– ¬e1 holds if e1 does not hold.

– e1∧ e2 holds if both e1 and e2 hold.

– e1∨ e2 holds if either e1 holds or e2 holds.

– e1⇒ e2 doesn’t hold only if e1 holds but e2 does not.

– e1⇔ e2 holds if both e1⇒ e2 and e2⇒ e1 hold.

Note that the above definition of events applies both to labeled graphs and subgraphs if
edges are replaced with hyperedges. We are now able to introduce AGRR. An AGRR has the
ECA (Event-Condition-Action) form borrowed from active database theory, and allows us to
state what change has to be done on a graph if a certain event occurs and if a certain condition
is met.

Definition 7 An active graph rewriting rule (AGRR) has the form E C−→A whereby E is an event,
C is a condition formula, and A= L→R is a graph transformation. L is called the left-hand-side
or pattern graph of the transformation, and R is called the right-hand-side or the replacement
graph. An active graph rewriting or active graph grammar (AGG) is a set of AGRRs.

3. Modeling Example
In order to show an application example of AGG to MAS organization we will create a model
of the amoeba organization (Daft, 1992). This organizational structure represents a biomimetic
metaphor (Schatten and Žugaj, 2011) in which organizational units are so called amoebas which
are autonomous and can split and merge if the number of employees is greater or smaller than
given limits respectively.

For example, if such an organizational unit acquires more then 100 employees (due to em-
ployment of new personnel), the unit will split into two equal amoebas each taking part of the
employees. Assume that this organizational unit has been represented by a labeled hypergraph,
in which a special node n is responsible for tracking the need for a split and is labeled with the
label role :BOSS (the definition of this node is arbitrary, but a token based distributed algorithm
might be used).

183

To model such an organization we can use the following AGGR:

u(G)
(n.count()>100) ∧ (n.role=BOSS)−−−−−−−−−−−−−−−−−−−−→ LG→ RG

Whereby LG = (N1 ∪N2,{{ni|ni ∈ N1 ∪N2}},L,ν,ε) and RG = (N1 ∪N2, {{ni|ni ∈ N1},
{n j|n j ∈ N2},{n,n′}}, L,ν∪{(n′,role : BOSS)},ε). We read on any update event, if a node
detects that it has more than 100 collaborators (method count()) and if it is the node labeled
with role : BOSS, then split the organizational unit connected through the hyperedge {ni|ni ∈
N1∪N2} into two organizational units connected through hyperedges {ni|ni ∈ N1} and {n j|n j ∈
N2}}. Also connect the responsible role : BOSS node in one organizational unit with the newly
established node n′ in the other organizational unit. The split into node sets N1 and N2 here
is arbitrary, but could be modeled in more detail with additional constraints (to for example
take into account that the newly established units have to have all the same roles defined as the
original unit etc.). This AGGR can also be represented graphically as shown in figure 2.

Figure 2. AGRR for an Amoeba Organization

n n′

N1 N2

n n′

N1 N2→

On this graphical representation we introduced two arbitrary node sets (N1 and N2) on the
left-hand-side which are transformed into hyperedges on the right-hand-side.

4. Conclusion & Future Research
In this paper we introduced active graph grammars for modeling organizational structure dy-
namics in MAS. By borrowing ideas from active database theory we were able to construct
a simple graphical formalism that allows us to model MAS organization in a distributed yet
(expressively and semantically) powerful way. By introducing a recursive definition of organi-
zational units, we were able to model units and agent roles on any level by using hypergraphs.
It has been shown how the usual graph grammars can be extended to account for hypergraphs
as well as to work in a dynamic (event-driven) environment.

As opposed to previous studies, the approach outlined herein is holistic since all aspects of
change in organizational architecture can be modeled with it: organizational structure, culture,
strategy and processes; it naturally corresponds to object-oriented frameworks due to its object-
oriented extensions; and allows for specifying change on higher levels of abstraction. Due to its
object-oriented extensions it can be easily implemented in object-oriented logic frameworks like
frame logic or description logic based systems. Still, since the formalism is highly expressive,
its implementation might suffer from combinatoric explosion. Still, since each AGG is local to
an agent, there likely won’t be complex grammars defined, but this of course has to be tested.

We believe that organizational design of MAS will benefit from a holistic approach to for-
malizing organizational change. Our future research will target modeling not only changes

184

in organizational structure, but the other parts of organizational architecture including culture,
strategy and processes as well.

References
Barnatt C. (1995) Office space, cyberspace & virtual organization. Journal of General Manage-

ment, 20(4), 78–91.

Becker B., Beyer D., Giese H., Klein F., and Schilling D. (2006) Symbolic invariant verification
for systems with dynamic structural adaptation. In Proceedings of the 28th international
conference on Software engineering, ICSE ’06, pp. 72–81, New York. ACM.

Daft R. L. (1992) Organization Theory and Design. West Publishing Company, Saint Paul etc.,
(4th ed.).

Fischer T., Niere J., Torunski L., and Zündorf A. (2000) Story Diagrams: A New Graph Rewrite
Language Based on the Unified Modeling Language and Java. volume 1764 of Lecture Notes
in Computer Science, chapter 21, pages 157–167. Springer.

Giese H., Burmester S., Klein F., Schilling D., and Tichy M. (2003) Multi-agent system design
for safety-critical self-optimizing mechatronic systems with uml. In OOPSLA 2003 - Second
International Workshop on Agent-Oriented Methodologies.

Lesser V., Atighetchi M., Benyo B., Horling B., Raja A., Vincent R., Wagner T., Xuan P., and
Zhang S.X.Q. (1999) A Multi-Agent System for Intelligent Environment Control. Computer
science technical report, University of Massachusetts.

Nagendra Prasad M. V. and Lesser V. (1999) Learning situation-specific coordination in coop-
erative multi-agent systems. Autonomous Agents and Multi-Agent Systems, 2(2), 173–207.

Nagendra Prasad M. V., Decker K., Garvey A., and Lesser V. (1996) Exploring Organizational
Designs with TAEMS: A case study of distributed data processing. Proceedings of the Second
International Conference on Multi-Agent Systems, pp. 283–290.

Nagl M. (1979) A tutorial and bibliographical survey on graph grammars. In Volker Claus,
Hartmut Ehrig, and Grzegorz Rozenberg, editors, Graph-Grammars and Their Application
to Computer Science and Biology, volume 73 of Lecture Notes in Computer Science, pages
70–126. Springer.

Schatten M, and Žugaj, M. (2011) Biomimetics in modern organizations - laws or metaphors?
Interdisciplinary Description of Complex Systems - scientific journal, 9(1), 39–55.

Smith B., Howard A., Mcnew J.-M., Wang J., and Egerstedt M. (2009) Multi-robot deployment
and coordination with embedded graph grammars. Auton. Robots, 26(1), 79–98.

Warnecke H.-J. (1992) Die fraktale fabrik - produzieren im netzwerk (the fractal company -
production in the network). In GI Jahrestagung, pages 20–33.

Žugaj M. and Schatten M. (2005) Arhitektura suvremenih organizacija. Tonimir and Faculty of
Organization and Informatics, Varaždinske Toplice, Croatia.

185

