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ABSTRACT: The diffusive transport in cement based materials plays a crucial role in the degradation 
process of concrete. Rapid development of numerical models has provided novel methods to investigate 
the influence of microstructure on the evolution of the properties of cement based materials. A virtual 3D 
porous microstructure created with available hydration models provides a fundamental basis for the analy-
sis of the morphological influence onto the effective diffusion coefficient. Such an approach contributes 
to a better understanding of the phenomenology and thus improves the predicting reliability of the cou-
pled transport models. This paper investigates the influence of the morphological effect onto the diffusion 
properties of hydrating cement pastes using the cement hydration and microstructure development model 
HYMOSTRUC3D. The diffusive properties of the simulated microstructures are analyzed employing a 
numerical 3D transport model. The modeling results are compared with available literature results.

by: 1) simulation packages (e.g. CEMHYD3D, 
HYMOSTRUC, μic), or 2) experimentally, e.g. by 
micro tomography (Koster et al. 2006). Simulat-
ing a microstructure evolution during hydration 
is an advantageous (fundamental) starting point 
to model the morphological nature of the effec-
tive diffusion (transport) coefficient. A virtual 3D 
microstructure created with an available hydration 
models provides a basis for the analysis of the mor-
phological influence, including the porosity, tor-
tuosity, constrictivity and the pore water content 
effect onto the effective diffusion coefficient. Such 
an approach contributes to a better understanding 
of the phenomenology and thus improves the pre-
dicting reliability of the coupled transport models.

The steady state transport analysis by solving 
Laplace equation is an established method for 
obtaining the macroscopic effective transport coef-
ficient of porous materials (Garboczi 1998, Koster 
et al. 2006). An electric analogy approach is based 
on Ohms law which is equivalent to the steady state 
mass flux equation, diffusion as well as Darcy’s 
law (see later chapter 2.3). The capillary porosity is 
assigned an ionic conductivity value as in aqueous 
solution (G0), while cement particles have zero con-
ductivity since they contain no porosity. Fast (e.g. 
conjugate gradient relaxation) algorithm solves the 
complete steady state problem of the concentration 

1 INTRODUCTION

Transport in cementitious materials plays a crucial 
role in both the degradation process of building 
materials and the containing of hazardous wastes. 
A good quality of the concrete cover enhances the 
durability and reliability of concrete structures. For 
example, aggressive external ions such as chloride 
ions and sulphates penetrate into the concrete’s 
cover causing corrosion of reinforcing steel in con-
crete and cracking due to expansion mechanisms. 
Thus, the increasing focus on the reliability aspects 
requires a better understanding of mass transport 
phenomenon through the evolving porous micro-
structure of cementitious materials. Modeling chal-
lenges include difficulties in the overall description 
of this multi-scale random porous medium charac-
terised by a wide range of sizes, from nanometer-
sized pores to centimeter-sized aggregates.

One parameter that is of paramount importance 
is the effective (macroscopic) transport coefficient. 
A relevant and reliable method is needed in order to 
obtain effective diffusion coefficient (Def) with an 
acceptable accuracy. Various experimental meth-
ods exist but they are either time consuming or 
have too many drawbacks. A representative start-
ing point for analysis of transport properties in 3D 
cement based microstructure can be obtained either 
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distribution in a random material across which a 
concentration difference is applied (Fig 1). The out-
put of the algorithm is the concentration at every 
node, from which the total fluxes and thus effective 
transport coefficient is calculated.

There are two main network approaches which 
may be employed, here termed as: 1) direct, and 
2) indirect. In direct approach each pixel in the 3D 
microstructure is mapped directly into a node in 
either a finite element (FE) or finite difference (FD) 
analysis (Garboczi 1998). The indirect approach 
simplifies the pore structure by constructing a pore 
network of mostly larger pore elements (e.g. cylin-
ders) that reduces the computational costs (Koster 
et al. 2006). However, the advantage of the direct 
method is that the calculation is done on a simu-
lated microstructure directly as digitalized, preserv-
ing the original morphology of the pore network.

