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Summary 

Based on the similarity of the equation systems of the displacement method and the force density 
method, computer code for solving frame structures by displacement method is modified to 
implement force density method. Namely, force density in the homonymous method is analogous to 
stiffness coefficient of the frame element in the displacement method. In both methods the 
connections between nodes can be resolved in the same way. Therefore the stiffness matrix in the 
displacement method has the same structure as the system matrix in the force density method. The 
unknowns in displacement method are displacement components of nodes while the unknowns in 
force density method are nodal coordinates. Examples of the application of the written programme 
include single step solutions which are compared with similar physical model and minimal nets.  

Keywords: force density method, displacement method, cable net, stiffness coefficient, system 
matrix, minimal net.  

1. Introduction 

The solution of equilibrium equations, while the geometry of the surface is unknown, is the task of 
the classical form finding methods. These methods were developed to avoid numerical problems 
arising in the computerization of inverse problems. Hanging chain and its inverse is one of the 
oldest methods known for determining the form of an arc without bending, under the influence of 
compressive axial forces only. It was also used by A. Gaudi. To determine the shape of shells, arc is 
expanded into another dimension. 
Determining the form of prestressed cable nets is defined as the process of finding the equilibrium 
shape to meet the architect and its functional and aesthetic concept, but it will also satisfy the 
engineer in terms of load transfer capabilities and performance. Form finding usually consist of two 
phases. First a physical model is made for the given boundary conditions by using soap, stretchy 
fabric or elastic threads. When the shape that satisfies the desired aesthetic terms is achieved, its 
numerical model is formed in second stage. 
The complexity of form finding process arises from the fact that there are multiple solutions that 
satisfy the given boundary conditions. In fact, the final form of the net is determined by three 
coordinates: x, y, z of each node in which cables (elements) intersect. If there are n free nodes, the 
number of unknowns is 3n. For each node one can write three conditions of equilibrium in which 
tensile force in corresponding cables (elements) occur also as unknown. Finally, a system of 3n 
equations with 3n + m unknowns (m is the number of net elements) is formed. For a single node 
(Fig. 1) where two cables intersect (or four elements of the net), three equilibrium equations are (no 
external load and self-weight is ignored): 
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Figure1: Part of the prestressed cable net and one node secluded

If the same three equations are written for every free node of the net, a syste
The system is nonlinear, so the solution
solvable, it is necessary to introduce
solution, but this will also conditional
elements, the system becomes solvable

2. Force Density Method

The force density method has been published
Bemerkungen von zur Berechtung
Linkwitz [2]. Schek expanded the 
force density method for form finding
based on a mathematical trick that
prestressed cable net in equilibrium, that is, coo
equations is easily solved using the method
Schek’s force density method was
Today’s methods for form finding of tensi
example, method with triangular 
density method [4].  
The force density method is proved to be a
equilibrium equations of prestressed
the initial coordinates. The elementary
1): internal, prestressed forces (s) 

where:: 
sa, sb, sc, sd... are prestressed forces in elements (cables)
a, b, c, d …  are nonlinear functions of the nodes coordinates

Part of the prestressed cable net and one node secluded

If the same three equations are written for every free node of the net, a system of equation 
solution can not be obtained directly. To make the system

introduce some additional assumptions and limitations
nditional form of constructions. Assuming a uniform

solvable, and construction takes the form of minimal

Force Density Method 

has been published for the first time the 1971st 
Berechtung vorgespannten Seilnetzkonstruktionen" by

the method in 1974. and described the procedure
finding and computation of general networks

trick that turns a system of nonlinear equations into 
in equilibrium, that is, coordinates of nodes in that net.

the method of conjugate gradients.  
was originally developed only for equidistant

Today’s methods for form finding of tensile structures are mostly based on his method.
 mesh surface elements is developed and is called

proved to be a powerful tool for assembling
of prestressed cable nets and the membrane, without the need

elementary equations are based on achieving equilibrium
s) and external forces (p) are in balance: 

prestressed forces in elements (cables) a, b, c, d,  
nonlinear functions of the nodes coordinates: 

 

 

 

 

Part of the prestressed cable net and one node secluded [1] 

m of equation is formed. 
To make the system become 
limitations that will lead to a 
a uniform tensile force in all 

minimal net.  

 in the article "Einige 
by H.-J. Schek and K. 

procedure in the article "The 
networks" [3]. The method is 

 linear. The solution is 
rdinates of nodes in that net. The linear system of 

equidistant square cable nets. 
le structures are mostly based on his method. For 

is called the surface stress 

for assembling and solving the 
without the need to determine 

equilibrium in nodes (Fig. 

