
SCADA systems in heterogeneous environments

A. Martinić
Power Control Systems

Končar – Power Plant and Traction Engineering Inc.
Fallerovo šetalište 22, Zagreb, Croatia

Phone: +385 1 3655 577 Fax: +385 1 3667 515 E-mail: ante.martinic@koncar-ket.hr

Abstract – Middleware communication architectures are
increasingly used in modern SCADA systems. Usage of
traditional middleware architectures for component
integration purposes simplifies development and
deployment process, but often restricts possibilities of
merging different platforms. Interaction of components
written in different programming languages, running on
different hardware platforms and operating systems can
not be easily achieved. In the last few years new XML
based middleware communication architectures evolved.
These architectures provide true platform and language
independence, thereby making component integration in
heterogeneous environments possible. In present-day
SCADA systems XML technologies have not yet been
extensively exploited. This article deals with SCADA data
acquisition process, realized by using platform neutral
XML communication architectures. Limitations of using
XML middleware communication architectures in SCADA
systems are identified, and the solution for dealing with
these limitations is presented.

I. INTRODUCTION

Usage of middleware communication architectures in
inherently complex distributed systems such as
Supervisory Control and Data Acquisition (SCADA)
systems is strongly advisable. Middleware architectures
simplify development process and component
deployment. The most important middleware
communication architectures today are Distributed
Component Object Model (DCOM), .NET Remoting,
Common Object Request Broker Architecture
(CORBA), Java Remote Method Invocation (Java RMI),
XML Remote Procedure Call (XML-RPC) and Web
Services. DCOM and its successor .NET Remoting can
theoretically be used for interaction of components on
different platforms, but in practice this proved to be
difficult to achieve, thus these communication
architectures are almost exclusively used on MS
Windows operating systems. Java RMI requires usage of
Java programming language, while CORBA demands
high programming skills, and has some limitations on
certain platforms. In addition, when used in networks
with firewalls some of these architectures can couse
numerous problems which can result with serious impact
on system security. Having in mind all above mentioned
disadvantages of traditional middleware communication
architectures, truly platform neutral technologies XML-
RPC [5] and Web Services [6] based on Extensible
Markup Language (XML) seem like reasonable choice
for integration of SCADA components in heterogeneous
environments.

Extensive exploitation of XML based technologies
started just few years ago, so there are only a small
number of experimental and commercial products which
utilize XML middleware communication architectures
for SCADA system data exchange [1]. The major
limitation of these systems emerges from the lack of
notification mechanisms in XML-RPC and Web Services
architectures. This mainly concerns data acquisition
process conducted by SCADA systems. When
employing XML communication architectures SCADA
clients use polling technique to retrieve process data
from SCADA servers. This means that data transfer is
done periodically as initiated by client. Improvement of
this technique includes subscriptions which client defines
on server. Client subscribes for receiving changes
regarding only specific set of process objects. When
client initiates request for data transfer server replies
only with the data regarding subscribed objects [10]. As
a result network traffic is reduced, but main limitations
of polling mechanism remain. Periodic data acquisition
is not suitable for transferring data in event-based
systems such as SCADA.

This paper deals with utilization of XML
communication architectures in SCADA systems and
proposes the solution for event-based data acquisition
model implemented by employing these platform neutral
architectures. SCADA system fundamentals are briefly
covered in section II. The way XML middleware
architectures can be utilized in data acquisition process is
introduced in section III. Section IV covers the main
features of the proposed model, while section V deals
with security issues. Conclusions are drawn in section
VI.

II. SCADA SYSTEM FUNDAMENTALS

SCADA systems are used to monitor and control
technical processes that can be localized or distributed
among different dislocated sites. Today SCADA systems
became unavoidable part of automation systems in many
processes such as power and gas generation and
distribution, water supply, food production, steel
industry, traffic control, etc. SCADA systems provide
means for collecting data from distant locations and for
transferring collected data to control centers. Different
processes include different input/output points, whose
numbers can range from few thousands in simple to few
hundred thousands in complex systems. System control
and analysis is preformed based on data collected from
distant sites using different communication channels and
broad range of devices, ranging from desktop computers
to mobile phones. Besides real-time process monitoring,

SCADA systems are used for collecting and archiving
process data on which further detailed analysis can be
carried out [2].

