Central European Conference on Information and Intelligent Systems

Page 49 of 493

Regular Path Expression for Querying Semistructured Data -
Implementation in Prolog

Markus Schatten, Kresimir Ivkovié¢

University of Zagreb

Faculty of Organization and Informatics
Pavlinska 2, 42000 Varazdin, Croatia

{markus.schatten, kresimir.ivkovic}@foi.hr

Abstract. We present regular path expressions (RPE)
a language for querying data graphs and its context
free grammar implementation in Prolog. A proof of
concept parser and query tool is implemented and var-
ious usage examples are analyzed for semistructured
data formats like XML and JSON.

Keywords. regular path expressions; semistructured
data; Prolog; XML; JSON

1 Introduction

With the development of the World Wide Web and
especially e-Business, there was need to exchange
more and more data through the network. Since these
data sources are often heterogeneous (conceptually
and logically) as well as complex and incomplete, the
semistructured data model was introduced [1]. The ad-
vantages of the semistructured data model include its
ability to represent data which cannot be easily con-
strained by a schema (it is often called schema-less or
self-describing data model), its flexibility in terms of
data transfer, its ability to easily represent structured
data as well and its ability to change its structure dur-
ing time.

On the other hand its greatest deficiency arises
through its flexibility in terms of structure, which
makes it hard to implement efficient querying and
search algorithms. A number of querying languages in-
cluding xQuery/xPath [3], map/reduce [5] and a num-
ber of NoSQL techniques [12, 9, 4] as well as RPE
[7] were introduced to allow for flexible querying of
semistructured data. Herein we will concentrate on
RPE since they provide the foundation for most of the
other approaches and are applicable to any semistruc-
tured type of data.

2 Semistructured Data Model

In the following we will use graph theory to present the
semistructured data model.

Definition 1 (Directed graph)

Let V' be a set of nodes (verticles) and let B C 'V x
V be a set of directed edges (set of ordered pairs of
nodes). A directed graph or digraph G is the ordered
pair (V, B). For each edge b = (v;,v;) we say that v;
is the source (source(b)), and vj the destination of the
edge (dest(b)).

Definition 2 (Path)

Let G = (V,B) be a digraph. Every sequence of
edges by /ba/ ... /by for which it holds that dest(b;) =
source(bi11),t = 1,2,...,k — 1 we call a path
in graph G from source source(by) to destination
dest(by). The number of edges in the path k, is called
distance.

Definition 3 (Root)
A vertex vy, is called the root of a digraph G = (V, B),
if there is a path from vy, to every vertex v; € V,i # k.

Definition 4 (Cycle)
A cycle in a digraph is every path from some vertex
back to itself. A graph without cycles is called acyclic.

Example 1 Consider the digraph G = (V,B), V =
{U17 V2, V3, ’U4}) B = {b17 b27 b37 b4a b5}

edge | source | destination
b1 U1 V2
by U1 U3
b3 U3 U
b4 V3 V4
bs V4 U3

Graph G can be represented graphically as follows:

Varazdin, Croatia

Faculty of Organization and Informatics

September 19-21, 2012

Central European Conference on Information and Intelligent Systems

Page 50 of 493

A few paths in G are: by ; bg/bg N b2/b4/b5 N
b5/b4/b5/b4/b5 5 b2/b4/b5/b3

The root of G is: v1

A few cycles in G are: by/bs ; bs /by ; by /bs/bs/bs

In the following we shall represent graphs graphi-
cally.

Definition 5 (Tree)

A digraph (V, B) is a tree iff there exists a unique path
from vy, to v; for every v; € V,i # k. Note that every
tree is necessarily acyclic and has a unique root.

Definition 6 (Leaf)

A vertex v € V is a leaf of digraph (V, B) if there
doesn’t exist any edge b € B for which it holds that
source(b) = v.

Digraphs can be used to represent data, and in this
context we shall call them data graphs. Data graphs are
in most cases acyclic but there can be exceptions.

