
Debugging in consumer-programming oriented
environments

Zvonimir Pavlic*, Tomislav Lugaric** and Marin Silic *
* University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

Consumer Computing Laboratory, Zagreb, Croatia
**Laboratory for Underwater Systems and Technologies

zvonimir.pavlic@fer.hr

Abstract - Computer consumers are the largest group of
computer users, many of which are highly creative and
experts in their area. Despite the fact they have no formal
education in computer programming, they want to express
their creativity and develop their own applications which
will satisfy their needs. Nowadays, consumers can build
their own personalized software artifacts using Geppeto
(Widget Parallel Programming Tool) by building
personalized workflows and dataflows over widgets, small
standalone Web applications. However, computer
consumers are prone to making mistakes while
programming, which results in bugs in their applications.
Consumers require assistance of skilled programmers in
order to build dependable and error-free applications. This
paper discusses new debugging methods based on
professional debugging techniques, which will be
understandable to average consumer. These methods will
allow consumers controlled execution of their applications
in order to find and remove bugs. Methods described in this
paper are suitable for debugging consumer applications in a
widget-oriented consumer programming environment like
Geppeto, and include animated step-by-step execution of the
consumer’s application, adding breakpoints within widget
composition and introducing interactive backtracking in
order to detect erroneous widget.

I. INTRODUCTION

Computer consumers are the widest group of computer
users, which have no formal education in computer
programming [1,2]. Many of them are highly creative and
experts in their area of interest. They are keen to use
professional and personalized applications which satisfy
their requirements by their functionality and ease of use.
In order to achieve the best quality of experience, as well
as express their creativity, consumers build their own
applications out of predefined software components made
by professionals.

The most common form of software artifacts suitable
for consumer’s usage are World Wide Web applications
[1]. Widgets are small standalone applications displayed
in a Web browser. Widgets are equipped with graphical
user interface for the interaction with the background
process, which is usually a Web based source.

Consumers select a set of widgets relevant to their
field of interest and build personalized data flows between
widgets by interconnecting their graphical user interfaces.
In order to develop complex personalized applications,

consumers have to manually interact with multiple
widgets, which is impractical. Consumers can use
Geppeto (Widget Parallel Programming Tool), for
automating widget interconnection [1,2,3,4]. Geppeto is a
consumer-oriented framework for building workflows of
consumer’s applications, developed at the University of
Zagreb, Faculty of Electrical Engineering and Computing
(FER). Applications are built by using widgets as building
blocks.

Lacking sufficient education, average consumers,
unlike the professional programmers, do not understand
the main concepts of programming crucial for
development of new applications. Therefore, consumers
are prone to making mistakes in their application, even
more than the professional programmers, introducing bugs
and errors in their applications. While professional
programmers have many debugging tools and methods
available, none of them are suitable for consumers and
their level of knowledge.

This paper discusses new debugging methods based on
professional debugging techniques which will be
understandable to the average consumer.

The paper is organized as follows. Debugging methods
available in professional programming environments are
described in Section 2. Section 3 provides an overview of
existing debugging methods in various consumer and end-
user oriented systems. Section 4 proposes new debugging
methods applicable to widget-oriented consumer
programming environment. Section 5 gives a short
example of consumer’s debugging.

II. DEBUGGING

The programming process is divisible into several
principal stages: formulate problem, generate plan, code,
debug, and verify [5]. Programmers, even most
experienced ones, write programs that contain errors. The
first indication that a program is incorrect is usually an
externally visible symptom, such the wrong value being
printed or the system encountering a fatal problem. This
externally visible symptom is called a failure. A failure is
caused by an erroneous internal state (called an error) of
the program. This error could be an incorrect value for a
variable or the program executing in the wrong place. An
error state is usually preceded by another error state. This
chain of errors can be followed back to the cause. The

cause of the initial error is an algorithmic fault in the
program. In debugging, these faults are called bugs [6].

Debugging is the process of identifying the root cause
of an error and correcting it [7].It contrasts with testing,
which is the process of detecting the error initially.
Debugging is a difficult job because the programmer has
little guidance in locating the bugs. To locate a bug that
caused an error, the programmer must think about the
causal relationships between events in a program’s
execution. There is usually an interval between the time
when a bug first affects the program behavior and when
the programmer notices an error caused by the bug. This
interval makes it difficult for the programmer to locate the
bug. On some projects, debugging occupies as much as 50
percent of the total development time. For most
programmers, debugging is the hardest part of
programming [5].