 

 

 

 



Prestressed forces are dependent on the length of the undeformed cables and Hooke's law. The form 
finding process tends to find shape with the required prestress and surface or net discretization. 
These two data form the so-called force density: q=sa/a. If the force densities are chosen before 
solving equationes (2), these nonlinear equationes are transformed into linear: 
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The system of equations (4) is easily solved using conjugate gradient or the Gaussian elimination. 
Input data for the process of form finding are the connections between the elements, the force 
density of each element and the boundary conditions (the coordinates of boundary nodes). Several 
computer programs were written that implement the force density method to the form finding 
procedure. The following describes one possible algorithm. 

2.1 Typical matrix record of the force density method 

Even trivial force density values such as 1, give a satisfactory form of prestressed net. The method 
can satisfy the requirement of equal force in all net elements (equal prestress in all cables), as well 
as the requirement to preserve the rectangular or square grid. The method has developed today to 
so-called nonlinear force density method that includes additional theoretical formulations and 
iterative procedures [5]. However, even the basic formulation of this method represents an 
important step in the design of tensile structures. 
The force density method assumes a straight cable and hinge between the cables, as well as those on 
the edge (connection to the supporting structure). The first step is to determine the net and nodes 
numbered from 1 to ns, and elements from 1 to m. Edge nodes (nf) are numbered last. The remaining 
n nodes are free, which gives the total number of nodes: ns = n + nf.  
Numbered nodes are entered into the matrix of nodes connection, Cs. Connection matrix can be 
divided into two new matrices: 
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where: 
 C… is matrix of free nodes connection, 
 Cf …is matrix of edge nodes connection. 
Let us recall that the force densities are defined by the ratio of force in the cable and its length. Also 
vectors of projected elements in all three coordinate directions can be written using the matrix of 
nodes connection, Cs. Thus: 
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where:  
 Lmx, Lmy, Lmz....are vectors of the projected length of the elements on the axis x, y, z, 
 Q .... is the force density matrix, 
 Qmx, Qmy, Qmz ... diagonal matrix of x, y and z components of force in the elements, 
 xs, ys, zs ..........vectors containing nodes coordinates. 

Vectors xs, ys, zs can be decomposed into vectors of edge nodes coordinates, xf, yf, zf, and vectors of 
free nodes coordinates, x, y, z. 
With some transformation and by using expressions (6) and (7), one can get a matrix notation of 
equilibrium equations in any free node and for all three coordinate directions: 
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where: 
 D = C

T
QC, 
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T
QCf. 

 Fx, Fy, Fz ..... are components of external load in the nodes, in direction of coordinate axis. 

Having obtained the equilibrium state, it is possible to calculate the forces in cables (Fi): 

                                                                                 F� � q� · L�                                                                                �13�  
where: 
 qi ..... is the force density of the cable, 
 Li ..... length of the element in the resulting equilibrium position. 

We can also calculate the stress in the cable: (si=Fi/Ai). 