Definition 7 (Data graph)

A data graph is a digraph Gp = (V, B) which edges
are tagged (denoted by o ~ b, b € B), and verticles
are data objects that can be:

1. atomic (leafs)
2. compound (have edges to other verticles)

Every compound vertex has its object identity which
is unique in the given data graph. It is sometimes useful
to consider the set of verticles as an union V= V,UV,,
whereby V, is the set of identities of atomic objects, V.
is the set of compound object identities, and it holds
that V, NV, = @.

In the following we will consider data graphs that
have a single root. From this view we can define
data graphs as ordered triples Gp = (V, U V., B,),
whereby r € V, U V. is the root of Gp.

Example 2 Consider the following data graph G :

(02— (e
person

| child of |
@

We denoted the object identities in graph G, with
01,09,03. Verticles Derp, Derpina i Derpson are
atomic, thus V, = {Derp, Derpina, Derpson}. Verti-
cles 01, 09 i 03 are compound, thus V. = {01, 02, 03}.
Edges name and child of of vertex oo denote that this
vertex has adequate relations with these tags to other
data objects. Note that graph G is not a tree.

| parent of |

surname

We could have represented the graph as follows:

person

person

In this graph we used the object identities as refer-
ences (prefix &), what allowed us to create a pseudo-

tree of G1.

3 Regular Path Expressions

In the following we shall introduce regular path expres-
sions.

Definition 8 (Alphabet)
Alphabet X is a finite set of symbols.

Varazdin, Croatia

Faculty of Organization and Informatics

September 19-21, 2012

Central European Conference on Information and Intelligent Systems

Page 51 of 493

Definition 9 (Word)
A word from alphabet ¥ is a finite array of 0 or more
symbols from 3.

Definition 10 (Empty word)
A word with 0 symbols is denoted with € and called the
empty word.

Definition 11 (Set of words over alphabet)

Let 3. be an alphabet. With X", where n > 0 we denote
the set of all words over alphabet % which have the
length n. Thus the set of all words over % is defined as:

n=0

Similarly the set of all non-empty words over X is
defined as:

wt — U nn
n>1

Definition 12 (Syntax of regular path expressions)
LetS = {e,_,+,%,?,|,—} be a set of special symbols,
let alphabet 3 = © U'S, and let ¥* be the set of all
words defined over ¥. We define regular path expres-
sions as the smallest set RPE C ¥* for which it holds
that:

1. Vs € © : s € RPE;

€ € RPE (empty word);

_ € RPE (any character);

Vi1, ia € RPE : iq|io € RPE (alternation);
Yi1,19 € RPE : 1119 € RIPE (concatenation);

Vi € RPE : i? € RPE (optionality);

N S A WD

Vi € RPE : i+ € RPE (Kleene plus, one or more
repetitions);

8. Vi € RPE : ix € RPE (Kleene star, zero or more
repetitions);

9. Vs € © : s— € RPE (negation).

Specially for data graphs, the alphabet is defined
as © = {a,b,c,a1,as, ...} which is the set of all tags
over a given data graph.! Usually the the symbol
/ (which could be interpreted as a node) is used
for concatenation to easier comprehend the expres-
sion. Every path is interpreted from the root of the
data graph (the first / symbol represents the root node).

We will use examples to show the semantics of RPE.

Example 3 Consider the following data graph G =
(V, B, 01)

1Usually a schema graph is defined which constraints the possible
tags that can be used, but this was left out here for sake of simplicity.

From the graph we read that the alphabet is © =
{a,b,c,d,e, f,g,h}. Consider the following queries
over G:

Q1: Ja
Q2: /b
Qs: ¢
Qs: Jw

The result of query Q1 is the following graph:

ORin0

Note that the query has tagged all nodes which sat-
isfy the path, which in this case is only node o3. On the
other hand the resulting graphs of query Qs are:

®
©

Varazdin, Croatia

Faculty of Organization and Informatics

September 19-21, 2012

Central European Conference on Information and Intelligent Systems Page 52 of 493

Thus in this case the nodes o3 and o4 did satisfy the
path Jb. The result of query Qs is the empty graph
(denoted with G2). This means that there is no node
which can satisfy the given path. The query Q4 is not
applicable to graph G since w ¢ ©.