SCADA system is composed of four basic component
types: SCADA servers, SCADA clients, remote terminal
units (RTU), and communication equipment. SCADA
system architecture is presented in figure 1. RTUs gather
information from their remote sites from various input
devices, like valves, pumps, alarms, meters, etc. SCADA
servers collect data from RTUs. SCADA clients can be
used as human-machine interface (HMI) for process
visualization, data archiving, exporting data to other
systems etc. Choice of communication equipment and
protocols depends on the specific needs of the system.

Figure 1. SCADA system architecture

SCADA server is central component which usually
resides in control centre and provides means for
bidirectional communication needed for data acquisition
and remote device control. SCADA server initiates
communication with RTUs, collects and stores process
data, forwards data to other components or systems,
enables process control, etc. SCADA systems define
three types of data: analog, digital and state. RTUs
collect process data locally and transfer colleted
information to SCADA servers. Some RTUs store
collected data in memory storage until SCADA server
issues command for data transfer. Other, more
sophisticated, RTUs use microcontrollers and
programmable logic controllers (PLC) which can directly
control process without intervention of SCADA server.
RTU’s central processing unit can interact with SCADA
server using different communication protocols, whether
standardized or proprietary [3].

In conventional SCADA systems client-server
communication is mostly designed as event-driven
communication over TCP/IP based networks. Clients
apply for receiving data from process objects associated
with server. When server detects change regarding
desired process object it forwards received information
to all clients applied for receiving information about the
object in question.

III. XML DATA ACQUISITION MODEL

XML middleware communication architectures enable
data exchange between components developed in
different programming languages and running on
different operation systems. These technologies provide
higher level of abstraction than traditional operating
system mechanisms like sockets, so development process
is far more straightforward. XML architectures most
often use Hypertext Transfer Protocol (HTTP) [9] as
transport protocol. HTTP is ubiquitous protocol used to
transfer textual data in heterogeneous network
environments, like the Internet. The main problem of
using XML architectures in SCADA systems lies in the
fact that these architectures cannot provide
asynchronous, event based communication. Typical
examples of asynchronous events are signals and alarms,
which are one of the basic data types in SCADA
systems. To avoid periodical polling another interaction
model must be used. This model must provide means of
asynchronous data transfer from SCADA servers to
SCADA clients, while utilizing platform neutral XML
communication architectures. It is natural to send the
information to clients not when they ask for it, but when
the change producing the information really occurs.

Publish/subscribe paradigm [11] is suitable for
providing described functionality. This paradigm implies
existence of data sources publishing information and
consumers interested in receiving information being
published. Middleware architecture which implements
this paradigm is commonly referred to as
publish/subscribe broker. Publish/subscribe broker lies
between information producers and consumers,
forwarding information as it is published. XML-RPC and
SOAP [7] (used as communication protocol of Web
Services) are suitable for data exchange between two
exactly defined components, but they do not satisfy
communication including one server with many clients,
or many servers with many clients. For SCADA server
functionality it is not important how many clients are
interested in receiving some specific information. Server
even does not have to know which exactly those clients
are. On the other hand, client is interested in information
and not its origin (in the case when there is more than
one SCADA server). Server should publish information
as a consequence of changes in real world process, and
client should receive all generated information regarding
objects of their interest. Direct logical connection
between server and client is not required, more than that
it is not even desired. This kind or relationship between
client and server is commonly known as loose coupling.
For achieving described behavior additional XML
publish/subscribe broker component must be deployed
between SCADA servers as publishers and SCADA
clients as consumers. Broker component implementing
publish/subscribe paradigm will be utilized for
dispatching collected process data among components of
the SCADA system.

Architecture realizing proposed model is presented in
figure 2. XML broker component does the majority of
the job. It maintains information about available objects
and subscriptions regarding those objects, receives data
changes from SCADA servers and dispatches received
data to connected SCADA clients. Process model
component, while not essential for functionality of the

proposed model, contributes to its generality. If technical
process structure is described using process model in
some standardized form it is not required by clients to
locally maintain that information. That way process
structure information is centrally managed and possible
changes to the model do not imply modifications of
client applications. Each client dynamically retrieves
process structure information according to its specific
needs. Received structure is interpreted and presented to
the human user or to another software system. The most
adequate format of storing and transferring process
model information is XML notation. XML has
capabilities of storing information about objects and
their relations at the same time, while maintaining
platform neutrality [4]. Proposed model should be as
general as possible, meaning it must be applicable in
different SCADA systems. That is possible because all
SCADA systems share the same basic data types which
will be transferred through the XML broker. Every
SCADA system uses some standardized or proprietary
protocol to export its data, thus it is not possible to
conform all used protocols using single broker interface.
The best way to maintain architecture flexibility is to use
additional gateway component for each different
SCADA server. Gateway components should be able to
translate SCADA specific data export protocol to
common XML broker interface.