3. DiM vs FDM 

Existing computer program named DiM which analyzes static two-dimensional beam systems will 
be revised for the analysis of prestressed cable nets in the form finding phase. To implement such 
analysis DiM should be extended into the third dimension. And for the form finding the essential 
information are the interconnection of net elements, force density of each element and location of 
edge (boundary) nodes. The value and position of the external loads are not required input data for 
the form finding phase (as well as the self weight of the cables). 
Program DiM uses the displacement method in which one system of equations is assembled and the 
unknowns are the displacements and rotations of nodes. Certain displacement component of one 
node affects the component of the force that is not in its direction. On the other hand, the system of 
equations in the force density method can be broken down into three smaller systems because of the 
independence of the equilibrium equations in three perpendicular directions. Elements of the 
equilibrium equations in the displacement method are analogous to the members of the equilibrium 
equations in the force density method. Stiffness matrix in the displacement method has the same 
structure as the matrix D = CTQC from expression (10). Elements on the diagonal of matrix D are 
the sum of the force densities of connecting cables, and outside the diagonal are the negative values 
of the force densities in case of link between two nodes. If the nodes are not connected at this point 
in the matrix D zero is entered. On the other hand, on the diagonal of the stiffness matrix is the sum 
of the stiffness coefficients of the connected elements corresponding with the displacement of the 
specific node and outside the diagonal coefficients of stiffness or zero depending on whether the 
corresponding displacement affects the individual static value. Thus, the force density in the force 
density method is analogous to the stiffness coefficient in the displacement method, and connection 
between the nodes is defined in the matrix D as in the stiffness matrix, with elements that connect 
nodes. 
We can also draw a parallel between the unknowns of these two methods. The unknowns in the 
displacement method are the displacements of nodes in the static system, while in the force density 
method we are looking for the coordinates of free nodes in the net. The coordinates of boundary 
nodes are included in the equation as part of the free members of the system ("right side" of the 
system of equations, although actually in the code "right side" remains on the left). 

Displayed matrix formulation of the force density method is a formal description of the method. 
However, the procedure includes complex matrix operations such as multiplication of multiple 
matrices, finding inverse matrix, all of which considerably slows down the computer program. The 
existing program DiM, on the other hand, when numbering nodes does not require a special division 
of free and boundary nodes, and defining the elements using correlation matrix is not used. 
Connection between nodes is determined by the list of elements. Computer code that describes the 



force density method is seamlessly integrated into the DiM code, which represents a shift from 
formal description of the method. This is possible because of the analogy between the matrices of 
equilibrium equations (in the displacement method and the force density method) and the similarity 
of unknowns. 

3.1 Description of computer code (package FDM) 

vectorOfNodalCoords [nds_List, els_List, supps_List, fds_List] :=  

Module [ 

    { n, dof, mD, mDf, xyz }, 

    { n, dof } = tableOfNodeDsOF [Length[nds], supps]; 

    mD = matrixD [n, dof, els, fds]; 

    prn = False;  

    If [prn, Print [MatrixForm [mD]]]; 

    mDf = xyzDf [n, dof, nds, els, fds]; 

    If [prn, Print [MatrixForm [mDf]]];  

    xyz = LinearSolve [mD, -mDf]; 

    If [prn, Print [MatrixForm [xyz]]];  

    insertNodeCoords [dof, nds, xyz] 

     ] 

If we draw a flow chart corresponding to the written computer program named FDM, the above 
function describes this flow. The function first defines the degrees of freedom and shapes matrix D. 
Then defines a matrix of free members and eventually solves the system. The solution (the 
coordinates of free nodes) is entered in the list of coordinates of all nodes. 

The order of coordinates input defines the numbering sequence of network nodes. The coordinates 
of the free nodes are unknowns, and their coordinates can be left empty. Thus the program 
distinguishes free nodes and one at the edge. Since the formation of matrix of the system (as well as 
the stiffness matrix in the displacement method) goes by the elements, each element contains 
indices of unknowns in its nodes. When defining matrix D we use the analogy of the matrix and the 
stiffness matrix in displacement method. From this analogy the interpretation of force density as the 
stiffness coefficient is deriving, so that the process of forming the matrix D is identical to the 
process forming the stiffness matrix. 
Free member ("right side") is a product of the force density of the element that connects the free 
node with the edge node and the edge node coordinate. Free member can be compared with the fix 
boundary forces caused by the forced displacement in the displacement method, which is the 
product of the stiffness coefficient and forced displacement. 
The coordinates of the free nodes are solution of equilibrium equations, and from those coordinates 
the new length of the element is determined. Iterative procedure can obtain a solution which 
approaches the minimum net. Iteration begins by determining the mean prestressed force of all the 
elements, and the known length of the element determines the new force density of each element. 
The system is solved again and new equilibrium position is determined. The process is repeated as 
many times as desired, or until we are satisfied with the values of prestressed forces.  

4. Examples 

For all examples a 24x16m grid is chosen with cables every four meters (Fig. 2a). If all the 
boundary nodes lie in the same plane, then free nodes also belong to the same plane. Such solution 
of the equilibrium equation is called trivial (Fig. 3a). 