Example 4 Consider the following query on graph G
from example 3:

Qs /- @
The symbol _ denotes an arbitrary sign. Thus the
resulting graphs of query Qs are: By concatenating queries we create a composition
whereby from left to right the adjacent queries are ap-
plied on the results of the previous query. Thus the re-
sult of query Q7 are the graphs:

®
®
©
®

Example 5 Let graph G as in example 3. We introduce
alternation and concatenation. Consider the following
queries:

Qs Jal/b
Q7: Jaje
The | symbol denotes “or” and thus the result of the Consider the following queries:

query is the union of results of the queries /a and [b:

Q1: /Ja/c?/b
Q2: Ja+/b
Qs: Jax/b

@ Qs: Ja—/c

The ? operator denotes optionality (the occurrence
@ of the previous query is optional). Thus the resulting
graphs of query Q1 are:

(o)a(o7)

Varazdin, Croatia Faculty of Organization and Informatics September 19-21, 2012

Central European Conference on Information and Intelligent Systems Page 53 of 493
@ @ e [sym, any, empty, exp |).
exp(sym(S)) —> sym(S).
sym(S) —> [S], { symbol(S) }.
The + operator denotes one or more occurrences of exp(empty(*°)) —> [1.
the previous query. Thus the resulting graphs of query exp(any("_")) —> ["_ 1.
Q2 are: exp(alter(X, Y)) —>
exp(X), [7171,
® O@@)
exp(conc(X, Y)) —
The x operator denotes repetition of the previous exp(X), [/7 1,
query zero or more times. Thus the resulting graphs ?xp(Y,
of que are.
f query Qs not(X = root(_)),
not(Y = conc(_, _))
}.
exp(opt(X)) —>
exp(X). [727 1,
{
simple(X)
}.
exp(star(X)) —>
exp(X), ['« 1,
{
@ e simple(X)
}.
. . exp(plus(X)) ——>
The — operator denotes negation, meaning that the exp(X), ["+ 1
previous query shouldn’t return any results. Thus the { ’ ’
result of query Q4 is: simple (X)
}.
exp(neg(X)) —>
exp(X), ["!7 1,
{
simple (X)
}.
exp(exp(X)) —>
[7C 1, exp(X), [1) 1.
. exp(root(X)) —>
4 Prolog Implementation [7" 1, exp(X).

We implemented RPE using XSB Prolog [11] with a
little help from Python to implement a user interface.
The syntax of RPE was implemented using a context
free grammar which is shown bellow:

Listing 1: Context free grammar of RPE

operators (

[22, 47,
’*” 7!?,
5_7’ 7/9’
’(7’ 7)7,
!I’]).

symbol(X) :—

operators(O),

not(member(X, O)),

atomic(X).
simple(X) :—

functor(X, F,

member(F,

—)

This implementation of the grammar allows us to
construct a syntax tree of RPE automatically provid-
ing only a list of symbols. As an example consider the
following Prolog query:

Listing 2: Abstract syntax tree construction
17— exp(T,[*/",7a’,’+",7/7,’b>],[]).

T = root(conc(plus(sym(a)),sym(b)))

This structure is the abstract syntax tree of expres-
sion /a + /b.

The semantics of RPE were implemented by using
a set of rules. The following listing shows an example
of one such rule.

Listing 3: Example of concatenation matching rule

match (conc (X,Y) ,Doc,Res,RootDoc) :—
match (X, Doc, Res ,RootDoc),

Varazdin, Croatia

Faculty of Organization and Informatics

September 19-21, 2012

Central European Conference on Information and Intelligent Systems

Page 54 of 493

match (Y,Doc,empty ([]) , RootDoc).
match (conc (X,Y) ,Doc,Res,RootDoc) :—

match (X, Doc, Resl ,RootDoc) ,

compound (Res1),

arg(l,Resl,List),

member (Child , List),

match (Y, Child ,Res, RootDoc) ,

Res \= empty ([]).

In order to test our application we implemented ad-
ditional parsers for XML and JSON formats, which
translate them into parsable Prolog structures.

