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Abstract - This review discusses the importance of glucosinolates in plant protection. The Brassicaceae, which are culti-
vated worldwide, use glucosinolates and their decomposition products to defend themselves against attacks by harmful 
organisms. The glucosinolate content varies among individual plant species, plant organs and developmental stages. The 
glucosinolate content in plants is also affected by biotic and abiotic factors, while the type or quantity of glucosinolate de-
termines the susceptibility of the plants to insect pests. These facts can pose a problem when implementing this knowledge 
in cultivation of the Brassicaceae, especially in regions with moderate climates where Brassicaceae crops are exposed to 
attacks by a large number of harmful organisms. Under these circumstances, it is essential to research new, or to improve 
the existing environmentally acceptable methods of protecting Brassicaceae plants against economically important pests.
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INTRODUCTION

For decades, farmers have been attempting to man-
age the harmful organisms that feed on Brassicaceae 
crops by application of synthetic insecticides, which 
in many cases produce negative consequences, such 
as the development of resistance and negative in-
fluences on natural enemies (Hooks and Johnson, 
2003). Because of the socio-economic consequenc-
es of the excessive use of synthetic insecticides, the 
use of new, environmentally acceptable methods for 
plant protection is gaining ground. These practices 
often involve such strategies as use different dates 
for sowing/planting, selecting resistant cultivars and 
cultivating mixed crops (Hooks and Johnson, 2003; 
Trdan et al., 2005; Ramalho et al., 2012; Bohinc and 
Trdan, 2012a). 

Plants protect themselves from harmful organ-
isms in two ways: via morphological barriers (Smith 

et al., 2005; Broekgaarden et al., 2008; Müller, 2008; 
Trdan et al., 2009) and with chemical substances 
(secondary metabolites) (Pontoppidan et al., 2003; 
Broekgaarden et al. 2008; Lucas-Barbosa et al., 
2011). For the Brassicaceae, the defense mechanism 
is predominantly chemical and includes glucosi-
nolates (Björkman et al., 2011) and their decompo-
sition products (Broekgaarden et al., 2008; Pratt et 
al., 2008). It has been reported that many of the wild 
plants belonging to the same family as plants of agro-
nomic importance often contain larger quantities of 
secondary metabolites than their cultivated relatives 
(Chaplin-Kramer et al., 2011).

The purpose of this report was to collect research 
findings regarding the influence of individual glu-
cosinolate groups on economically important pests 
and, as far as possible to promote the use of the natu-
ral resistance of Brassicaceae in plant protection and 
food production.
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Versatility of the Brassicaceae

The Brassicaceae (or Cruciferae) comprise 3,200 
plant species, including fodder plants, vegetables and 
ornamental plants; some weed species are also in-
cluded in this family (Ahuja et al., 2010). Among the 
Brassicaceae of great agronomic significance are cab-
bage (Brassica oleracea L. var. capitata), cauliflower 
(Brassica oleracea L. var. botrytis), broccoli (Brassica 
oleracea L. var. italica), Brussels sprouts (Brassica 
oleracea var. gemmifera), turnip rape (Brassica rapa 
L. ssp. sylvestris f. autumnalis), different species of 
mustard (Brassica juncea, Brassica nigra and Brassi-
ca hirta) and some other species of leafy vegetables. 
Production in different climate conditions (Björk-
man et al., 2011) has enabled the Brassicaceae, which 
are important from both agronomic (Font et al., 
2005; Vaughn and Berhow, 2005; Cartea et al., 2008; 
Blažević and Mastelić, 2009) and economic aspects 
(Vaughn and Berhow, 2005), to develop different re-
sistance mechanisms against harmful organisms.