Figure 2. XML data acquisition model architecture

Different XML communication architectures are used
for different purposes. Client requests (connection
initialization, process model acquisition, subscription
initialization, one-shot data transfer requests, etc.) are
preformed through the exposed interface using Web
Services. On the other hand, client notifications are
preformed using XML-RPC architecture. Primary reason
for XML-RPC usage lies in better performances which
this architecture provides over more complex SOAP
protocol used in Web Services [8]. Considerably more
data is transferred from servers to clients than in the
opposite direction. Having this in mind it is necessary for
data transfer from SCADA servers to SCADA clients
through XML publish/subscribe broker to last as short as
possible so process dynamic can be adequately
monitored.

XML broker exposes set of objects available through
SCADA servers. Clients can explicitly, by using model
or directly, choose objects whose information they want
to receive. HMI clients have additional possibility of
implicit subscription activation. Process model should
contain information about different schemes which
visualize different parts of the process. When human

operator chooses scheme to be displayed all
subscriptions regarding objects presented on the scheme
should be automatically initiated. This implicit
subscription activation uses object relations described in
the process model and relieves user of one by one
subscription activation. Process data regarding objects of
interest are then delivered to SCADA clients using
notification calls realized through the XML
publish/subscribe broker. As a consequence, need for
server polling and periodic information transfer is
eliminated. Basic component interaction in the case of
implicit subscription activation is presented in figure 3.

Figure 3. Basic component interaction

Described architecture provides flexibility and as such
it can be easily extended. One example is addition of E-
mail or SMS notifications. These notifications are
complementary to the ones previously described,
because they are designed as messages intended for
human operators. Typical messages that can be sent this
way are alarms which signalize some critical process
situations. This fits into the proposed model in a way that
an additional client acting as E-mail or SMS gateway has
to be deployed and properly configured. This client then
can receive information through XML broker
notifications, compose proper messages and send them to
all interested parties.

XML data acquisition model allows exportation of
SCADA process data to different client systems in
heterogeneous environments. By utilization of the
described architecture one gets functionality of the
conventional SCADA systems combined with platform
neutrality provided by XML technologies. Until now
SCADA system communication in heterogeneous
environments implied using low level mechanisms like
sockets as a mean of data exchange between components
on different platforms. By using XML middleware
technologies like XML-RPC and SOAP developer deals
with higher level of abstraction. Some other platforms,
beside standard desktop operator stations in private
corporate networks, can be used. Public network such as
Internet can be utilized. This enables mobile computers
with wireless Internet connection, PDAs and mobile

phones with XML support to be used in monitoring
process. Utilization of XML technologies enable
SCADA systems to be easily deployed in truly
heterogeneous environments.

IV. XML PUBLISH/SUBSCRIBE BROKER

A. XML broker architecture

To be able to simultaneously distribute data to all
connected clients it is essential for XML
publish/subscribe broker to be designed as a
multithreaded process. Every client has dedicated thread
that performs its notifications. Each new client initiated
connection causes a new notification thread to be created
within XML broker process. Each thread must include a
buffer for temporary data storage due to different
throughput and possibility of communication congestions
towards clients residing in different parts of the network.
This architecture characteristic is especially important
when many system changes happen in a short time and as
a result large quantities of information have to be
dispatched. In conventional SCADA systems deployed in
private corporate networks this problem is not frequently
manifested for several reasons. One reason is relatively
high and stable throughput towards all installed clients.
Number of clients is usually limited to few clients
installed on desktop stations with similar performances.
Network communication is fast and used hardware is
powerful so large amounts of data can be transferred and
processed in short time interval, thus there is no need for
additional buffering. When communication takes place
over heterogeneous networks, especially Internet, many
different platforms with different processing capabilities
can be involved. Variety of devices can be used, from
classical desktop computers with different hardware
capabilities, mobile computers, PDAs and even mobile
phones. When throughput of the network separating data
source and destination is also taken into consideration it
is clear that different clients on different locations can
receive data with significantly different dynamic. This is
especially important when using mobile devices that can
be temporary disconnected from the network. Temporary
disconnections result in temporary incapability of data
receiving and processing [12]. When independent data
transfer towards each client would not be used, transfer
dynamic would be dictated by the client with the lowest
performances. This would impose serious restrictions
which would, almost certainly, lead to complete
uselessness in practical appliances.