Garboczi (1998) implemented FE and FD 
codes in Fortran for calculating steady state effec-
tive transport coefficients. Zhang et al. (2011) esti-
mated the effective diffusion by using finite element 
commercial software using adiabatic boundaries 
(no fluxes) on the side surfaces (Fig 1). Garboczi 
(1998) implemented periodic boundary conditions 
in his FE and FD codes by creating a shell of imag-
inary extra nodes around the main system. Periodic 
boundary conditions (p.b.c.) are physically more 
realistic. Furthermore, p.b.c. implementation ena-
bles to use smaller representative elementary vol-
umes and hence to improve system resolution with 
negligible impact on computational cost. In litera-
ture 3D numerical methods for effective transport 
calculation are manly focused on the mass trans-
fer governed solely by one process (e.g. diffusion 
or permeability). Thereby, chemical reactions (i.e. 
ion/solid interactions) of the diffusing ions and the 
water movement is not considered. However, the 
modeling techniques outlined by numerical algo-
rithms can be extended to consider further these 
effects. Therefore, the goal of this project was to 
develop a flexible and efficient code within origi-
nal Hymostruc platform that could be easily used 
for further developments. A finite difference (FD) 
program is written in C++ programing language 

for solving steady state transport problems on vir-
tual 3D digital images generated by Hymostruc. 
The p.b.c. were implemented differently than in 
Garboczi’s code (1998), i.e. without an addition of 
extra shell layers around the system. Hymostruc 
graphical interface was updated to visualize the 
transport simulation results.

2 THEORETICAL

2.1 Morphological nature of transport 
in cement paste

Effective diffusivity coefficient corresponds to the 
diffusion coefficient at the macroscopic scale, the 
pore liquid phase being at the microscopic scale. It 
is an geometrical factor accounting for the complex-
ity of the shape of the porous system defined by its 
tortuosity, porosity and constrictivity. Relative dif-
fusivity can be described as the ratio of the effective 
diffusivity (De) of an ion in the cement paste com-
posite relative to its value when diffusing in bulk 
water (D0) and ranges between 0 and 1. The rela-
tive diffusivity values computed for cement pastes 
are needed as an input into a multi-scale structural 
model for mortar or concrete to determine the 
effect of aggregates and their surrounding interfa-
cial zones on the diffusivity of the structures.

2.2 Diffusion modeling

The diffusive transport of species in a fluid is 
described by the II Ficks law:

∂ ∂ = −∇( )∇t∂ ∇
 

(1)

where u is he concentration of the diffusing species, 
Dj is the diffusivity in cement paste component 
j = pore, hydration products, or cement grain. At 
the macroscopic length scales, the diffusive trans-
port is generally modeled as:

∂ ∂ = − ∇t∂ D u∇efD 2

 
(2)

where u is the average concentration of the diffus-
ing species, and Def is the effective macroscopic dif-
fusivity in porous media.

2.3 Universality of transport laws

The calculation of the transport properties as 
described here can be viewed in a larger general 
aspect because of the analogy between the follow-
ing four laws: Fourier’s law for heat flow; Ohm’s law 
for electric current (I = G∇U ); Fick’s law for diffu-
sion (J = −D∇c, see later eq. (5)); and Darcy’s law 
for liquid (and gas) flow in materials (V = k∇p∇ /η). 
The universality in these laws is that the flux is 

Figure 1. a) 3D simulated microstructure, b) Steady 

state flux across z-axis (depth), with periodic or adiabatic 

boundary conditions employed on 4 side faces parallel to 

the imposed flux.
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proportional to a driving force (difference in tem-
perature, voltage, concentration or pressure) and 
inversely proportional to the resistance. An electric 
analogy approach may be used in calculation of 
the effective transport property. After obtaining 
the effective electrical conductivity (G) of the inves-
tigated random porous medium the desired effec-
tive property (e.g. diffusion coefficient, D or mass 
transfer coefficient, k) can be further calculated 
(Garboczi 1998, Koster et al. 2006). For example, 
the effective (macroscopic) diffusivity coefficient 
is then obtained by utilizing the Nernst-Einstein 
relation (Garboczi 1998, Koster et al. 2006) which 
states that the relative diffusivity (Def /D0) is equiva-
lent to the relative conductivity (Gef /Gi), where the 
relative diffusivity is the ratio of the effective diffu-
sivity (Def) of an ion in the cement paste composite 
relative to its value when diffusing in bulk water 
(D0) and ranges between 0 and 1:

D D G G J JefD efG efJ0 0 0= =G GG
 

(3)

In a steady state condition, when the fluxes are 
steady in time, eq. (2) reduces to Laplace eq.:

DjD ∇ =u2 0
 

(4)

The total steady state flux Jef under uniform 
concentration gradient as driving force across the 
whole porous system in z direction is obtained by 
solving the Fick’s first law:

J D ujD ∇
 

(5)

The J0 is the flux in homogenous system with all 
pores with same physical dimensions of the inves-
tigated system (d-depth, w-width and h-height rep-
resent number of voxels in x, y, and z direction, 
N-total number of voxels). Finally, the Def can be 
obtained easily from eq. (3).

3 IMPLEMENTATION

The procedure of numerical implementation of the 
model is depicted in Fig 2. First a virtual 3D micro-
structure output obtained by Hymostruc cement 
hydration simulation is discretized into a regular 3D 
mesh (lattice in Fig 3.). This is done by digitaliza-
tion algorithm built-in a Hymostruc. Each voxel 
in a lattice is assigned to be capillary pore, cement 
grain or hydration product according to the posi-
tion in the microstructure of the cement paste. The 
user can choose to calculate transport: 1) through 
capillary pores only; or 2) through capillary pores 
and hydration products (more precisely CSH gel, 
as detailed in 3.1). Then, for each shearing surfaces 
between neighboring voxels in x, y, and z directions 

a connectivity coefficients are assigned (cx, cy, and 
cz respectively) and stored in three c vectors (whose 
lengths are the number of voxels in the system, N), 
Fig 2. Six neighbor connection was used, consid-
ering that the central node is connected only by 
sharing faces of cubes in x, y, and z directions. 
Considering additional connectivity through cube’s 
corners and edges would increase neighbor connec-
tions to 26. Connectivity coefficients are obtained 
from microscopic transport properties of neighbor 
voxels as follows. If two neighboring cubic voxels 
are of the same phase (e.g. pore), the connectivity 
coefficient of the bond connecting them is equal to 
the micro property of these voxels (e.g. relatively put 
to be 1 for pore and 0 for solid). If two voxels share 
a face, and are of two different conducting phases 
(e.g. pore and hydration product), the connectivity 
coefficient of the bond connecting them is calcu-
lated from series connection of two conductors:

c Di i i k01 5 0D +DiD 51 1D −0+ 5/ ( .i 0iD +iD )
 

(6)

where k = 1, w, or (w h) helps to represents shift of 
voxel numbering i to neighbor voxel in x, y, or z 
direction (Fig 3). The FD (second order) scheme 
is used to discretize the Laplace’s equation. The 
Laplace’s equation in finite difference form, at each 
node i (numbering shown in Fig 2) looks like this:

c u u c ux i i yc i w i w z i w h i w h, ,i i y ,− w i −w h i+ +c uc i w +
+

1 1uiii

,

i

x i, i

u

c ux i +

( )c cx i x, +c , ,,, , , ,i y i y i w z i, z i, w hcy i c cz iy i y i −+ +cy i + +cz i +
+ 11 0+ + =+c u c uy i i+ i i w+ h,i i w+ z  

(7)

Figure 2. Flowchart of numerical implementation.
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Assembling all of these N equations together 
forms a system of global equations which can be 
represented in a matrix form:

Au b=
 

(8)

where u is the voltage vector (size of the total number 
of voxels in the system, N), A is a sparse and sym-
metric matrix with 7 diagonals that contain infor-
mation about connectivity coefficients of all the 
bonds among voxels, and b is the vector of knowns 
(i.e. boundary condition on top of the last layer: 
u(x,y,z = d + 1) = 1, Fig 1). The numerical model 
can be run using two types of side boundary condi-
tions: 1) zero flux (adiabatic) boundary conditions, 
or 2) periodic boundary conditions. Equations 
(7 & 8) are adjusted in order to account for periodic 
boundary conditions (detailed later in chapter 3.3). 
The obtained system of equations (8) is solved by 
conjugate gradient algorithm (chapter 3.2).