S Usage Examples

The implemented program is a simple command line
tool which takes a XML or JSON document and a RPE
as its parameters and returns the result of the query.
Consider the following XML document:

Listing 4: Example of XML document (test.xml)

<?xml version="1.0"7>
<ro>
<a>
<a>
3

<c>
2
<e>T7</e>
</c>

<d>9</d>

<c>
<d>8</d>
<e>l</e>
</c>

</ro>

"C": [{ ”d":S, ||eu:1 }]

To query the XML document we type:
Listing 6: Example query /ro/a — /¢ (XML format)

An equivalent JSON document would look as fol-
lows:

Listing 5: Example of JSON document (test. js)

nron, [{

"a": [{

"a": [{ "b":3 }]
I8
{
"' [{ "b":2, "e":7 }]
B
{
"b": [{ "d":9 }]

$./rpe test.xml ’/ro/al!/c’

<?xml version="1.0" 7>

<c>
<d>
8
</d>
<e>
1
</e>
</c>

Which is the expected output. Equivalently if we
issue the same query against the JSON document, we
get:

Listing 7: Example query /ro/a — /¢ (JSON format)

$./rpe test.js ’/ro/allc’

{HCII: {nen: ”1", "d": HSH}}

6 Related work

There have been a number of implementations which
deal with querying semistructured data using some
form of regular expressions or regular path expressions.
For example Fxgrep is an XML querying tool similar
to XPath [2]. StruQL is a querying language for XML
which has some features similar to SQL but allows the
usage of regular expressions in paths [10]. The GLEEN
path expression library allows the usage or regular ex-
pressions in SPARQL [6]. GraphGrep is a graph query-
ing tool which uses their internal dataset file format [8].
None of the above however allows for querying both
XML and JSON format.

7 Conclusion

The implementation of RPE in Prolog by using context
free grammars is straight-forward as we have shown in
this paper. By using a graph theoretic approach to for-
malizing data graphs and RPE we were able to imple-
ment a simple querying tool for XML and JSON for-
mats. Our next steps include implementation of other
formats (for example ZODB & SPARQL), the exten-
sion of RIPE with formulas as well as formalizing fuzzy
RPE.

Varazdin, Croatia

Faculty of Organization and Informatics

September 19-21, 2012

Central European Conference on Information and Intelligent Systems

Page 55 of 493

References

(1]

(2]

(5]

[9]

[10]
(11]

[12]

ABITEBOUL, S., BUNEMAN, P., AND SucCIU,
D. Data on the Web - From Relations to
Semistructured Data and XML. Morgan Kauf-
mann Publishers, 2000.

BERLEA, A. Fxgrep - a functional xml querying
tool. 2005.

BoAG, S., CHAMBERLIN, D., FERNANDEZ,
M. F., FLoOREScu, D., ROBIE, J., AND
SIMEON, J. Xquery 1.0: An xml query language
(second edition), December 2010.

CATTELL, R. Scalable sql and nosql data stores.
SIGMOD Rec. 39,4 (May 2011), 12-27.

DEAN, J., AND GHEMAWAT, S. Mapreduce:
simplified data processing on large clusters. In
Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation -
Volume 6 (Berkeley, CA, USA, 2004), OSDI’04,
USENIX Association, pp. 10-10.

DETWILER, L. T., SucIu, D., AND BRINKLEY,
J. F. Regular paths in SparQL: Querying the
NCI thesaurus. AMIA ... Annual Symposium pro-
ceedings / AMIA Symposium. AMIA Symposium
(2008), 161-165.

FLOREScU, D., AND KOSSMANN, D. A perfor—
mance evaluation of alternative mapping schemes
for storing XML data in a relational database.
Tech. rep., 1999.

GIUGNO, R., AND SHASHA, D. Graphgrep.
2002.

LEAVITT, N. Will NoSQL databases live up to
their promise? Computer 43, 2 (Feb. 2010), 12—
14.

MORK, P. Struql. 2003.

SAGONAS, K. F., SWIFT, T., AND WARREN,
D. S. The xsb programming system. In Workshop
on Programming with Logic Databases (Informal
Proceedings), ILPS (1993), p. 164.

STONEBRAKER, M. Sql databases v. nosql
databases. Communications of the ACM 53, 4
(2010), 10.

Varazdin, Croatia

Faculty of Organization and Informatics

September 19-21, 2012

Central European Conference on Information and Intelligent Systems Page 56 of 493

Varazdin, Croatia Faculty of Organization and Informatics September 19-21, 2012

