Operator inequalities involving real convex functions

Jadranka Mićić
(joint work with Mohammad Sal Moslehian and Mohsen Kian)
Contents

1. Introduction and preliminaries

2. Main results

3. Some applications and related results
 - Jensen operator inequality
 - Operator version of the Petrović inequality
 - Superadditivity inequalities

4. Further generalizations
Introduction

Let $\mathcal{B}(H)$ be the algebra of all bounded linear operators on a complex Hilbert space H and I denote the identity operator. We denote by $\mathcal{B}_h(H)$ the real subspace of all self-adjoint operators on H. If $\dim H = n$, we identify $\mathcal{B}(H)$ with the algebra $\mathcal{M}_n(\mathbb{C})$ of all $n \times n$ matrices with entries in the field \mathbb{C} of the complex numbers. An operator A is said to be positive (denoted by $A \geq 0$) if $\langle Ax, x \rangle \geq 0$ for all $x \in H$. If, in addition, A is invertible, then it is called strictly positive (denoted by $A > 0$). By $A \geq B$ we mean that $A - B$ is positive, while $A > B$ means that $A - B$ is strictly positive. A mapping Φ on $\mathcal{B}(H)$ is said to be positive if $\Phi(A) \geq 0$ for each $A \geq 0$ and is called unital if $\Phi(I) = I$.

A continuous real valued function f defined on an interval J is said to be operator convex if $f(\lambda A + (1 - \lambda)B) \leq \lambda f(A) + (1 - \lambda)f(B)$ for all self-adjoint operators A, B with spectra contained in J and all $\lambda \in [0, 1]$.
Preliminary results

If the function f is operator convex, then the so-called Jensen operator inequality

$$f(\Phi(A)) \leq \Phi(f(A))$$

holds for any unital positive linear mapping Φ on $\mathcal{B}(H)$ and any $A \in \mathcal{B}_h(H)$ with spectrum contained in J. Many other versions of the Jensen operator inequality can be found in:

Among them, the Jensen–Mercer operator inequality reads as follows:

\[f \left(M + m - \sum_{i=1}^{n} \Phi_i(A_i) \right) \leq f(M) + f(m) - \sum_{i=1}^{n} \Phi_i(f(A_i)), \]

where \(f \) is a convex function on an interval \([m, M]\), \(\Phi_1, \ldots, \Phi_n \) are positive linear mappings on \(\mathcal{B}(H) \) with \(\sum_{i=1}^{n} \Phi_i(I) = I \) and \(A_1, \ldots, A_n \) are self-adjoint operators with spectra contained in \([m, M]\).

If \(f : [0, \infty) \to \mathbb{R} \) is a convex function and \(f(0) \leq 0 \), then

\[
f(a) + f(b) \leq f(a + b)
\]

(1)

for all scalars \(a, b \geq 0 \). However, if the scalars \(a, b \) are replaced by two positive operators, this inequality may not hold. There have been many interesting works devoted to obtain operator extensions of inequality (1).

- T. Kosem, *Inequalities between \(\|f(A + B)\| \) and \(\|f(A) + f(B)\| \)*, Linear Algebra Appl. 418 (2006), 153–160.
A version of Jensen’s operator inequality without operator convexity:

We can rewrite these results as follows.

Let \((A_1, \ldots, A_n)\) be an \(n\)-tuple of operators \(A_i \in \mathbb{B}_h(H)\). Let \((\Phi_1, \ldots, \Phi_n)\) be an \(n\)-tuple of positive linear mappings \(\Phi_i\) on \(\mathbb{B}(H)\) such that \(\sum_{i=1}^{n} \Phi_i(I) = I\).

If \(A_i \leq m, \ i = 1, \ldots, n_1, \ M \leq A_i, \ i = n_1 + 1, \ldots, n\), for some \(m, M \in \mathbb{R}\), \(m \leq M\) and \(m \leq A = \sum_{i=1}^{n} \Phi_i(A_i) \leq M\), then

\[
f \left(\sum_{i=1}^{n} \Phi_i(A_i) \right) \leq \sum_{i=1}^{n} \Phi_i(f(A_i))
\]

holds for every continuous convex function \(f\) on an interval \(J\) provided that the interval \(J\) contains all \(m_i, M_i\).

