

Automatic Conversion of Desktop Applications

to Java Web Technology

Matija Tomašković

Evolva d.o.o.

-

Zagrebačka 94, 42000 Varaždin, Croatia

matija.tomaskovic@evolva.hr

Ruben Picek

Faculty of Organization and Informatics

University of Zagreb

Pavlinska 2, 42000 Varaždin, Croatia

ruben.picek@foi.hr

Abstract. This paper analyses the problem of

automatic conversion of legacy desktop applications

to Java web applications with emphasis on how such

conversion methodology can help in migration of

legacy desktop developers to modern web

development. Authors explain how automatic

converter can enable desktop developers to start

delivering new web applications immediately without

knowing complex web technologies.

Finally, the paper will show that after conversion

of legacy applications to web technology, it is also

possible to enrich converted applications with modern

web and business functionalities.

Keywords. Desktop2web converter, business web

application, web framework, Java web development,

rapid application development (RIA), desktop

application, migration, converter, conversion,

automatic code generation

1 Introduction

Authors of this paper explored the benefits of

automatic conversion in the process of migrating

legacy desktop applications and legacy developers to

web development. The migration refers to teams that

develop desktop applications, either having graphical

user interface (GUI) or text mode user interface

(TUI), but want to develop in a web environment.

When considering strategies of legacy system

modernization to web development, it is important to

preserve advantages of the legacy system, such as its

high business value and good quality code, but also to

take care of other issues like maintenance and

upgrading. The most appropriate strategy that meets

these objectives is the migration strategy.

The migration strategy is the approach that moves

the entire legacy system and its core framework to the

new environment while preserving the original

system's data and functionality. [2]

Authors propose Evolution Framework as a

concrete Java web framework that must exist for the

purpose of the automatic conversion. Framework-

based software development has been proven as

useful technique to develop an application. However,

the development of a framework itself is considered

complex due to its large size and the vague

requirements. [3]

2 Desktop vs Web Development

Before the World Wide Web was established, desktop

applications ran locally on computers and users had to

manage their installation for any update, download,

installation, etc. Later, accessibility through the web

began to be used to develop applications that support

business processes – those applications are called

business web applications.

Web application is a client-server application that

uses a web browser as its client program. It delivers

interactive services through web servers distributed

over the Internet (or intranet). A web application can

present dynamically tailored content based on request

parameters, tracked user behaviors, and security

considerations. [4]

Figure 1. Technical difference between desktop and

web development

The biggest difference between developing

desktop and web applications is in the way the user

interface is built and how it works, as seen in Fig. 1.

Many authors argue the importance of user interface

design within the overall application development. [6]

[7]

2.1 The architecture of desktop user

interface

User interfaces for enterprise desktop applications are

designed in a visual editor provided by some of the

desktop technology: Visual Basic, Delphi, Visual C++

or some 4GL tools like Panther (Prolifics).

When it comes to writing the code for the form,

developer's code typically handles events on the form.

The very first event that developer handles is usually

the one that happens when the form is displayed to the

user for the first time and the developer wants to

initialize it. Later on, the user will click on a button,

or double-click a row in the grid, or press a keyboard

shortcut, and the code should handle these events

interacting with a database or external services in a

multi-tier systems.

2.2 Characteristics of web user interface

When developing web applications, designing the

user interface is much more complex. Developing a

web-based user interface can be quite tedious, it is a

distributed program which has to run in a hostile

environment. The web application user interface is the

way through which the web user communicates to the

web system. Web applications are essentially client-

server applications - there is always a web client. [8]

When web applications are developed with web

framework that doesn't provide a visual editor,

programmers have to write the form layout character

by character, tag by tag, using HTML, CSS and

JavaScript code. Some web frameworks do provide

visual editors that generate HTML code, but they are

just partly helping to make HTML code while

programmer still needs to touch up generated HTML

code manually and after bigger manual changes some

visual editors cannot load modified HTML pages

again.

Another important aspect of web development is

communication. Web architecture requires the use of

HTTP to send an initial form layout to a web browser.

Then, when a user clicks a button, AJAX technology

has to be used in the web browser to call the event

code on the web server to interact with the database.