Next, the flux in z direction at each node i, Ji,z 
was obtained by solving the Fick’s first law (eq. (5)). 
The FD scheme used is:

Ji z,z . ( )u u u u ci w h iu i w h i iu w h z i,i w h i z ,( ) (cz i w hz )−u h −u(w h i ) z i0
 

(9)

The total (effective) steady state flux Jeff is cal-
culated by averaging fluxes in the total system vol-
ume (total number of nodes N = w h d).

J JefJ f zff i z
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(10)

Then Def was obtained easily from eq. (3). Lastly, 
the results of the numerical simulation are backed 
up with a high level of graphics visualisation to help 
investigating the results of transport simulations.

3.1 Transport through capillary pores 
and hydration products

The simulation of transport properties is imple-
mented in two ways: 1) through capillary pores 
only; or 2) through capillary pores and hydration 
products (more precisely CSH gel). The diffusion 
process is dominated by the capillary pores as 
long as they are connected (i.e. percolate). In this 
case, the transport through the gel pores of CSH 
is neglected. Indeed, for porosities above the capil-
lary pore percolation threshold (Koenders 2012), 
the transport is dominated by the capillary pore 
space because its transport coefficient is much 
higher (by a factor of 400) than the CSH gel. Non-
hydrated cement grains and portlandite (CH) may 
be considered to be impermeable.

If capillary porosity is below critical percolation 
threshold, the transport is influenced by transport 
through capillary pores as well as CSH gel pores. 
This is because of the layered nature of this gel that 
has continuous gel pores. Only CSH can be consid-
ered as permeable, while CH as non-permeable. The 
Hymostruc 3D microstructure simulation does not 
distinguish CSH separately, but combines all hydra-
tion products in inner and outer hydration prod-
uct. According to general effective medium theory 
(Zhang 2011), the effective transport coefficient of 
all hydration products (Dhp) can be estimated as:

D f DhpDD ( )f⎡⎣ ⎤⎦f (CHffff ff CSD Hf− fff  (11)

where f represents volume fraction of the corre-
sponding hydration product.

3.2 Conjugate gradient solver with an optimized 
matrix-vector multiplication

Because the size of the sparse matrix A is N times 
N the matrix is not stored explicitly but only 
implicitly in the vectors cx, cy, and cz which store 
the conductance coefficients of the bonds among 
voxel faces in the x, y, and z directions, respectively. 
The system of equations (8) is solved by conjugate 
gradient algorithm. The bottleneck in this solver 
routine is the multiplication of matrix A with an 
arbitrary vector a. In order to speed up this solver 
one needs to do the multiplication in an optimized 
way. This is done by multiplying only the elements 
of the matrix that lie on the 7 diagonals and avoid-
ing multiplications with very large number of zero 
elements. For solid voxel i the result of multipli-
cation simply equals a(i). This 7 diagonal vectors 
contain conductance information and correspond 
to 7 terms in eq. (7). The elements on the central 
diagonal contain the coefficient obtained by sum-
ming all the 6 conductance coefficients that are 
connecting the central voxel to neighbors in x, y 

Figure 3. Example of numbering of the voxel nodes for 

FD implementation, position and size of coordinates: 

width (x), height (y), and depth (z). Each shearing sur-

faces between neighboring voxels in x, y, and z direc-

tions have assigned connectivity coefficients cx, cy, and 

cz, respectively.
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and z direction. Elements on other (non-central) 
6 diagonals contain one corresponding conduct-
ance coefficients.

3.3 Periodic boundary conditions

For calculating effective transport properties based 
on steady state model (4) employing p.b.c. is physi-
cally much more realistic than adiabatic (zero flux) 
boundary conditions on faces perpendicular to the 
imposed flux (Fig 1). Furthermore, p.b.c. implemen-
tation may enable the use of smaller representative 
elementary volumes and hence improve system reso-
lution with negligible impact on computational cost.