Especially, for \(n = 2\): If \(A \leq m \leq A + B \leq M \leq B\), then

\[
f(\Phi_1(A) + \Phi_2(B)) \leq \Phi_1(f(A)) + \Phi_2(f(B))
\]
Main results

Theorem 1.
Let f be a continuous convex function on an interval J. Let $A, B, C, D \in \mathcal{B}_h(H)$ with spectra contained in J such that

$$A + D = B + C \quad \text{and} \quad A \leq m \leq B, C \leq M \leq D$$

for two real numbers $m \leq M$. If Φ is an unital positive linear mapping on $\mathcal{B}(H)$, then

$$f(\Phi(B)) + f(\Phi(C)) \leq \Phi(f(A)) + \Phi(f(D)). \quad (2)$$

If f is concave on J, then the inequality (2) is reversed.
Proof

We will prove only the convex case.

a) Let $m < M$. Since $A \leq m$ and $D \geq M$, then

$$f(A) \geq \frac{M-A}{M-m} f(m) + \frac{A-m}{M-m} f(M), \quad f(D) \geq \frac{M-D}{M-m} f(m) + \frac{D-m}{M-m} f(M).$$

It follows

$$\Phi(f(A)) + \Phi(f(D)) \geq \frac{2M-(\Phi(A)+\Phi(D))}{M-m} f(m) + \frac{\Phi(A)+\Phi(D)-2m}{M-m} f(M).$$

(♣)

Similarly, taking into account that $m \leq \Phi(B), \Phi(C) \leq M$, then

$$f(\Phi(B)) + f(\Phi(C)) \leq \frac{2M-(\Phi(B)+\Phi(C))}{M-m} f(m) + \frac{\Phi(B)+\Phi(C)-2m}{M-m} f(M).$$

(♠)

The inequality (2) follows from (♣) and (♠) by using $A + D = B + C$.

b) Let $m = M$. The proof is similar to the above by using the subdifferential of f.

□
We give an example to clarify the situation in Theorem 1.

Example

Let the function \(f \) be defined on \([0, \infty)\) by \(f(t) = t^3 \) and the unital positive linear mapping \(\Phi : M_2(\mathbb{C}) \rightarrow M_2(\mathbb{C}) \) be defined by \(\Phi(A) = (\frac{1}{2} tr(A))I \) for all Hermitian matrix \(A \in M_2(\mathbb{C}) \). If

\[
A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 6 & -1 \\ -1 & 7 \end{pmatrix}, \quad D = \begin{pmatrix} 9 & 1 \\ 1 & 10 \end{pmatrix},
\]

then

\[
0 \leq A < 3I \leq B \leq C \leq 8I < D \quad \text{and} \quad A + D = B + C,
\]

whence

\[
f(\Phi(B)) + f(\Phi(C)) = 338.625I \leq 897I = \Phi(f(A)) + \Phi(f(D)).
\]

This shows that inequality (2) can be strict.
More generally, the next corollary gives other versions of inequality (2).

Corollary 1.

Let \(f \) be a convex function on an interval \(J \). Let \(A_i, B_i, C_i, D_i \in \mathcal{B}(H)_h, i = 1, \ldots, n \), with spectra contained in \(J \) such that

\[
A_i + D_i = B_i + C_i \quad \text{and} \quad A_i \leq m \leq B_i, C_i \leq M \leq D_i, \ i = 1, \ldots, n
\]

for two real numbers \(m \leq M \). Let \(\Phi_1, \ldots, \Phi_n \) be positive linear mappings on \(\mathcal{B}(H) \) with \(\sum_{i=1}^{n} \Phi_i(I) = I \). Then

1. \[
f(\sum_{i=1}^{n} \Phi_i(B_i)) + f(\sum_{i=1}^{n} \Phi_i(C_i)) \leq \sum_{i=1}^{n} \Phi_i(f(A_i)) + \sum_{i=1}^{n} \Phi_i(f(D_i)),
\]
2. \[
\sum_{i=1}^{n} \Phi_i(f(B_i)) + \sum_{i=1}^{n} \Phi_i(f(C_i)) \leq f(\sum_{i=1}^{n} \Phi_i(A_i)) + f(\sum_{i=1}^{n} \Phi_i(D_i)),
\]
3. \[
\sum_{i=1}^{n} \Phi_i(f(B_i)) + f(\sum_{i=1}^{n} \Phi_i(C_i)) \leq f(\sum_{i=1}^{n} \Phi_i(D_i)) + \sum_{i=1}^{n} \Phi_i(f(A_i)).
\]

If \(f \) is concave on \(J \), then the above inequalities are reversed.
Moreover, we can present another version of Corollary 1.

Corollary 2.