Finally, developers have to return the update

information from the web server to the web browser

to update form layout, e.g. the data grid with new data

rows or input fields with new values. AJAX

(Asynchronous JavaScript and XML), which supports

an immediate dynamic interaction between a user and

a web application (similar to the interaction between a

user and a desktop application), is one of the most

popular technologies for web applications. [4]

Creating a user interface in a way that complete

code is written from scratch is appropriate for small

web applications, but for enterprise applications

which consist of hundreds or thousands of different

forms such development is a very slow process prone

to errors and, in the end, very expensive and hard to

learn. Significant improvements in software

development efficiency are achieved by automatic

code generation which ultimately results in higher

productivity and uniformly high quality. [1]

3 Business aspects of migration to

web development

During the process of migration there are certain

business aspects that must be considered by

development department and its management:

Aspect 1: a protection of business know-how.

Outsourcing partners is a common case during the

process of migration, but outsourcing the

development of business functionalities implies

giving away knowledge about company processes and

plans. Therefore, it is important to protect the

business know-how.

Aspect 2: a protection of existing workforce. The

existing development team has many advantages that

a company wants to retain:

- they have a huge business know-how gained through

many years of working in the company,

- they have a good relationship and communication

with application users across the company,

- they are the only ones who are versed in existing

business applications and can fix or upgrade them

quickly,

- they are very efficient in desktop development and

excellent as a team.

Aspect 3: continuous delivery. As company

processes are evolving, the existing development team

has to maintain current enterprise applications and

spend time on upgrading them constantly. This means

they don't have enough time to learn new complex

web technologies from scratch. This brings into

question the need to learn web technologies quickly

and start delivering new web applications without

slowing down current development and delivery.

Hiring new people is often not an option because it

represents an additional cost.

Aspect 4: reuse of existing applications. Over time,

current enterprise desktop applications is difficult to

maintain because the old technical knowledge will be

lost and old software or old hardware support will be

discontinued. Usually, there are thousands of desktop

forms in action. Some applications are still being

upgraded very often and the migration process must

allow to continue improving and upgrading them on

web technology.

Aspect 5: a complete framework for the efficient

development. It is recommended that web

development framework is powerful, built for

enterprise environment and has a visual editor for

forms. Also, if framework includes popular features

that are required for modern enterprise web

applications, this additionally contributes to the

efficiency of development. These days users demand

not just grids with data and forms with input fields but

also document management, workflow and task

management features, reporting to different file

formats such as PDF or Excel, integration with e-mail

and web applications which must also work on mobile

devices and tablets.

Aspect 6: focus on solving business issues, not

technical issues. Business programmers must be

focused on solving business issues and not on solving

technical problems in the web environment. The web

framework must hide the complexity of web

architecture and web technologies.

4 Methodology of the migration

process

Keeping all mentioned aspects in mind, it is necessary

to make two important decisions at the beginning of

the migration process: choosing technology and

choosing framework.

For this research, Java has been chosen because it

is a proven technology for development of enterprise-

level business web applications, it is free to download

and there is a huge Java open source community with

many available solutions.

When it comes to choosing framework, all above

objectives imply that desktop programmers must be

able to skip the use of complex web technologies and

quickly start with the delivery of web forms. Such an

efficient development of modern enterprise

applications can be achieved only by using a web

framework that allows desktop-like web development.

A framework of such kind is Evolution Framework

whose tools were developed specifically for the

migration process as described in this paper. An

overview of Evolution Framework tools can be seen

in Fig. 2.

Those high and specific requirements for

framework leads us to the methodology of web

engineering that promotes successful web application

development through all phases of development,

including migration of legacy system to web

environments. [10]

Meeting the unique requirements of web-based

applications during whole application lifecycle can

bring the potential chaos in web-based system

development under control, minimise risks, and

enhance maintainability and quality. [9]

Figure 2. Evolution Framework tools

5 Desktop-to-web converter

When considering how to move the existing

applications to the web, a software tool can convert

old desktop forms to web forms automatically. With

such a converter, thousands of old form layouts and

thousands of lines of old code could be automatically

converted to the web environment (Fig. 3.). This

saves the developers significant amount of time

needed for rewriting old code.

Figure 3. Desktop-to-web converter

The main purpose of the converter is to convert

old code, but in this paper we particularly demonstrate

how it enables a great migration strategy for

developers.