Debugging is a process that has several important and
unavoidable steps. First step is to reproduce an error by
bringing the program into a previously encountered
erroneous state. This task can be very demanding, because
some programs do not have reproducible and deterministic
behavior, such as highly parallel programs. After the bug
is reproduced, the input of the program may need to be
simplified to make it easier to debug. This simplification
can be done by using divide-and-conquer approach.
Programmers than use different debugging techniques to
determine the location of the bug [8].

Tracing is debugging technique of watching (live or
recorded) trace statements, or print statements that
indicate the flow of process execution. Remote debugging
is the process of debugging a program running on a
system different than the debugger. Post-mortem
debugging is debugging of the program after it has already
crashed. Related techniques often include various tracing
techniques and/or analysis of memory dump of the
crashed process. The dump of the process could be
obtained automatically by the system or by a programmer-
inserted instruction [8].

Modern integrated development tools provide
developers with debuggers – specialized tools used in
debugging process. Debuggers are used to examine
program states, to control execution of a program and to
track down the origin of the problem in the code. During
debugging, it is very important to change one thing at a
time, and to keep an audit trail of changes made in the
code. After the bug has been removed from the code, the
program has to be tested again, in order to prevent new
bugs inserted in the code during the debugging.

III. DEBUGGING IN CONSUMER-ORIENTED

PROGRAMMING

Consumer-oriented paradigm has become the most
common form of programming in use today [9], but there
has been little investigation into the dependability of the
programs that consumers create. This is problematic
because the dependability of these programs can be very
important. Errors in consumer applications, such as
formula errors in spreadsheets, have cost millions of
dollars [10]. This problem has been recognized and some
solutions have been proposed.

“Interrogative debugging” technique has been
presented for the event-based programming environment
Alice. Consumers pose questions in the form of “Why
did…” or “Why didn’t…” that the system answers by
displaying visualizations of the program. This work builds
on their model of programming errors [11], which
classifies errors and their causes. Other strategies are
statistical outlier finding [12] and anomaly detection [13],
which use statistical analysis and interactive techniques to
direct consumer programmers’ attention to potentially
problematic areas during automation tasks.

Since the spreadsheet paradigm is very popular
amongst consumers considerable efforts nave been put
into work supporting program comprehension and
debugging by end users in the spreadsheet paradigm. This
includes devices to aid spreadsheet users in dataflow
visualization and editing tasks. Similar groups of cells are
recognized and shaded based upon formula similarity, and
are then connected with arrows to show dataflow. This
technique builds upon the Arrow Tool, a dataflow
visualization device [14].

In What You See Is What You Test (WYSIWYT)
methodology [9, 15], consumer can test a spreadsheet
incrementally as it is being developed by simply
validating any value as correct at any point in the process.
Behind the scenes, these validations are used to measure
the quality of testing in terms of a test-adequacy criterion.
These measurements are then projected to the user via
several different visual devices, to help them direct their
testing activities.

Consumer mashup programming tools, like Marmite
and Vegemite, implement execution control elements,
which can help consumer in the debugging process [16,
17, 18]. Every mashup element has start, stop and play
buttons, which consumer can use in controlling the
workflow of his mashup. Additionally, Marmite and
Vegemite have separate window where consumer can see
the data set changes after applying each building block,
and therefore observe dependencies between data and
control flow.

Study of cognitive processes during debugging
revealed that debuggers for consumer programmers
should have the following features [9,19]:

• Animated view of execution
• Display of action data correlated with focus in

the action history
• Incrementally-generated history of action

execution
• Access from action values to the action history

that processed them
• Access from action history to the corresponding

action data

IV. DEBUGGING IN WIDGET-ORIENTED CONSUMER

PROGRAMMING ENVIRONMENT

In widget-oriented consumer programming
environment like Geppeto, consumers create their own
personalized widgets by combining previously developed

widgets into one composite widget [2]. Consumer can
choose the set of widgets which provides the required set
of functionalities for consumer application. Widgets are
loaded into Geppeto container by entering widget’s URL
into container interface [3]. These widgets are considered
source widgets for the composite widget. After loading
the chosen widgets, consumer adds a programmable
widget to container.

Programming in Geppeto consists of two steps:
defining the user interface of consumer’s composite
widget and defining the composite widgets logic by
building a personalized data flow through selected
widgets [20].

Designing the user interface of a composite widget is
done by adding graphical user elements from one or more
other widgets that consumer has chosen as source
widgets. Adding elements is done via the right click
menu which can be brought up when the mouse pointer is
over a user interface element.