Let f be a convex function on an interval J. If $A_i, B_i, C_i, D_i \in \mathbb{B}_h(H)$, $i = 1, \cdots, n$, with spectra contained in J such that

$$A_i + D_i = B_i + C_i \quad \text{and} \quad A_i \leq m \leq B_i, \ C_i \leq M \leq D_i, \ i = 1, \cdots, n,$$

then

(1') \hspace{1em} f\left(\sum_{i=1}^{n} B_i\right) + f\left(\sum_{i=1}^{n} C_i\right) \leq \sum_{i=1}^{n} f(A_i) + \sum_{i=1}^{n} f(D_i),

(2') \hspace{1em} \sum_{i=1}^{n} f(B_i) + \sum_{i=1}^{n} f(C_i) \leq f\left(\sum_{i=1}^{n} A_i\right) + f\left(\sum_{i=1}^{n} D_i\right),

(3') \hspace{1em} \sum_{i=1}^{n} f(B_i) + f\left(\sum_{i=1}^{n} C_i\right) \leq f\left(\sum_{i=1}^{n} D_i\right) + \sum_{i=1}^{n} f(A_i).

Especially, we have the following result: If $A \leq m \leq C, \ D \leq M \leq B$ for two real numbers $m \leq M$ and $A + B = C + D$, then

$$f(C) + f(D) \leq f(A) + f(B).$$
Corollary 3.

Let f be a convex function on an interval J. Let $A_i, B_i \in B_h(H)$, $i = 1, \ldots, n$, with spectra contained in J. Let $\Phi_i, i = 1, \ldots, n$, be positive linear mappings on $B(H)$ with $\sum_{i=1}^n \Phi_i(I) = I$. If $A_i \leq m \leq \frac{A_i + B_i}{2} \leq M \leq B_i$, $i = 1, \ldots, n$, for two real numbers $m \leq M$, then

\[
f \left(\sum_{i=1}^n \Phi_i \left(\frac{A_i + B_i}{2} \right) \right) \leq \sum_{i=1}^n \Phi_i \left(\frac{f(A_i) + f(B_i)}{2} \right),
\]

\[
f \left(\sum_{i=1}^n \Phi_i \left(\frac{A_i + B_i}{2} \right) \right) \leq \frac{1}{2} \sum_{i=1}^n \Phi_i (f(A_i)) + \frac{1}{2} f \left(\sum_{i=1}^n \Phi_i (B_i) \right), \tag{3}
\]

\[
f \left(\sum_{i=1}^n \Phi_i \left(\frac{A_i + B_i}{2} \right) \right) \leq \frac{1}{2} f \left(\sum_{i=1}^n \Phi_i (A_i) \right) + \frac{1}{2} \sum_{i=1}^n \Phi_i (f(B_i)),
\]

\[
f \left(\sum_{i=1}^n \Phi_i \left(\frac{A_i + B_i}{2} \right) \right) \leq \frac{1}{2} f \left(\sum_{i=1}^n \Phi_i (A_i) \right) + \frac{1}{2} f \left(\sum_{i=1}^n \Phi_i (B_i) \right).
\]

If f is concave, then the above inequalities are reversed.
Note that the existence of scalars \(m \leq M \) is essential in Corollary 3, i.e., the inequalities (3) may not hold if \(A, B \not\in \Omega \), where

\[
\Omega = \left\{ (A, B) \mid A, B \in \mathbb{B}_h(H) \text{ and } A \leq m \leq \frac{A+B}{2} \leq M \leq B, \right. \\
\left. \text{for some } m, M \in \mathbb{R} \right\}.
\]

Example

Consider the convex function \(f(t) = t^3 \) on \([0, \infty)\). Putting

\[
A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}
\]

we have \(0 \leq A \leq B \). There is no scalar \(m \) such that \(A \leq m \leq \frac{A+B}{2} \). Now

\[
f\left(\frac{A+B}{2}\right) = \begin{pmatrix} 6 & 14 & 0 \\ 14 & 34 & 0 \\ 0 & 0 & 3.375 \end{pmatrix} \nless \begin{pmatrix} 6 & 15 & 0 \\ 15 & 43 & 0 \\ 0 & 0 & 4.5 \end{pmatrix} = \frac{f(A) + f(B)}{2}.
\]
The Jensen–Mercer operator inequality follows directly from Corollary 2:

Corollary 4.

