
Extending RapidMiner with
recommender systems algorithms

M. Mihelčić1,3, N. Antulov-Fantulin1, M. Bošnjak1,2 and T. Šmuc1

1 Ruđer Bošković Institute, Croatia

2 Faculty of Engineering, University of Porto, Portugal

3 Faculty of Electrical Engineering, Mathematics and Computer
Science, University of Twente, Netherlands

Abstract

Recommender systems are ubiquitous in today’s information over-
loaded world. They help users to find and select products from a huge
number available in various sources. RapidMiner can be used to con-
struct various information filtering workflows using various data mining
techniques. However, it does not explicitly support typical recommen-
dation tasks. In this paper we present a RapidMiner Recommender
Extension, developed in order to embed some of the state-of-the-art rec-
ommendation techniques into RapidMiner. We present the functionality
of the extension, along with examples of diverse recommender system im-
plementations. Integration of the extension with RapidAnalytics, which
allows seamless construction of production level recommender systems,
is demonstrated.
Keywords: recommendation systems, data mining, RapidMiner exten-
sion, e-LICO

1 Introduction

Whether buying technical equipment, books, watching movies, choosing restau-
rants or news to read, we often rely on recommendations from family, friends
or even complete online strangers. We turn to recommendations whether there
is too much or too little of information, or when the time cost of decision mak-
ing is high. Recommender systems [9] facilitate this decision making through
informed assistance and enhanced user experience by relying on the available
information for the decision making process. If the data at hand is data on

items only, we are talking about content recommendation methods. If social
information is available, i.e. interaction of other users with the items, we are
talking about collaborative filtering methods. By combining both of these data
sources, item data and social data, we can construct a hybrid system.

Recommender systems represent a broad field of research and were, from
their start in nineties [5, 6, 8], somewhat detached from the data mining field.
Collaborative filtering methods dealing with user-item usage information, were
initially playing primary role in both research and real-world application of
recommender systems. Requirements for real-world recommender systems are
very similar to other contemporary data mining or machine learning tools in
realistic settings: efficiency, scalability, ability to adapt models online, etc.

Rationale for introducing recommender systems into RapidMiner is mul-
tifold. RapidMiner has several important features that can be of advan-
tage for solving recommendation problems and building efficient recommen-
dation systems: (i) it provides a diverse set of operators for advanced data
(pre)processing, (ii) one can easily optimize recommendation workflows by us-
ing operators for model optimization or by combining multiple models, and
(iii) RapidMiner and RapidAnalytics provide seamless integration of models
and data into real-world application setting. Though it is possible to create
recommender systems in RapidMiner using only the standard operators [2],
having a dedicated extension simplifies and speeds-up this procedure drasti-
cally.

We present the extension in the following sections, starting with the de-
scription of main operators available through the framework in Section 2. Sec-
tion 3 specifies data formats used by the extension. Section 4 shows some
applications of the extension, ranging from simple workflow construction, over
building hybrid recommenders to exporting those workflows as web services.
In section 5 we present part of the experimental results of iterative online
updates and model application.

2 Recommender Extension operators

Recommender Extension operators are divided into two main categories: Item
Rating Prediction operators (12 operators) and Item Recommendation opera-
tors (8 operators). Each of the categories are further divided in Collaborative
filtering based operators and Attribute based operators. Each operator is a
ported implementation of a specific algorithm from MyMedia library [4].

Collaborative based operators take as input an example set containing
training data while returning a trained model and unchanged training data.
Attribute based operators additionally take another example set containing at-
tribute data. Operators return a trained attribute based model and unchanged
training data. Attribute based operators use the attribute dataset to calculate

recommendations for users in the system, while the train data provide infor-
mation about what items are already viewed by some user. Operator input
data formats are explained in Section 3. Every operator has its unique param-
eters that enable fine tuning of its runtime and accuracy performance. We also
created the Apply Model and the Performance operators for each category.

Rating prediction Apply Model operator takes a trained model and a test
(query) set as input. The Apply Model operator applies the trained model on
the query data and returns an example set containing rating predictions for
each user-item pair in the query set. If the online update option is checked,
the Apply Model operator will apply fast iterative model updates incorporating
new query information into its input model. This feature is currently available
for all operators except the WRMF that contains partial model retrain. We
should also note that the BMF and the BPRMF operators contain online
updates ported from MyMedia library. To perform online updates, query
data must have a label role defined. Apply Model returns the updated or
unchanged model, depending on the online update option, and an example
set that contains the prediction attribute in addition to the attributes from a
query set.

Output of the Apply Model operator is used to calculate performance using
the Performance operator. The Performance operator calculates the value of
rating prediction error measures: Root Mean Square Error (RMSE), Mean Ab-
solute Error (MAE) and Normalized Mean Absolute Error (NMAE) [4]. These
error measure values are returned as a performance vector and an example set.