When programming the data flow and the logic
behind the composite widget, actions are specified using
the right-click menu. Defining a sequence of actions is
done by selecting “When clicked” action on an element.
Actions of source widgets are defined by option “click”
done on action buttons of source widget. Consumer can
use input elements to type in text. Communication
between source widgets is done by copying output of one
widget and pasting it to input of another widget. All
sequences the user generates can be viewed and
reorganized in a table which is stored together with the
generated composite widget.

Consumers understand the level of abstraction of
graphical user interfaces and data flows, as well as the
concept of widgets and widgets composition. Therefore,

debugging tools should be exposed to consumers as
widgets as well.

Figure 1 shows the “Controller” widget. It enables
controlled execution of consumer’s application through an
animated step-by-step execution. When clicked on the
“Add Watch” button, a drop down menu is displayed,
where consumer can choose between several composite
gadgets loaded in the container. Consumer can enter how
many actions in a sequence will represent one step of the
controller. The “Play” button executes one step. Sequence
of actions is animated by highlighting the GUI element of
the source gadget which is the object of the current action.
Consumer can now observe the correlation between data
changes and actions that processes that data in a controlled
environment,.

Figure 2 shows the “Debugger” widget. By clicking
on the “Add Break” button, consumer can add a
breakpoint in the composite widget control flow. A table
of actions is displayed, where consumer can choose one
action and add a breakpoint after it. After defining a
breakpoint, a new gadget, “Breakpoint”, shown on Figure
3, is inserted into the consumer application. GUI of the
“Breakpoint” widget is defined by the GUI element of the
source widget affected by the action following the
breakpoint. In addition, the “Play” button is added, so
that consumer can continue execution of his application
after the breakpoint.

By clicking on the “Trace” button of the “Debugger”
widget, a table of actions is shown. Consumer can
backtrack an erroneous widget by building dependencies
between widgets. Consumer can grade each output value
of a widget as correct one (√) or incorrect one (X). When
an output of a widget is marked as incorrect, the system
automatically highlights widgets responsible for
calculation of the incorrect value, like the widgets that
give input values to the observed widget. This interactive
process helps the consumer to concentrate only on widgets
that can possibly be faulty, and guides him through the
debugging process.

V. CONSUMER DEBUGGING EXAMPLE

This section describes the simple consumer-

programmed application, where previously described
debugging techniques will be demonstrated. The goal of
this application is to sum two numbers, A and B.

Fig. 3.Breakpoint

Fig. 2. Debugger

Fig. 1. Controller

Consumer selects source widgets, “Fetch A”, “Fetch
B” and “Sum” and loads them into the container.
Consumer than creates a programmable composite
“TouchMe” widget called “Add” and defines widget’s
GUI and behavior using Geppeto. Graphical user interface
(GUI) of the composite widget is defined. Consumer adds
the “+” button from the “Sum” widget (i) and the textbox
element from the “Fetch A” widget (ii).

To build the workflow logic, the consumer selects
“+” button at the composite widget and defines set of
actions after selecting “When Clicked” option in the
Geppeto drop-down menu (1). Consumer clicks on the
“Fetch A” button of the “Fetch A” widget in order to
fetch value of variable A (2). He copies value of variable A
to the first input field of the widget “Sum” (3). Then he
clicks on the “Fetch B” button of the “Fetch B” widget to
get the value of variable B (4) and copies it to the second
input field of the “Sum” widget (5). After clicking on the
“+” button, the value A+B is displayed in the output field
of the “Sum” widget (6). The consumer copies that value
from the “Sum” widget to the output data field of the
composite “Add” widget (7). The table of consumer-

programmed actions that define data and control flow of
the composite widget can be seen in Table 1.

In order to control the execution of his application,
consumer adds new widget, “Controller” to his
application. The Consumer than adds watch to the
composite “Add” widget via the user interface of the
“Controller” widget, and sets the step on 1 action.

When consumer clicks on the play button, the first
action will be executed. Controller widget will click on
the “Fetch A” button on the “Fetch A” widget, which will
be highlighted (1). After the second click on the play
button, the output box of the “Fetch A” widget and the
first input box of the “Sum” widget will be highlighted
(2), and the value of variable A will be copied from
widget “Fetch A” into the widget “Sum” (3). On the
following consumer’s clicks on the “Play” button, actions
(4) to (7) from the table of actions will be executed
respectively with highlighting of the affected graphical
user interface elements.

To add a breakpoint in his application, the consumer
uses a “Debugger” widget, displayed in the Figure 5.
When clicked on “Add Break” button, a table of actions is
displayed (i). The consumer can see list of actions and
chooses to add a breakpoint after the first action (ii). After
defining a breakpoint via the “Add Break” button, a new
gadget, “Breakpoint” is inserted into the consumer
application. GUI of the “Breakpoint” widget consists of
the input field of the “Sum” which is the destination of
copy action where breakpoint was added (iii).