Each new publishing thread created by client uses
SCADA server as its data source. Components of the
proposed architecture, including XML broker, must be
platform neutral so they can conform requirements
imposed by heterogeneous environments maximizing
possible field of usage. XML broker has to receive
process data through platform neutral XML-RPC
architecture. This way it is possible for broad range of
SCADA servers to dispatch its data using XML broker
component. Existing SCADA systems are rarely capable
to export real-time data in XML format, so additional
gateway components must be used. Gateway components
provide a way for different SCADA systems to export its

data without the need for any modifications of the XML
broker. Once the whole model is implemented all that is
needed to connect new SCADA server is to create and
deploy adequate gateway component. There are some
industrial standard protocols (e.g. OPC) that enable
standardized way of data exchange in SCADA systems.
When gateways translating these standard protocols to
XML interface calls are implemented it is possible to use
XML data acquisition model in all systems utilizing
protocols in question.

Figure 4. XML broker architecture

SCADA clients as data consumers receive
notifications using XML-RPC middleware
communication architecture. To be able to receive data
each client must implement listener object. Object
listener used by each client acts as XML-RPC server
receiving data from associated XML broker notification
thread. Received data is forwarded further to the
business layer of the client application.

 SCADA server communicates solely with XML
broker through related gateway component, while XML
broker component is responsible for further data
dispatching. This way SCADA server, being the real data
source, bears the burden of only one extra client –
gateway component. For SCADA server it is completely
irrelevant how many clients are connected to the system.
Server does not know how many clients are there and
does not contain any references to connected clients.
Burden is transferred from SCADA server to XML
broker component, thus minimizing impact on employed
server. This is one of the most important characteristics
of the proposed architecture. In practical appliances it is
very important that deployment and utilization of the
architecture supporting heterogeneous communication
has the smallest possible impact on existing SCADA
system. On the other hand, all that is needed by the
clients is knowledge about exposed interface. Clients can
retrieve process schemes, request data and initialize
notifications while not knowing which SCADA server
supply requested information. It is irrelevant whether
there is only one or there are many SCADA servers
publishing over XML broker component. Number of
server components depends of the nature of the system
and can be submitted to changes without any influence
on client application structure.

B. XML broker subscription model

Subscription model describes the way that clients
utilize to activate subscriptions regarding objects
representing technical process elements. The simplest
way of subscription activation is explicit activation
regarding each and every object of interest. If SCADA
client is used to forward collected data to other software
systems and does not provide some sort of process
visualization intended for human interaction explicit
activation can be acceptable mean of subscription
initialization. The main reason is that for this kind of
clients set of the data required is usually known in
advance and it is rarely modified, so maintaining object
list is not a demanding task. If frequent and dynamic
change of subscriptions is needed than explicit
subscription activation is not quite practical. The finest
example of this kind of client are HMI clients where
every change of displayed scheme means canceling
subscriptions to objects shown on the previous scheme
and activating subscription regarding objects presented
in new scheme. To make subscription activation simpler
from the user point of view, there is a need of using
subscription categorization meaning that clients can on a
one-time basis initialize subscriptions regarding defined
groups of objects. To make this kind of subscription
categorization possible process model that describes
object relations must be present.

Combined subscription model, consisted of topic-
based and content-based subscription paradigm, is
convenient for appliance in XML data acquisition model.
Topic-based model is suitable for activating
subscriptions according defined object categories, while
content-based model proves to be useful for making
selections in particular group, according to defined
criterion [11]. Topic-based model is suitable for dividing
process objects into logical groups. For example, process
objects can be grouped according to process schemes
which are presented to the operators via HMI clients.
Process schemes are usually organized hierarchically
starting from one global view representation of the whole
process to the views that represent only a small group of
related objects, even a single object. When human
operator selects desired picture subscriptions to all
objects presented on the picture should be automatically
activated. One section of the observed process is
associated with one topic of the topic model.
Subscription to the topic means subscription activation
on all objects belonging to the logical group of objects
represented by selected topic. Content-based part of
subscription model is useful for filtering information
within specified topic. This way XML broker can, on
behalf of the client, filter messages from specified object
group according to defined criteria. Criteria used for
content-based selection can be arbitrarily complex.