6 The migration strategy when

having a converter

When having a converter, authors propose that

migration process is done in 3 steps:

6.1 Web development with converter

With the desktop-to-web converter it is possible to

start the web development almost immediately. First,

a developer has to setup a web development, testing

and production environments. A visual system

overview screen makes this much easier, without

bothering with many configuration files.

Then, a programmer will write new forms in the

old desktop technology, but when the desktop form is

finished the programmer will use the desktop-to-web

converter to convert the desktop form to a web form.

This way, desktop programmers is able to start

delivering web forms and web applications instantly.

6.2 Comparison of codes

The desktop-to-web converter is not just a tool for

converting old forms to web forms. It is also a

learning tool. After converting desktop forms,

developers can compare the old desktop form code

with the new Java form code and learn the syntax

more quickly. A comparison of the old and new

converter code can be seen at Fig. 4. Some authors

propose certain methods to improve accuracy of code

conversion. [12]

Figure 4. New converted Java code on the left, the old

desktop code on the right

After the developers learn the new Java code

syntax and get familiar with framework tools, they

can start designing form layouts directly in visual

editor and write Java code using e.g. Eclipse for Java

as a popular IDE.

6.3 Conversion of old applications

Moving old applications to the web environment will

be done simply by using the desktop-to-web

converter. Usually, this step starts with top priority

candidates for migration, the ones that will soon be

out of old software or hardware support, or maybe

those that they want to upgrade with new modern

technical features.

Sometimes, the conversion of old applications is

the first step in migration project and afterwards the

delivery of new web forms can begin.

7 Architecture of converter

In desktop technology, every form has two main

parts: the layout information and the form event code

(Fig. 5.) Therefore, the converter must include the

conversion of both form layout and form code.

Layout information for a single form is usually

written as a binary or text file. Such a file contains a

list of all controls like buttons, input fields and grids

which appear on the form along with their initial

property values like x and y position,

enabled/disabled, visible/invisible, etc.

Figure 5. The process of conversion

The first step in creating the converter was to

make it handle the conversion of this old layout

information to the new layout information written as a

visual editor form file. After the conversion, users can

use the visual editor to modify the form layout and

add some more controls to the form, even some

advanced ones that didn't exist before in the old

environment.

Desktop event code for old desktop forms is an

actual code that consists of functions that handle

specific events on the forms like form initialization,

button click, double-click on the row, field validation

after the focus is lost, etc. The second step in creating

the converter was to make it handle the conversion of

such event code. The converter must analyze the old

code and make equivalent Java code.

Some old commonly used API functions, available

in the old desktop framework, must be converted as

well, so that the programmer has almost the same

look and feel of the Java code in the web

environment.

8 Example of conversion

The conversion described in this paper must be

supported by a web framework whose web engine

logic is very similar to the desktop engine's logic.

Such a web framework must have the following

features implemented:

- it must be capable of completely rendering the initial

HTML form in the web browser, based on the layout

information from the visual editor,

- it must render Java code for each form with all the

controls on the form so that the programmer's form

event code could easily communicate with the

controls on the web server in Java,

- it must provide mechanisms that will send user

events from the web browser to the web server

directly via AJAX, so that the Java form event code

could save the data entered by the users to a database

and/or read the data from the database and update

form controls,

- it must provide mechanisms to return event results

from Java code on the web server back to the form in

the web browser upon updating form content.

This way, programmers never have to bother with

HTML, CSS, JavaScript, HTTP and AJAX, and they

can focus on writing event code and interacting with

databases and other external business systems.

In order to demonstrate how converter works, here

are presented results of the conversion compared with

the old forms.

8.1 Old desktop form

A sample of the old desktop form in a visual editor

provided by a desktop technology is shown at Fig. 6..

Figure 6. Old form in Panther IDE

Fig. 7. is showing same form in action having a text

user interface, and the same form with a graphical

user interface is shown at Fig. 8.

Figure 7. Old TUI form

Figure 8. Old GUI form

8.2 Conversion of an old form

The legacy desktop IDE has an option to export a

form to a single file which contains layout

information and form event code.