Fetch A

Fetch A

2

Fetch B

Fetch B

3

Sum

+

2
3

5

TouchME:Add

+

5

(ii)

(i)

(1) (2)

(3)

(4)
(5)

(7)

(6)

Fig.4. Consumer application

TABLE 1. TABLE OF ACTIONS

Click fetchA @ fetchA
Copy A @ FetchA to A @ Sum

Click fetchB @ fetchB
Copy B @ FetchB to B @ Sum

Click + @ Sum
Copy S @ Sum to res @ Add

5Copy S @ Sum to res @ Add

5

3

2

DataBreakpoits

Click + @ Sum

Copy B @ FetchB to B @ Sum

Click fetchB @ fetchB

Copy A @ FetchA to A @ Sum

Click fetchA @ fetchA

Action

5Copy S @ Sum to res @ Add

5

3

2

DataBreakpoits

Click + @ Sum

Copy B @ FetchB to B @ Sum

Click fetchB @ fetchB

Copy A @ FetchA to A @ Sum

Click fetchA @ fetchA

Action

Fig. 5. Adding breakpoint

Now, the consumer starts his application by clicking
on the “Add” button of composite “Add” widget. Actions
will be executed sequentially as displayed in the table of
actions until the action (2) is finished. Action (3a) will
copy the value from widget “Fetch A” into the textbox of
“Breakpoint” widget and the execution will be halted.
Consumer can now see the values of his data sets after
actions prior to break point. After clicking on the “Play”
button (3b), value from breakpoint widget will be copied
into the first input field of the “Sum” widget (3c). The
execution will continue from action (4) until the last
action in the table of actions.

In case the consumer’s application didn’t produce the
expected result, consumer must find out which widget
from his composition is responsible for that error, in order
to debug his application. The "Trace” option of the
“Debugger” widget can be used backtrack an erroneous
widget by examining correlations between widget actions
and data set changes. Tracing is shown in Figure 6.

The consumer detected that his application, composite
widget "Add" produces the wrong result. Variable A and
B should be positive, yet the result of their summation is
negative. The consumer marks the output value of the
"Add" widget as incorrect, “X” (1). The debugger
automatically selects the widget "Sum", that is responsible
for the output of widget "Add" (2). The consumer now
examines actions of widget "Sum". Addition is marked as
incorrect, “X”, (3). The debugger selects widgets "Fetch
A" and "Fetch B" which provides an input values to
"Sum" widget (4). The consumer examines action of
selected widgets. He marks action at “Fetch B” as correct
“√” (5), and action at “Fetch A” as incorrect “X” (6).
Therefore, the bug has been detected, and the widget
“Fetch A” is labeled as faulty. The consumer must
reprogram his application, and replace the faulty widget
“Fetch A” with the correct one.

VI. CONCLUSION

This article addresses the problem of debugging in the
consumer-programming oriented environments.
Consumers are prone to making mistakes in their
applications, and need assistance of experienced
programmers in order to write reliable software. However,
because consumers are different from professional
programmers in background, motivation, and interest,
their needs cannot be addressed by simply repackaging
techniques and tools developed for professional software
engineers. Debugging methods available to professional
programmers are not suitable for consumers, since they do
not have necessary knowledge of programming process.

New debugging methods based on professional
debugging methods are proposed, that are appropriate to
average consumers and that will motivate them to debug
their applications. These methods are designed for
debugging consumer applications in a widget-oriented
consumer programming environment, and include
animated step-by-step execution of the consumer’s
application, adding breakpoints and interactive detecting
erroneous widget.

ACKNOWLEGMENT

The authors acknowledge the support of the Ministry
of Science, Education, and Sports of the Republic of
Croatia through research project „Computing
Environments for Ubiquitous Distributed Systems“ (036-
0362980-1921) as well as Google, Inc. for the Google
Research Award project “End-User Tool for Widget
Composition” and "CURE – Developing Croatian
Underwater Robotics Research Potential" SP-4 Capacities
(call FP7–REGPOT–2008–1) under Grant Agreement
Number: 229553. Furthermore, many thanks to Sinisa
Srbljic, Miroslav Popovic and Dejan Skvorc from Faculty

Fetch A

Fetch A

-7

Fetch B

Fetch B

3

Sum

+

-7
3

-4

TouchME:Add

+

-4

(1)

(2)

(3)

(4)

(4)

(6)

-4?Copy S @ Sum to res @ Add

-4

3

-7

Data

?