 

Figure 2: a) Nodes and elements for examples 1, 2 and 3; b) Nodes and elements for example 4; c) Matching 

nodes in example 3 and 4  

Second example uses the same numeration and node connections as the privies. The only 
differences are coordinates of boundary nodes. Node 4 and 32 (indicated on the Fig. 2a) are lifted 
4m up in z axis direction. All the other edge nodes connected with 4 and 32 changed their position 
as well. After fifty-three iteration using FDM, tensile force in all elements coincide on the third 
decimal place. We can say that this equilibrium position approximates minimal net (Fig. 3b). 

    

Figure 3a: trivial solution Figure 3b: Example 2 – approximately minimal 

net after 53. iterations 

If node 4 and 32 change vertical position again, now being lifted 9m in z axis direction, FDM gives 
new equilibrium position. After 55 iteration minimal net is again approximated (Fig. 4a). Even in 
this simple graphic as in Fig. 3b and 4a, we can see difference in curvature of nets from example 2 
and 3. With increasing number of nodes (and elements as well) net becomes smoother. This is done 
in next example. Fig. 4b shows solution for example 4 after 71 iterations. Number of nodes in 
example 3 and 4 differ as their connections as well. Fig. 2b shows position of nodes and elements 
for example 4. It is obvious that this new net has more nodes then example 3 and that all of the 
nodes from that example are also nodes in example 4 (Fig. 2c)  

The numerical solution from FDM was compared with coordinates from physical model of example 
3 [6]. It was noticed that higher correspondence is between physical model and equilibrium after 
first iteration (Fig. 5b). The same comparison was made for numerical model in example 4 (Fig 6a 
and 6b). 

 



    

Figure 4a: Example 3 – approximately 

minimal net after 55. iterations 

Figure 4b: Example 4 – approximately minimal 

net after 71. iterations 

   

Figure 5a: Differences in numerical 

(minimal net; blue) and physical model (red) 

of example 3 

Figure 5b: Differences in numerical (after first 

iteration; blue) and physical model (red) of 

example 3

   

Figure 6a: Differences in numerical 

(minimal net; blue) and physical model (red) 

of example 4 

Figure 6b: Differences in numerical (after first 

iteration; blue) and physical model (red) of 

example 4 



5. Conclusions 

Although many years have passed since introducing the force densities method, it is still the most 
common method for calculation of the equilibrium state of tensile structures. In particular, this 
applies to prestressed cable nets for which this method was developed. Later improvements, as this 
work also are not considerably shifted from the initial idea of H.-J. Schek and K. Linkwitz. An 
interesting analogy exist between the force density method and the displacement method (and the 
finite element method also). Although these two methods describe the equilibrium states of 
completely different structural systems, the analogy between the components in the system of 
equilibrium equations is certainly there. Components of the system matrix are compiled in the same 
way, so that we can think of the force density as the stiffness coefficient. 

From a comparison of the coordinates of physical and numerical models in the examples 3 and 4 the 
shortcomings of both methods for seeking an equilibrium state are evident. Material of this physical 
model does not allow the achievement of minimum net, because the distance between nodes are 
predefined (changing only because of the elastic deformation - extension –of threads). On the other 
hand, the numerical model achieved (with sufficient accuracy) the minimum net after fifty-three 
iterations (Example 3) and after seventy-one iterations (Example 4), and the coordinates of the 
nodes deviated from those of the physical model. It was also shown that the solution of the 
equations after the first iteration in both cases, better describe the same physical model. We 
conclude that by comparing the equilibrium states of physical and numerical model after fifty-third 
or seventy-first iteration, we are actually comparing models that describe different physical 
conditions. The best shapes are obtained using both the physical and numerical model 
simultaneously. In this way, these models serve as a corrective to one another. 

Written computer code certainly is in development stage and currently does not offer much solution 
variations. The package FDM was tested with examples from this work and as such has proved to 
be correct. In the future, the package is to be extended to the static calculation phase of prestressed 
cable nets introducing the possibility of placing the load to the nodes. Also, great help would be the 
possibility of generating nodes and elements, and placing the various force densities to elements of 
the net in order to expand the range of possible solutions of equilibrium equations. The introduction 
of the boundary conditions other than hinge would enable definition of the symmetry conditions, if 
necessary. 
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