The desktop-to-web converter tool is a part of

Evolution Framework and it is a web based tool. This

web application is run on a local web server and can

access exported form files in a local folder, a sample

can be seen at Fig. 9.:

Figure 9. The desktop-to-web converter

When running the converter, it creates three things:

- first, it creates an XML file with the form layout

which is an input file for the visual editor so that the

form layout can be modified in the editor and later

upgraded with new advanced controls;

- then it generates a Java code with all the controls on

the form. This code is a Java "model" of the form that

the programmer will communicate with either to read

input field values, fill the grid or hide buttons. The

programmer will never modify this code, it will be

generated again every time the form is modified in the

visual editor;

- and finally, the converter converts the original form

event code to the Java code which will look almost

the same because of the same API already

implemented additionally into the framework.

8.3 The converted form

Fig. 10. is showing the final form in the visual editor.

And the same form in action, after some redesign in

the visual editor, can be seen at Fig. 11.

Figure 10. Converted form layout in Evolution

Framework's visual editor

Figure 11. Web form running, after some redesign in

Evolution Framework's visual editor

9. Reusability

The main objective of application framework is to

promote the reuse of both design and code in the

development of new applications. Reuse of existing

components dramatically reduces the production cost

and improve the quality.

The Rapid Application Development Framework,

or simply RADF, aims to make application

development more efficiently by means of

architectural reuse. [3]

10. Conclusion

In this paper we have presented the role of the

desktop-to-web converter in the process of conversion

of legacy desktop applications to modern web

applications as well as a value of such a tool in

migrating a legacy development team to a web

development.

Results of this research confirm the high relevance

of the automatic conversion and high level web

frameworks for overcoming the complexity of native

web technologies. In order to ensure instant web

development, it is crucial that a converter tool takes

care of all specific characteristics of web architecture.

The automatic conversion has proven to be a

secure way to preserve functionalities of old desktop

applications but only a complete web framework will

allow those applications to be further easily upgraded

and maintained in new environment.

References

[1] Burke P. and Sweany P., Automatic Code

Generation Through Model-Driven Design, 20th

System and Software Technology Conference,

Las Vegas NV, 2008.

[2] Almonaies Asil A., Cordy James R. and Dean

Thomas R., Legacy System Evolution Towards

Service-Oriented Architecture, International

Workshop on SOA Migration and Evolution

SOAME 2010, Madrid, 2010.

[3] Dongjin Yu, Towards the Rapid Application

Development Based on Predefined Frameworks,

Journal of software, vol. 6., no. 9., 2011.

[4] Shklar L. and Rosen R., Web Application

Architecture: Principles, Protocols and

Practices, 2nd ed., John Wiley & Sons Ltd,

Chichester, England, 2009.

[5] Henrich V., Hinrichs E., Hinrichs M. and

Zastrow T, Service-Oriented Architectures: From

Desktop Tools to Web Services and Web

Applications, Romanian Academy Publishing

House, Bucharest, Romania, 2010.

[6] Strahonja V. and Picek R., User Interface

Modeling Within Application System

Development, Proceedings of the 27th

International Conference Information

Technology Interfaces, 285-291, Cavtat, Croatia,

2005.

[7] Strahonja V. and Picek R., User Interface

Modeling With RUP, Proceedings of the 16th

International Conference on Information and

Intelligent Systems, 57-54, Varaždin, Croatia,

2005.

[8] El-Bakry H. M., Riad Alaa M., Abu-Elsoud M.,

Mohamed S., Hassan A. E., Kandel M. S. and

Mastorakis N., Adaptive User Interface for Web

Applications, Publisher: WSEAS, 190-211, 2010.

[9] Choo C.H. and Lee S.P., Towards Persistence

Framework-based Rapid Application

Development Toolkit for Web Application

Development, Journal of Computer Science, vol.

4., no. 4., 2008.

[10] Murugesan S., Deshpande Y., Hansen S., Ginige

A., Web Engineering: A new Discipline for

Development of Web-based Systems, in Web

Engineering: Managing Diversity and

Complexity of Web Application Development,

Springer-Verlag, 2001.

[11] Zhang W., Berre A.J., Roman D. and Huru H.A.,

Migrating Legacy Applications to the Service

Cloud, in Proc. of Towards Best Practices in

Cloud Computing, OOPSLA09, Orlando, USA,

pp. 59-68, 2009.

[12] Sudhakar P. and Sakthivel P., Predicting Source

Code Irregularities in Automated Code

Conversion Systems using SRASG, European

Journal of Scientific Research, 67(3), 486-491,

2012.