Message categorization against defined topics is
relatively simple procedure for whose implementation
lookup tables can be used. Lookup tables are used for
determining which clients must be notified when certain
information is changed. This procedure is not complex or
processor demanding operation. On the other hand,
content-based selection can be quite complex and
significantly increase processor load, depending on how
complex selection conditions are. Therefore, it is
necessary to make some compromises when specifying

selection conditions, having in mind desired
performances of the system. Subscription model with
according lookup algorithms directly affects
performances, so it is one of the key factors in the
proposed XML acquisition architecture. Although
combined subscription model imposes more load to the
system than solely topic model, its use is desirable
mainly because it is less effective to needlessly send
information to clients than to filter information according
to well defined criteria.

Presented subscription model optimizes network
traffic and reduces processor load. Significance of
subscription model usage increases as observed process
becomes more dynamic. Present-day SCADA systems
are generally designed to conform high throughput
private networks, so most often clients, especially HMI
clients, are refreshed with the whole set of process data
available. If operator is not interested in actively
observing all available objects, some unnecessary
information, which causes increased system load, is also
transferred. This does not cause any significant problems
in high bandwidth networks, but systems using low
bandwidth networks and less powerful hardware can
experience substantial congestions, thus network and
processor usage optimization is of great significance.

V. SECURITY ISSUES

If data transfer takes place over insecure networks
information security becomes important and unavoidable
system feature. Process data set, or at least some of its
subsets, is very often treated as a business secret, hence
transferred data must not be available to unauthorized
parties. Information in transfer can be compromised by
unauthorized reading or by influencing information
content. The whole traffic regarding security sensitive
information must be protected from malicious attacks
using adequate security techniques that provide party
authentication, data confidentiality and data integrity
[13].

XML-RPC and Web Services architectures are used to
conduct all data exchange in the XML data acquisition
architecture. XML-RPC and SOAP messages are XML
documents, which in turn are more or less simple text
documents. HTTP is ubiquitous protocol for transferring
text documents in heterogeneous environments and as
such it is most often used as transport protocol in XML
communication architectures. HTTP communication is in
most cases secured by utilizing Secure Socket Layer
(SSL) protocol. SSL became, with some slight
differences, IETF standard known as Transport Layer
Security (TLS) [14]. HTTP over SSL/TLS is commonly
referred to as HTTPS [15]. SSL/TLS manages entity
authentication and secure data transfer, and as such can
be used for securing all communication in XML data
acquisition model. Authentication in SSL/TLS is assured
by digital certificate exchange, while transferred data is
shielded by using combination of symmetric and
asymmetric cryptography. Asymmetric cryptography is
used during connection establishment process, while
more efficient symmetric cryptography is used in actual
data transfer [16].

In the proposed model three communication directions
can be identified: data export from SCADA server to
XML broker, client requests to XML broker and
procedure of data dispatching from XML broker towards
connected clients. SCADA server gateway and XML
broker employ unidirectional communication in which
information is sent from SCADA server, over related
gateway, to XML broker. Security settings regarding this
communication depends on XML broker location. If
connection between SCADA server and XML broker
must be established over insecure network, necessity to
use cryptography methods emerges. It is necessary to
perform authentication of the XML broker before any
data is published from SCADA server. This assures that
process data is sent to the desired destination. SCADA
server authentication is also required to prevent
malicious impersonations of the server that would result
with distribution of data which does not originate from
the process actually monitored. All data sent from
SCADA server to XML broker must be encrypted so
man-in-the-middle attacks, like unauthorized reading and
content alternation, can be prevented.

XML broker and connected SCADA clients employ
two-way communication. Interaction is initiated by the
client, and mutual authentication must be preformed.
XML broker should be authenticated by digital
certificate, while client can prove its identity either by
digital certificate or by using some other means like
providing username and password. When authenticated
client can retrieve available information about the
system, initialize and activate subscriptions, etc.
Communication from XML broker to a client is
analogous to SCADA server gateway to XML broker
communication. The only difference is that XML broker
can interact with many clients, but this does not require
any additional logic, hence described security techniques
are simply applied separately for each client.