The periodic boundaries were implemented 
differently than in Garboczi’s FD code (Garboczi 
1998). Here the p.b.c. were implemented without 
addition of extra shell layers around the system. 
There are 4 boundary faces that are parallel to the 
imposed flux across z direction: two (left and right) 
in y-z plane named yzL and yzR and two (up and 
down) in x-y plane named xyU and xyD. The vox-
els at the y-z left face (yzL) were connected with 
the corresponding (z-layer) voxels in the right face 
(yzR), and vice versa. Similarly, for x-y faces: voxels 
on upper face xyU were connected with the down 
face xyD, and vice versa. In that way the flux that 
goes out of the system from one face, enters into the 
system from the other face (e.g. xyD). For example 
on system in Fig 2, boundary voxels (xyU) 1, 2, 3, 4, 
5, 6 and 7 are connected with boundary voxels (xyL) 
36, 37, 38, 39, 40, 41 and 42, respectively. Similarly 
in y-z plane, boundary voxels 1, 8, 15, 22, 29 and 36 
are connected with boundary voxels 7, 14, 21, 28, 35 
and 42. Voxels at the edges of the system have two 
opposite boundary neighbors (Fig 2) in y-z plane 
and in x-y plane. In previous example one can see 
that voxel 1 is connected with voxel 7 and with voxel 
36. Two additional coefficient vectors (px and py) 
are used in implementation of p.b.c., each with the 
length of the number of the voxels in the one face 
of the system: e.g. length = (h − 2)*w. These two 
vectors store the conductance coefficients for each 
boundary-boundary connection. If one of the vox-
els from each side is solid (zero conductivity) then 
the conductance coefficient linking the two sides is 
zero (no connectivity, and no flux). After the main 
matrix-vector multiplication according to eq. (7) the 
result was corrected on boundary nodes in order to 
account for periodic boundary conditions.

4 SIMULATION OF 3D 
MICROSTRUCTURE

Numerical model Hymostruc is applied that can be 
used to simulate the development of an evolving vir-
tual microstructure of cementitious materials (van 

Breugel 1992). Hymostruc simulates the develop-
ment of the 3D microstructure as a function of the 
particle size distribution, the water-cement ratio, 
the chemical composition and the temperature of 
the mix for cement hydration. The cubic size of 
simulated system is 1003 μm3. The simulation is 
run on Portland cement CEM I 42.5 N (Blaine 420 
m2 kg−1, dmin = 1 μm, dmax = 50 μm) with a water to 
cement mass ratio of w/c = 0.45 at 20°C.

The outer expansion of the particles is calcu-
lated according to the so-called particle expansion 
mechanism. A detailed description of the original 
Hymostruc model is given in (Breugel 1992). In 
this paper we consider only silicate reactions. The 
aluminate-bearing clinker minerals, i.e. C3A and 
C4AF, are not taken into account in the microstruc-
tural development. The next step in our research is 
to include the volume expansion of particles due to 
hydration reactions of non-silicate clinker miner-
als and pozzolanic materials (Koenders et al. 2012, 
Ukrainczyk et al. 2012).

First, the cement particles are put in a system 
to form an initial state of the microstructure. An 
envelope shape has to be defined and complies with 
periodic boundaries. This approach enables filling 
of the envelope shape while accurately complying 
with the imposed water/cement ratio. Particles are 
stacked in this envelope shape based on random 
selection of locations while first placing the larges 
particles followed by the smaller particles according 
to the particle size distribution. During hydration, 
microstructure of material and amounts of certain 
phases are changing. Volume fractions of reac-
tants, i.e. the non-reacted cement and the free water, 
decrease, while the total fraction of the formed 
hydration products increases, during the setting and 
hardening. The solid fraction comprises the fraction 
of non-reacted cement grains and the formed hydra-
tion products: inner, outer and contact hydration 
product. The simulated microstructure of hydrated 
cement paste is shown in Fig 1. Location of solid 
particles is described by following six parameters in 
3D Cartesian coordinate system: the center coor-
dinates of particles (x, y, z), the diameter of non-
hydrated cement grain, and the layer thicknesses of 
inner and outer hydration product. The simulated 
microstructure is digitized (voxelized) into a 3D 
matrix of cubic voxels with a resolution of 1 μm/
voxel and 0.5 μm/voxel.