Glucosinolates: characteristic secondary metabolites

Glucosinolates are secondary metabolites (Klieben-
stein et al., 2005) that are characteristic of the order 
Capparales (Al-Gendy et al., 2010; Björkman et al., 
2011), primarily represented by the family Brassi-
caceae (Griffiths et al., 2001; Johnson, 2002; de Vil-
lena et al., 2007; Cartea et al., 2007; Blažević and 
Mastelić, 2009; Al-Gendy et al., 2010; Müller et al., 
2010; Björkman et al., 2011; Winde and Wittstock, 
2011). These compounds are also produced by 13 
other botanical families (Newton et al., 2009). Glu-
cosinolates consist of a β-D-thioglycoside group, a 
sulfonated oxime functional group and a variable 
side chain (Beekwilder et al., 2008; Vig et al., 2009; 
Blažević and Mastelić, 2009; Al-Gendy et al., 2010): 
based on their side chain, the compounds are divid-
ed into aliphatic, indole and aromatic (Cartea and 
Velasco, 2008; Van Eylen et al., 2009). The presence 
of glucosinolates varies between individual plant or-
gans (Fahey et al., 2001; Winde and Wittstock, 2011), 
plant species (Moyes et al., 2000; Chaplin-Kramer et 
al., 2011), developmental stages (de Villena et al., 
2007; Cartea et al., 2008), and also depends on the 

weather conditions (Velasco et al., 2007; Winde and 
Wittstock, 2011). 

Glucosinolates affect individual groups of pests, 
generalists or specialists, differently (Lankau, 2007; 
Müller, 2010), with the activity of these secondary 
metabolites either stimulating or deterring feeding. 
When the plant tissue (cells) is damaged, various 
biotic or abiotic factors cause the hydrolysis of glu-
cosinolates, resulting in the production of isothio-
cyanates, thiocyanates and nitriles (Broekgaarden 
et al. 2008; Müller, 2009). Isothiocyanates and ni-
triles stimulate specialist pests, whereas their effect 
on generalists is most often considered repellent 
(Müller, 2009). The insecticidal effect of isothiocy-
anates on representatives of the order Lepidoptera 
can be compared to the effects of synthetic insecti-
cides; conversely, the effects of nitriles are less pro-
nounced, and they primarily serve to attract natural 
enemies (Schramm et al., 2012).

Influence of glucosinolates on monophagous insect 
pests of the Brassicaceae

To defend themselves against plant secondary me-
tabolites, herbivores have developed several physi-
ological defense mechanisms (Textor and Gershen-
zon, 2009). Herbivores can reduce the effects of 
secondary metabolites primarily by rapid enzymatic 
decomposition, thereby transforming them into less 
toxic or non-toxic derivates (compounds), or by rap-
idly excreting them (Poelman et al., 2008; Müller, 
2009). Interestingly, certain species of herbivores 
can employ glucosinolates for their own defense. Al-
though these species are primarily a small group of 
specialists (Pontoppidan et al., 2003; Broekgaarden et 
al. 2008; Chaplin-Kramer et al., 2011), glucosinolates 
exert toxic effects on some specialists (Poelman et 
al., 2008). To defend itself against natural enemies, 
the cabbage aphid (Brevicoryne brassicae [L.]) pro-
duces the enzyme myrosinase which degrades plant 
glucosinolates (Broekgaarden et al. 2008). A similar 
defense mechanism is used by the mustard aphid 
(Lipaphis erysimi [Kaltenbach]) (Pratt et al., 2008) 
which occasionally infests oilseed rape and certain 
mustard plants (Rana, 2005). 
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Caterpillars of the small white butterfly (Pieris 
rapae [L.]) can degrade glucosinolates through a 
specific protein found in their intestines. The pro-
tein transforms unstable aglycone into nitriles 
which the larvae then excrete from their bodies. 
The transformation of these toxic isothiocyanates 
into less-toxic or non-toxic nitriles also occurs in 
other species of the genus Pieris, Pieris virgien-
sis (Edwards), the green-veined white (Pieris napi 
[L.]), the large white (Pieris brassicae [L.] ) and also 
in the orange tip (Anthocharis cardamines [L.]). 
Stimulating effects of glucosinolates on the adult 
females of the small white (Pieris rapae [L.]) and 
the large white (Pieris brassicae [L.]) have also been 
established in addition to the stimulating effects on 
the feeding of large white and green-veined white 
caterpillars (Smallegange et al., 2007). The glucosi-
nolate concentration also significantly influences 
the duration of the developmental stages of these 
butterflies (Smallegange et al., 2007). 