?

?

?

?

Corr

Click + @ Sum

Copy B @ FetchB to B @ Sum

Click fetchB @ fetchB

Copy A @ FetchA to A @ Sum

Click fetchA @ fetchA

Action

-4?Copy S @ Sum to res @ Add

-4

3

-7

Data

?

?

?

?

?

Corr

Click + @ Sum

Copy B @ FetchB to B @ Sum

Click fetchB @ fetchB

Copy A @ FetchA to A @ Sum

Click fetchA @ fetchA

Action

(5)

Fig. 6. Backtrtacking erroneous widget

of Electrical Engineering and Computing at University of
Zagreb for their help with preparing this manuscript.

REFERENCES

[1] Škvorc, D.; Programiranje prilagođeno potrošaču, PhD thesis,

University of Zagreb, Faculty of Electrical Engineering and
Computing

[2] Srbljić S., Škvorc, D. Skrobo, D.; Widget-Oriented Consumer
Programming, Automatika 50(2009), 3-4, str 252-264

[3] Geppeto home page, http://www.ris.fer.hr/, 27.01.2012.

[4] Popović, M.; Consumer Program Synchronisation. PhD thesis,
University of Zagreb, Faculty of Electrical Engineering and
Computing

[5] Gould, J. D.; Some psychological evidence on how people debug
computer programs, International Journal of Man-Machine
Studies, Volume 7, Issue 2, March 1975, Pages 151–170, IN1–
IN2, 171–182

[6] Miller, B. P., Choi, J.-D.; A Mechanism for Efficient Debugging
of Parallel Programs, PLDI '88 Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language design
and Implementation

[7] McConnell, S. C.; Code Complete: Book and Online Course
Bundle, 2nd edition, C.B.Learning , United Kingdom ©2010

[8] Agans, D. J.; Debugging: The Nine Indispensable Rules for
Finding Even the Most Elusive Software and Hardware Problems,
Amacom, 2002.

[9] Burnett, M., Cook, C., Rothermel, G.; End-user software
engineering, Communications of the ACM - End-user
development: tools that empower users to create their own
software solutions, Volume 47 Issue 9, September 2004

[10] Ko, A.J., Myers, B.A.; Designing the Whyline: A Debugging
Interface for Asking Questions about Program Failures, Proc.
ACM Conf. Human Factors Computing Systems, 2004, 151-158.

[11] Harrison, W.; From the Editor: The Dangers of End-User
Programming , IEEE Software, July-Aug. 2004, Volume: 21
Issue: 4, pages: 5 - 7

[12] Miller, R.C., Myers, B.A.; Outlier Finding: Focusing User
Attention on Possible Errors, Proc. ACM Symp. User Interface
Soft. Technology, 2001, 81-90.

[13] O. Raz, P. Koopman, and M. Shaw, “Semantic Anomaly
Detection in Online Data Sources”, Proc. Int. Conf. Soft. Eng.,
2002, 302-312.

[14] T. Igarashi, J.D. Mackinlay, B.-W. Chang, and P.T. Zellweger,
“Fluid Visualization of Spreadsheet Structures”, Proc. IEEE
Symp. Visual Langs., 1998, 118-125.

[15] Rothermel, G., Li, L., DuPuis, C., Burnett, M.; What You See Is
What You Test: A Methodology for Testing Form-Based Visual
Programs, Proceedings of the 1998 International Conference on
Software Engineering, 19-25 Apr 1998.

[16] Wong, J.; Marmite: Towards End-User Programming for the Web,
IEEE Symposium on Visual Languages and Human-Centric
Computing, 2007. VL/HCC 2007., 23-27 Sept. 2007, On page(s):
270 - 271

[17] Wong, J., Hong, J.; Marmite: end-user programming for the web,
Proceeding CHI EA '06 CHI '06 extended abstracts on Human
factors in computing systems

[18] Lin, J., Wong, J., Nichols, J., Cypher, A., Lau, T.A.; End-user
programming of mashups with vegemite, IUI '09: Proceedings of
the 14th international conference on Intelligent user interfaces,
ACM New York, NY, USA 2009

[19] Lieberman, H., Wagner, E.; End-user debugging for e-commerce,
IUI '03: Proceedings of the 8th international conference on
Intelligent user interfaces, ACM New York, NY, USA 2003

[20] Pavlic, Z.; Lugaric, T.; Srbljic, S.; Consumer-oriented
programming application for statistical processing, MIPRO, 2011
Proceedings of the 34th International Convention, 23-27 May
2011, On pages: 702 - 706