Item Recommendation Apply Model operator also takes a trained model,
and a test/query set as input. The Apply Model operator applies the trained
model on the query data and returns the list of the first n ranked items for each
user in the query set, where n is a user defined parameter. Online updates have
the same functions as in the Rating Prediction category, for them to be applied
query data must have a user-item pairs in the query set. Item Recommendation
Apply Model output cannot be used for Performance calculation.

Item Recommendation Performance operator takes a training set, a test
set and a trained model as input. Performance operator returns item rec-
ommendation error measures: the Area Under the Curve (AUC), Precision
at k (prec@k), Normalized Discounted Cumulative Gain (NDCG) and Mean
Average Precision (MAP) [4].

Since we require only the n best items to be recommended for each user in
a test set, we implemented a partial sorting algorithm into the Apply Model
operator of the Item Recommendation category thus significantly decreasing
application time.

Fast iterative online updates have been implemented for Rating Predic-
tion and Item Recommendation operator. We built upon MyMedia library to
support online update capability for Item Recommendation operators. Online

updates implemented for some Rating Prediction operators in the library recal-
culate all the information for every user in the query set constantly allocating
new memory. That caused performance problems for larger query sets that we
resolved using iterative online updates.

We constructed the weighted Model Combiner operator for each category.
The Model Combiner operator takes as input multiple trained models and
returns a weighted grouped model. When applying grouped model or per-
forming online updates, operation is applied to each input model. The Model
Combiner enables ensemble testing on various data examples and comparing
results with each of the individual models. It also enables us creating various
hybrid based models by combining collaborative filtering and attribute based
operators. A full list of operators supported by the extension can be found in
the extension user guide [7].

The extension is well integrated with RapidMiner so we can use existing
operators to perform various standard operations like model saving1 and pa-
rameter optimization2. Recommendation operators can be used along other
RapidMiner operators in advanced experimentation tasks3 and recommenda-
tion process, including online updates can be emulated by using a combination
of standard RapidMiner operators and extension operators4.

3 Data formats for the Recommender Extension

The Item Recommendation operators use a matrix that contains information
about user viewing history in the system. The Rating Prediction operator ma-
trix contains additional information: ratings describing users affinity towards
particular items. Input datasets used to learn a recommender system model
must be formatted in two columns for the Item Recommendation, or in three
columns for the Rating Prediction problem. Attributes names and their po-
sitioning can be arbitrary. In the first column of Table 1 we have user IDs,
in second column item IDs and in third column ratings. Prior to applying
input datasets to recommendation operators, we have to set the roles for these
columns, in our example: user identification, item identification, and label, re-
spectively. An example of an AML and the related DAT file for rating prediction
are given in Table 1.

The Item Recommendation operators do not require a rating attribute in
the AML file, nor the third column of the DAT file, therefore any additional
attributes will be ignored during execution of those operators.

1http://www.myexperiment.org/workflows/2705.html
2http://www.myexperiment.org/workflows/2730.html
3http://www.myexperiment.org/packs/246.html
4http://www.myexperiment.org/packs/248.html

Table 1: Rating Prediction input data example consisting of an AML and the
related DAT file
AML file DAT file
rating_prediction.aml:
<?xml version="1.0" encoding="windows-1252"?>
<attributeset default_source="sample.dat">

<attribute
name = "user_id"
sourcecol = "1"
valuetype = "integer"/>

<attribute
name = "item_id"
sourcecol = "2"
valuetype = "integer"/>

<attribute
name = "rating"
sourcecol = "3"
valuetype = "real"/>

</attributeset>

sample.dat :
1 71 67.0
1 169 76.0
2 211 56.0
2 562 99.0
3 670 100.0
4 576 10.0

The data matrix for attribute based operators contains the user or item
identification and the attribute identification. Concretely in our example, by
changing the attribute "item_id" in Table 1 to "attribute_id" and removing
the rating attribute and the third column from the corresponding DAT file, we
would get an AML input file for attribute based operators.

The meaning of the DAT file in Table 1 in this case would be that the
user with ID=1 contains attributes with ID=71, ID=169 and no other at-
tributes. We developed a RapidMiner workflow to transform user/item de-
scription datasets into binomial form necessary for our attribute based opera-
tors5.

4 Extension applications

In this section we point out some possible applications of the Recommender
Extension.

4.1 Simple workflows

We start our survey by demonstrating and explaining some basic recommen-
dation workflows. Figure 1 depicts such a basic model application workflow
for the Item Recommendation category.

The train data and the query data are read from the AML file using the
Read AML operators. We train the Item k-NN model on the training data,

5http://www.myexperiment.org/workflows/2711.html

Figure 1: Item recommendation model application workflow

and pass it to the Apply Model operator that applies it to the query data.
To calculate the performance of our model, instead of applying the trained
model on the query set, we test our trained model on the test set using the
Performance operator.