Caterpillars of the diamondback moth (Plutella 
xylostella [L.]) contain the enzyme sulphatase which 
transforms the glucosinolates into desulphoglu-
cosinolates; the caterpillars then excrete the desul-
phoglucosinolates. A similar system of decomposi-
tion was found in the desert locust (Schistocerca gre-
garia [Forskål]) (Müller, 2009; Textor and Gershen-
zon, 2009). Caterpillars of the turnip sawfly (Athalia 
rosae [L.]) use many aliphatic and aromatic glucosi-
nolates to protect themselves against the predatory 
European paper wasp (Polistes dominulus [Christ]), 
common wasp (Vespula vulgaris [L.]) and spined 
soldier bug (Podisus maculiventris [Say]) (Müller et 
al., 2001; Müller, 2009). Glucosinolates also protect 
caterpillars of the turnip sawfly against attacks by 
the European fire ant (Myrmica rubra [L.]) (Müller, 
2009). Soler et al. (2007) reported on the negative 
influence of high glucosinolate concentrations on 
the development of cabbage fly larvae (Delia radi-
cum [L.]), whereas the negative influence of iso-
thiocyanates on eggs was detected for the Brassica 
pod midge (Dasineura brassicae [Winn.]) (Åhman, 
1985; Björkman et al., 2011) and on the feeding of 
rape beetle (Meligethes aeneus [Fabricius]) imagos 
(Cook et al., 2006). 

The accessibility of different Brassicaceae species 
within a specific area has also influenced the differ-
ent extents of damage caused by cabbage stink bugs 
(Eurydema spp.), and it was reported that the glu-
cosinolates in oilseed rape had the greatest stimulat-
ing effect on the feeding behavior of cabbage stink 
bugs (Bohinc et al., 2012).

Influence of glucosinolates on polyphagous insect  
pests feeding on the Brassicaceae

The influence of individual glucosinolates can signif-
icantly affect the feeding behavior of the bertha ar-
myworm (Mamestra configurata [Walker]). Indeed, 
the ability of a plant to defend itself against attacks by 
this species is affected by the presence of sinalbin and 
sinigrin (McCloskey et al., 1993; Ulmer et al., 2001): 
the higher the content of these glucosinolates, the 
less likely it is that Mamestra configurata (Walker) 
will feed on the plant. One study established that the 
green peach aphid (Myzus persicae [Sulzer]) excretes 
glucosinolates in its honeydew (Kos et al., 2011) and 
thus avoids the insecticidal effects of the secondary 
metabolites; however, this is not the case for all of the 
glucosinolate groups. Plants that contain only indole 
glucosinolates are much more resistant to attack by 
the green peach aphid (Myzus persicae) (Kim et al., 
2008), which is a very significant pest of peach, to-
bacco, vegetables and flowers (Vučetić et al., 2008).

Although monophagous caterpillars of the order 
Lepidoptera can adjust to glucosinolates (they use 
them for defending themselves), polyphagous cat-
erpillars of the same order have no such adjustment 
mechanism when feeding (Schramm et al., 2012). 

The Brassicaceae are not the most important 
hosts for the beet armyworm (Spodoptera exigua 
[Hübner]) and the African cotton leafworm (Spo-
doptera littoralis), yet these insects can still complete 
their developmental cycle. In contrast, the appear-
ance of the cabbage moth (Mamestra brassicae [L.]) 
and the cabbage looper (Trichoplusia ni [Hübner]) 
can represent a serious problem in the cultivation 
of Brassicaceae (Schramm et al., 2012). It is known 
that higher glucosinolate content reduces the extent 
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of cabbage looper (Trichoplusia ni) feeding (Klieben-
stein et al., 2002). An important factor in the feed-
ing behavior of the cabbage moth (Mamestra brassi-
cae) is also the selection of the plant variety, as some 
Brassicaceae varieties are much more susceptible to 
attack by these harmful pests (Cartea et al., 2010), 
an observation that is attributed to the lower glucosi-
nolate content of these varieties.

Influence of glucosinolates on harmful soil organisms 
(the process of biofumigation)

The term “biofumigation” normally means the sup-
pression of harmful organisms in the soil (herbivores, 
nematodes and fungi) using plant species (most fre-
quently the Brassicaceae) that contain glucosinolates 
(Elberson et al. 1996; Matthiessen and Shackleton, 
2005; Gimsing and Kirkegaard, 2009). Glucosinolate 
decomposition products can also influence the abil-
ity of weeds to germinate and grow (Bangarwa et al. 
2011; Boydston et al. 2011). The influence of prod-
ucts created during the hydrolysis of glucosinolates 
can successfully be used as an alternative for methyl 
bromide (Lazzeri et al., 2004). 