Let Φ_i, $i = 1, \ldots, n$, be positive linear mappings on $\mathbb{B}(H)$ with $\sum_{i=1}^{n} \Phi_i(I) = I$ and $B_i \in \mathbb{B}_h(H)$, $i = 1, \ldots, n$, with spectra contained in $[m, M]$. If f is a convex function on $[m, M]$, then

$$f(m + M - \sum_{i=1}^{n} \Phi_i(B_i)) \leq f(m) + f(M) - \sum_{i=1}^{n} \Phi_i(f(B_i)).$$

Proof

Clearly $m \leq B_i \leq M$, $i = 1, \ldots, n$. Set $C_i = M + m - B_i$. Then $m \leq C_i \leq M$ and $B_i + C_i = m + M$, $i = 1, \ldots, n$. Applying inequality (3) of Corollary 2 when $A_i = mI$ and $D_i = M I$ we obtain

$$\sum_{i=1}^{n} \Phi_i(f(B_i)) + f(\sum_{i=1}^{n} \Phi_i(C_i)) \leq f(m) + f(M)$$

which is the desired inequality.
Operator version of the Petrović inequality

Petrović inequality see e.g. in

First we give a generalization of this inequality.

Corollary 5.

Let $A, B, C_i \in \mathcal{B}_h(H)$, $i = 1, \ldots, n$, $n > 1$, with spectra contained in an interval J such that $A + B = \sum_{i=1}^{n} C_i$ and $A \leq m \leq C_i \leq M \leq B$, $i = 1, \ldots, n$, for two real numbers $0 \leq m \leq M$. Then

$$\sum_{i=1}^{n} f(C_i) \leq f(B) + (n-1)f\left(\frac{1}{n-1}A\right)$$

for every convex function f on J. If f is concave, then the inequality (4) is reversed.
As a special case of Corollary 5 we have operator version of the Petrović inequality as follows.

Corollary 6.

If $f : [0, \infty) \to \mathbb{R}$ is a convex function and C_i, $i = 1, \ldots, n$, are positive operators such that $\sum_{i=1}^{n} C_i = MI$ for some scalar $M \geq 0$, then

$$\sum_{i=1}^{n} f(C_i) \leq f\left(\sum_{i=1}^{n} C_i \right) + (n - 1)f(0)I.$$

Proof

We put $B = MI = \sum_{i=1}^{n} C_i$ and $A = 0$ in Corollary 5.
Superadditivity inequalities

If $f : [0, \infty) \rightarrow \mathbb{R}$ is a convex function such that $f(0) \leq 0$, then inequality

$$f(a) + f(b) \leq f(a + b)$$

(5)

holds for all non-negative scalars a, b.

(see e.g.

)

Generally, the inequality (5) would be false if we replace scalars a, b with two arbitrary positive operators (see the next example).
Example

Consider the convex function $f(t) = t^3$ on $[0, \infty)$. Putting

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Then $f(A + B) - f(A) - f(B) =$

$$= \begin{pmatrix} 48 & 112 & 0 \\ 112 & 272 & 0 \\ 0 & 0 & 27 \end{pmatrix} - \begin{pmatrix} 5 & 8 & 0 \\ 8 & 13 & 0 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 7 & 22 & 0 \\ 22 & 73 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$

$$= \begin{pmatrix} 37 & 82 & 0 \\ 82 & 186 & 0 \\ 0 & 0 & 18 \end{pmatrix} \not\geq 0.$$

So there is no relationship between $f(A + B)$ and $f(A) + f(B)$ under the operator order.
The following corollary gives an operator version of (5). Also, we may compare this result with the inequality for unitarily invariant norms given in

T. Kosem, *Inequalities between* $\|f(A + B)\|$ *and* $\|f(A) + f(B)\|$, Linear Algebra Appl. **418** (2006), 153–160.

Corollary 7.

If $f : [0, \infty) \to \mathbb{R}$ *is a convex function with* $f(0) \leq 0$ *then*

$$\sum_{i=1}^{n} f(C_i) \leq f \left(\sum_{i=1}^{n} C_i \right)$$

(6)

for all positive operators C_i *such that* $C_i \leq M \leq \sum_{i=1}^{n} C_i$, $i = 1, \ldots, n$, *for some scalar* $M \geq 0$. *If* f *is concave, then the reverse inequality is valid in* (6).

In particular:

if f *is convex and* $f(0) \leq 0$, *then* $f(A) + f(B) \leq f(A + B)$ *for all positive operators* A, B *such that* $A, B \leq MI \leq A + B$ *for some scalar* $M \geq 0$.
Further generalizations

Theorem 2.