VI. CONCLUSION

In present-day SCADA systems utilization of XML
technologies is quite limited. XML is mostly used to
store and exchange static information about observed
technical processes. Intention of this paper was to
present new possibilities of utilizing XML technologies
in SCADA systems. XML data acquisition model
presented throughout this paper offers functionality of
conventional SCADA systems while using XML based
communication architectures. Major advantages
provided by XML middleware architectures include
platform neutrality, simplicity of development and
flexibility of deployment. Broad range of XML enabled
programming languages, operating systems and hardware
platforms can be combined to implement and run
components in distributed SCADA system. Possibility of
using mobile computers, XML enabled PDAs and
mobile phones in conjunction with public Internet
network extend and enable new ways of process
monitoring. By using XML architectures in dynamic
SCADA processes possibility for full exploitation of
benefits of distributed heterogeneous environments
becomes reality.

REFERENCES

[1] M.Žagar, D.Antonić, M.Orlić, D.Fudurić, T.Sečen,
“Analysis of SCADA systems for power generation
and distribution monitoring”, Zagreb, 2004. (in
Croatian)

 [2] A.Daneels, W.Salter, “What is SCADA?”,
International Conference on Accelerator and Large
Experimental Physics Control Systems, Trieste, 1999.
http://epaper.kek.jp/ica99/papers/mc1i01.pdf

 [3] Synchrony Inc., “Trends in SCADA for Automated
Water Systems”, White Paper, 2001.
http://www.synchrony.com/trends_SCADA.pdf

 [4] A.deVos, S.E.Widergren, J.Zhu, “XML for CIM model
exchange“, 22nd IEEE Power Engineering Society
International Conference, p.31, 2001.
http://www.langdale.com.au/PICA/CIMXML.pdf

 [5] UserLand Software Inc., “XML-RPC Specification”,
1999. http://www.xmlrpc.com

 [6] D. Booth, H.Haas, F.McCabe, E.Newcomer and others
“Web Services Architecture”, W3C, 2004.
http://www.w3.org/TR/ws-arch/

 [7] N.Mitra, “SOAP Version 1.2 Part 0: Primer“, W3C,
2003. http://www.w3.org/TR/soap12-part0/

 [8] M.Olson, U.Ogbuji, “Choose the best tool for the task
at hand“, IBM library, 2002. ftp://www6.software.
ibm.com/software/developer/library/ws-pyth9.pdf

[9] R.Fielding, J.Gettys, J.C.Mogul, H.Frystyk and others,
“Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616,
1999. http://rfc.net/rfc2616.html

 [10] OPC Foundation, “OPC XML-DA Specification“,
2003. http://www.iconics.com/support/PDFs/ OPC_
Specs/OPC%20XMLDA%20Specification.pdf

 [11] P.Th.Eugster, P.Felber, R.Guerraoui, A.M.Kermarrec,
“The Many Faces of Publish/Subscribe”, ACM
Computing Surveys, vol. 35, p. 114, 2003.
http://www.eurecom.fr/~felber/publications/CS-03.pdf

 [12] Y.Huang, H.Garcia-Molina, “Publish/Subscribe in a
Mobile Environment“, 2nd ACM International
Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE), 2001. http://www.db.
stanford.edu/~yhuang/papers/mobpubsub.pdf

 [13] C.Wang, A.Carzaniga, D.Evans, A.L.Wolf, “Security
Issues and Requirements for Internet-Scale Publish-
Subscribe Systems“, International Conference on
System Sciences, 2002.

 http://www.cs.virginia.edu/~evans/pubs/hicss.pdf
 [14] Zeus Technology, “SSL: Theory and Practice“,

Cambridge, England, 2000.
 http://support.zeus.com/doc/tech/ssl.pdf
 [15] K.Naqvi, “Working of HTTPS (HTTP over

SSL/TLS)“, Infosys Technologies, 2002. http://www.
infy.com/Technology/Working-of-HTTPS.pdf

 [16] PGP Corporation, “An Introduction to Cryptography“,
California, USA, 2004. http://download.pgp.com/pdfs/
Intro_to_Crypto_040600_F.pdf