The performance calculation workflow for the Rating Prediction category
is shown in Figure 2. By simply omitting the Performance operator, we obtain
the model application workflow.

Figure 2: Rating Prediction performance calculation workflow

4.2 Building hybrid solutions

Hybrid approach to recommendation systems consists of combining different
recommendation techniques [3] in order to achieve better performance and
circumvent limitations of individual techniques [1].

Building hybrid recommendation systems using the Recommender Exten-
sion is easy. User can combine multiple learned recommendation models using

the Model Combiner operator. That allows using and combining specific fea-
tures of different techniques in order to achieve better recommendation per-
formance. Depending on the input information, user can add weights to each
trained model in combined model to change the significance that model has
on the overall recommendation.

We demonstrate results of combining three different recommendation mod-
els. The Weighted Item k-NN and the User k-NN model are a neighbourhood
based recommendation models that try to find users with a similar prefer-
ences as the user to whom we make some recommendation. The Weighted
Matrix Factorization is a matrix factorization based recommendation model
that uses a set of factors combined with collaborative information to make
recommendations for some user. By using the Model Combiner, we increase
the performance of each of the individual models. Results gained on a recom-
mendation problem with 5000 users is demonstrated in Table 2.

Table 2: Performance comparison of the combiner operator with the following
weights: WRMF 0.1, User k-NN 0.2, Weighter Item k-NN 0.7

WRMF User k-NN Item k-NN Combiner
AUC 0.855 0.915 0.940 0.940
prec@5 0.118 0.129 0.137 0.138
prec@10 0.083 0.091 0.098 0.099
prec@15 0.066 0.072 0.076 0.077
NDCG 0.416 0.436 0.452 0.455
MAP 0.229 0.245 0.261 0.264

Combiner weights for this example were manually chosen and could be
optimized further, train set used has enough data to efficiently train Item k-NN
model, so it is hard to further increase performance using only collaborative
filtering models. In addition WRMF operator parameters could be further
optimized for better performance. Despite that, probably it is not efficient to
use the Model Combiner for such datasets.

A potential benefit could be to combine collaborative operators with at-
tribute based operators incorporated in the extension to improve performance
when dealing with little collaborative information. Since we lack real datasets
that contain attribute data, we could test model combination only on ar-
tificially created attribute datasets. Performance comparison of Item k-NN
model, trained on a dataset with little collaborative information, and combina-
tion of that model with Item attribute k-NN model gave AUC: 0.621 7→ 0.700,
prec@5: 0.066 7→ 0.073, NDCG: 0.316 7→ 0.329 and MAP: 0.090 7→ 0.099.

It is also possible to combine Recommender extension models with Rapid-
Miner regression or classification models into a large hybrid recommendation
system6.

6http://www.myexperiment.org/packs/262.html

Figure 3: Hybrid rating prediction workflow

4.3 Exporting recommenders using RapidAnalytics

In order to build a recommendation web service for serving a website in real
time, we need to assure response time in milliseconds. Therefore, we need a
more complex architecture of recommender web services. Our recommender
system web engine architecture, depicted in Figure 4, consists of the following
parts in RapidAnalytics server: front-end recommendation, write activity, on-
line update recommendation and offline update recommendation web service.

These services communicate with the RapidMiner repository on RapidAn-
alytics and with the SQL database. To ensure low recommendation response
time, we cache the top-n recommendations for each user in the SQL database.
Our SQL database has only two tables: item recommendation table (with
columns "user_id", "item_id", "rank"), and train set table (with columns
"user_id", "item_id"). The job of the front-end recommendation web ser-
vice7 is to query the cached recommendations from the item recommendation
table. This web service has around 100 millisecond response time. When a
web page needs a recommendation for a specific user, it calls the front-end rec-
ommendation web service. When a specific user i consumes a certain item j,
the write activity web service8 is invoked. This web service writes the activity
(i, j) to the train set table and removes the recommendation j for the user i
from the item recommendation table in the SQL database.

7http://www.myexperiment.org/workflows/2904.html
8http://www.myexperiment.org/workflows/2906.html

RAPID-ANALYTICS

SQL

DATABASE

RECOMMENDATION

WEB SITE

 USERS

RECOMMENDATION

MODELS

INCREMENTAL

UPDATE

RECOMMENDATION

OFFLINE

RECOMMENDATION

UPDATE WEB SERVICE

FRONT-END

RECOMMENDATION

WEB SERVICE

WRITE USER

ACTIVITY

WEB SERVICE

Figure 4: Architecture of recommendation web engine

After a number of recommendations to a specific users, system has to up-
date recommendations in the item recommendation table. This is accomplished
by calling the online update recommendation web service9, which updates the
recommendation model in RapidAnalytics repository and updates the recom-
mendations for specific users in the item recommendation table. The online
update procedure updates recommendations only for users for which some
recommendation and feedbacks have been obtained. Therefore, we have to
periodically do a full re-training on the whole train set with the offline update
recommendation web service10.