5 RESULTS AND DISCUSSION

5.1 Comparison between numerical 
and experimental results

Diffusion of tritiated water molecule (T2O, hydro-
gen atom replaced with tritium) is simulated in 
order to investigate physical transport process 
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independently of chemical interactions. At 20°C 
diffusion coefficient of water is 2.05 10−9 m2s−1. The 
effective water diffusivity coefficient is investigated 
for hydrated cement paste and compared against 
the literature experimental data. The simulated 
microstructure of hydrated cement paste with vis-
ualization of the distribution of water concentra-
tions (relative values 0–1) in cement paste at steady 
state is shown in Fig 4. The black parts show the 
high concentrations and the light grey (white) parts 
the low concentrations of species. Graphical 3D 

and 2D output interface enables to interactively 
show 3D and 2D slices with a help of cursors that 
change the size of cube and z position of micro-
structure. This enables a full insight into the 3D 
numerical results.

The obtained numerical results are compared 
against an experimental data taken from literature 
(Delagrave et al. 1998). The experimental condi-
tions were: cement (C3S = 68.7%, C2S = 6.9%, 
C3A = 7.7% and C4AF = 5.4%) mixed with water 
to cement mass ratio of w/c = 0.45 and hydrated 
in saturated lime solution at 23°C for 90 days. The 
tritiated water diffusion test was carried out for 
about 4 months. Comparison between measured 
paste porosity and the simulated capillary porosity 
is shown in Table 1. The simulated capillary poros-
ity is somewhat lower than the experimental. The 
simulated effective diffusion coefficient of tritiated 
water is higher than the literature value. This dis-
crepancy could be due to a long time needed to 
obtain steady state conditions in real experiments. 
During such experimental conditions the continu-
ing cement hydration evolves the microstructure, 
which is not considered in simulations. Hence, the 
simulated water diffusivity coefficient is indeed 
expected to be overestimated. The simulations 
were run with two resolutions: voxel length of 1 
and 0.5 μm. Only a small difference in results can 
be observed while increasing resolution. Simula-
tions run on Intel® Xeon® CPU3565 3.2 GHz, take 
40 s and 9 min for resolution 1 m/voxel (1003 voxels) 
and 0.5 m/voxel (2003 voxels), respectively. The dif-
ference between simulations considering transport 
through capillary pores only and capillary pores 
together with hydration products is small due to 
high connectedness (percolation) of the system at 
investigated porosity (Koenders 2012).

6 CONCLUSIONS

This paper presents a full 3D finite difference 
module that has been implemented within origi-
nal Hymostruc kernel with which the mass trans-
port through an evolving microstructure can be 
evaluated.

The simulation of transport properties as 
described here can be viewed in a larger general 
aspect because of the analogy between the following 
four laws: Fourier’s law for heat flow, Ohm’s law for 
electric current, Fick’s law for diffusion, and Darcy’s 
law for liquid (and gas) flow in porous materials.

In future work hydration effects (e.g. impacts of 
portlandite distribution, aluminate-bearing hydra-
tion products and fillers) on transport properties 
will be investigated by linking virtual microstruc-
ture simulations and the developed 3D numerical 
transport model.

Figure 4. Visualizations of the distribution of water 

concentrations in cement paste at steady state: a) 3D 

slices of the capillary pore structure, b) Transport 

through capillary pores and hydration products, and 

c) 2D slices with cursor that actively changes the z posi-

tion of microstructure.

Table 1. Comparison between simulated and experi-

mental literature data.

90 days

w/c = 0.45

Def sim. 

10−10 m2/s
Def 

meas.,

10−10

m2/s

Cap. Porosity, %

Transport 

through

Resolution

measured

simulated

1003 2003 1003 2003

capillary 

porosity 1.12 1.13 0.1 22.2 22.5 18.9

capillaries 

+ hydrates 1.37 1.17
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