Let f be a continuous function on an interval J. Let $A, B, C, D \in \mathcal{B}_h(H)$ with spectra contained in J such that $A \leq m \leq B$, $C \leq M \leq D$ for two real numbers $m \leq M$. Let Φ be an unital positive linear mapping on $\mathcal{B}(H)$. If f is convex and one of the following conditions

(i) $B + C \leq A + D$ and $f(m) \leq f(M)$
(ii) $A + D \leq B + C$ and $f(M) \leq f(m)$

is satisfied, then

$$f(\Phi(B)) + f(\Phi(C)) \leq \Phi(f(A)) + \Phi(f(D)).$$

(7)

If f is concave and one of the following conditions

(iii) $B + C \leq A + D$ and $f(M) \leq f(m)$
(iv) $A + D \leq B + C$ and $f(m) \leq f(M)$

is satisfied, then the inequality (7) is reversed.
Proof

We will prove only the case when f is convex and (i) is valid.

a) Let $m < M$. Denote $a_f := \frac{f(M)-f(m)}{M-m}$ and $b_f := \frac{mf(M)-Mf(m)}{M-m}$.
Since $A \leq m$ and $D \geq M$, then $f(A) \geq a_f A + b_f$, $f(D) \geq a_f D + b_f$.
It follows
\[
\Phi(f(A)) + \Phi(f(D)) \geq a_f (\Phi(A) + \Phi(D)) + 2b_f. \quad (♣')
\]
Similarly, taking into account that $m \leq \Phi(B), \Phi(C) \leq M$, then
\[
f(\Phi(B)) + f(\Phi(C)) \leq a_f (\Phi(B) + \Phi(C)) + 2b_f. \quad (♠')
\]
The inequality (7) follows from (♣') and (♠') by using $B + C \leq A + D$ and $a_f \geq 0$.

b) Let $m = M$. The proof is similar to the above by using the subdifferential of f. \hfill \square
More generally, the next corollary gives other versions of inequality (7).

Corollary 8.

Let f be a continuous function on an interval J. Let $A_i, B_i, C_i, D_i \in \mathbb{B}(H)_h$, $i = 1, \cdots, n$, with spectra contained in J such that $A_i \leq m \leq B_i, C_i \leq M \leq D_i$ for two real numbers $m \leq M$. Let Φ_1, \cdots, Φ_n be positive linear mappings on $\mathbb{B}(H)$ with $\sum_{i=1}^{n} \Phi_i(I) = I$. If f is convex and one of the following conditions

(i) $B_i + C_i \leq A_i + D_i$, $i = 1, \cdots, n,$ and $f(m) \leq f(M)$

(ii) $A_i + D_i \leq B_i + C_i$, $i = 1, \cdots, n,$ and $f(M) \leq f(m)$

is satisfied, then

(1) $f \left(\sum_{i=1}^{n} \Phi_i(B_i) \right) + f \left(\sum_{i=1}^{n} \Phi_i(C_i) \right) \leq \sum_{i=1}^{n} \Phi_i(f(A_i)) + \sum_{i=1}^{n} \Phi_i(f(D_i))$,

(2) $\sum_{i=1}^{n} \Phi_i(f(B_i)) + \sum_{i=1}^{n} \Phi_i(f(C_i)) \leq f \left(\sum_{i=1}^{n} \Phi_i(A_i) \right) + f \left(\sum_{i=1}^{n} \Phi_i(D_i) \right)$,

(3) $\sum_{i=1}^{n} \Phi_i(f(B_i)) + f \left(\sum_{i=1}^{n} \Phi_i(C_i) \right) \leq f \left(\sum_{i=1}^{n} \Phi_i(D_i) \right) + \sum_{i=1}^{n} \Phi_i(f(A_i))$.
As an immediate consequence of Theorem 2, we have the following corollary.

Corollary 9.

Let f, A, B, C, D, Φ and conditions (i)–(iv) be as in Theorem 2. If f is convex and one of the conditions (i) or (ii) is satisfied, then

$$f(\Phi(B)) + f(\Phi(C)) \leq \Phi(g(A)) + \Phi(g(D))$$

(8)

for every continuous function $g \geq f$ on J and

$$g(\Phi(B)) + g(\Phi(C)) \leq \Phi(f(A)) + \Phi(f(D))$$

(9)

for every continuous function $g \leq f$ on J.

If f is concave and one of the conditions (iii) or (iv) is satisfied, then the inequality (8) is reversed for $g \leq f$ on J and the inequality (9) is reversed for $f \leq g$ on J.
Further generalizations

Applying the above corollary to the power functions we get the following corollary.

Corollary 10.

Let \(A, B, C, D \in \mathcal{B}_h(H) \) such that

\[
I \leq A \leq m \leq B, \ C \leq M \leq D
\]

for two real numbers \(m \leq M \). If one of the following conditions

(a) \(B + C \leq A + D \) and \(p \geq 1 \)

(b) \(A + D \leq B + C \) and \(p \leq 0 \)

is satisfied, then

\[
B^p + C^p \leq A^q + D^q
\]

for each \(q \geq p \).
Thank you very much for your attention