The effect of biofumigation can be reached in 
several ways: by ploughing in fresh plant mass or 
Brassicaceae seed meal (a side-product of the press-
ing of seeds to produce oil). Biocidal effects can also 
be achieved by ploughing in dry plant mass, which 
contains a proportion of the active isothiocyanates of 
the living plants (Gimsing and Kirkegaard, 2009).

The use of seed meal has proven successful in 
suppressing wireworms (Agriotes spp.) (Elberson 
et al. 1996; Furlan et al. 2010), and nematicidal 
(Lazzeri et al., 2009; Zasada et al., 2009) and her-
bicidal properties have been reported (Noswothy et 
al. 2005; Handiseni et al., 2011). The nematicidal ef-
fects of glucosinolate decomposition products have 
been reported for the species Meloidogyne javanica 
(Treub [Chitwood]) (McLeod and Steel, 1999, Wu et 
al., 2011), and a high in vitro efficiency against po-
tato nematode (Globodera rostochiensis (Woll [Be-
hrens]) has also been confirmed (Serra et al., 2002; 
Aires et al., 2009).

The results of recent research show that the bio-
fumigation method is also successful in suppress-
ing soil pathogens (Mattner et al., 2008; Motisi et 
al., 2009), including Fusarium spp. (Martínez et al., 
2011), Texas root rot (Phymatotrichopsis omnivora, 
[Duggar] Hennebert) (Hu et al., 2011), Verticil-
lium dahliae (Kleb.) (Larkin et al., 2011), Rhizocto-
nia solani (Kühn) and take-all (Gaeumannomyces 
graminis var. tritici [Walker]) (Motisi et al., 2009).

Influence of glucosinolates on useful organisms

The activities of natural enemies are influenced by 
both the kind of prey and the plant genotype (Kos 
et al., 2011). The glucosinolate content in the body 
of the cabbage aphid can influence natural enemies 
differently. On the one hand, the negative influence 
on the predators marmalade hoverfly (Episyrphus 
balteatus [De Geer]) (Kos et al., 2012) and common 
green lacewing (Chrysoperla carnea [Stephens]) (Kos 
et al., 2011) were described; on the other hand, a 
stimulating influence of isothiocyanates on the spe-
cies Diaeretiella rapae (M’ Intosh) was also reported 
(Bradburne and Mithen, 2000; Kos et al., 2012). 

The vitality of the two-spot ladybird (Adalia bi-
punctata [L.]) and the seven-spot ladybird (Coccinel-
la septempunctata [L.]), which feed on cabbage aphid 
larvae, depends on the sinigrin content (Prat et al., 
2008). Sinigrin negatively influences the species A. 
bipunctata, whereas no influence has been detected 
for the species C. septempunctata (Prat et al., 2008).

The application of Brassicaceae seed meal can 
have a whole spectrum of positive properties that af-
fect harmful organisms in the soil, yet it can also neg-
atively influence non-target organisms, for example, 
entomopathogenic nematodes of the genus Stein-
ernema, as glucosinolate decomposition products 
prevent the activities of these biotic agents (Hender-
son et al., 2009).

ConclusionS

Our review has outlined the specificity of the effects 
of individual glucosinolates on different groups of 
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harmful and useful organisms (Chaplin-Kramer et 
al., 2011). Because the number of registered synthet-
ic insecticides is continuously decreasing (Stojanović 
et al., 2007; The list of registered …, 2012), more re-
search has been focused on the study of the natural 
resistance of plants which is manifested by ennobling 
programs (Müller, 2009; Ban et al., 2006). The utili-
zation of the inherent defense mechanisms of plants 
will gain more importance in the future.

The fact that the glucosinolate content varies be-
tween individual plant species (Moyes et al., 2000; 
Chaplin-Kramer et al., 2011), between organs of the 
same plant species and between the developmental 
stages (de Villena et al., 2007; Cartea et al., 2008) of in-
dividual plant species, suggests that the same species 
and glucosinolate concentration may differentially in-
fluence (repel or stimulate) various species of harmful 
organisms. We believe that all of the listed attributes 
can represent problems for the implementation of this 
knowledge in Brassicaceae production, especially in 
areas with a moderate climate where the Brassicaceae 
are exposed to attack by numerous harmful insects 
and other organisms. This situation can undoubtedly 
be an additional reason to research new methods or 
to improve the existing methods of the environmen-
tally acceptable protection of Brassicaceae against 
economically important harmful organisms.
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