5 Results

We tested the iterative online updates both in accuracy and time execution
performance. We give results for the Item k-NN operator in Figure 5. The
x-axis denotes the number of cumulative iterative online updates performed
on various query datasets before applying them on a test set, while the y-axis
holds the performance result. We must note that in general we expect model
retrain to outperform iterative online updates.

9http://www.myexperiment.org/workflows/2955.html
10http://www.myexperiment.org/workflows/2954.html

10 20 30 40 50

0.07

0.075

0.08

0.085

iterations

p
re

c
@

5

online update

no updates

model retrain

10 20 30 40 50
0.056

0.058

0.06

0.062

0.064

iterations

p
re

c
@

1
5

10 20 30 40 50

0.085

0.09

0.095

0.1

iterations

M
A

P

10 20 30 40 50

0.31

0.315

0.32

0.325

0.33

iterations

N
D

C
G

Figure 5: prec@5, prec@15, MAP and NDCG performance of iterative online
updates on the Item k-NN operator.

In Figure 6 we give time performance for the Item k-NN operator on two
different train datasets. The first dataset contains 395.497, while the second
contains 146.741 user-item pairs. Our results show comparable performance
in accuracy, while gaining time performance when comparing iterative online
model updates with full model retrain. By formal analysis of the problem
it can be shown that the absolute error between iterative online update and
model retrain correlation value converges to zero when the problem size rises
and it is to be expected that the time performance gain should increase as
well, however that is one point for a further study.

Item recommendation operators within the MyMedia library [4] use a sort-
ing algorithm to find the top-k items for a specific user. For this extension we
developed a small algorithm for ranking the top-k items without the need to
use a sorting algorithm on the whole item set predictions. For example, if we
need to recommend k items with the highest score, the straightforward way
is to sort the vector of n items scores in the descending order and choose the
first k items. Our algorithm uses the min priority queue to maintain k items
with the highest score throughout the vector score iteration. The approximate
number of operations for the straightforward way is n∗ log(n) and the approx-
imate number of operations for our partial ranking algorithm is n+ c ∗ log(k),
where the constant c represents number of insert and delete operations in the

0 10 20 30 40 50
4

4.5

5

5.5

6

6.5

7
x 10

4

iterations

e
x
e
c
u
ti
o
n
 t
im

e

no updates

online update

model retrain

0 10 20 30 40 50
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
x 10

4

iterations

e
x
e
c
u
ti
o
n
 t
im

e
Figure 6: Time performance of the Item k-NN operator on two datasets.

priority queue. The expected number of insert and delete operations in the
priority queue turns out to be much less than the total number of items n.
Our experiments in Table 3 show improvement in the execution time.

Table 3: Execution time speed up as the ratio of execution times for apply
model operator with the partial ranking algorithm and with the normal sorting
algorithm

Item recommenda-
tion model

No. of users No. of items Execution time
speed up (ratio)

WRMF 10 000 4 775 4,59
BPRMF 10 000 4 775 5.07
WRMF 20 000 3 963 5,73
BPRMF 20 000 3 963 4.74
WRMF 49 999 22 745 6,84
BPRMF 49 999 22 745 2.21
WRMF 199 999 11 083 7,08

6 Summary
In this paper we presented the RapidMiner Recommender Extension. We
showed various applications of the extension, and various ways of incorporat-
ing its operators in RapidMiner. The applications shown range from simple
workflows to a real time application of the extension in a form of a recommen-
dation service run on RapidAnalytics. This system can be used and set up by

the users and would provide them with many customizations based on their
requirements.

7 Acknowledgement
This work is supported by the European Community 7th framework ICT-
2007.4 (No 231519) "e-LICO: An e-Laboratory for Interdisciplinary Collabo-
rative Research in Data Mining and Data-Intensive Science".

References
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recom-

mender systems: A survey of the state-of-the-art and possible extensions.
IEEE Trans. on Knowl. and Data Eng., 17(6):734–749, June 2005.

[2] M. Bošnjak, N. Antulov-Fantulin, T. Šmuc, and D. Gamberger. Con-
structing recommender systems workflow templates in rapidminer. Proc.
of the 2nd RapidMiner Community Meeting and Conference, pages 101–
112, 2011.

[3] R. Burke. The adaptive web. chapter Hybrid web recommender systems,
pages 377–408. 2007.

[4] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. My-
medialite: a free recommender system library. In Proc. of the fifth ACM
conference on Recommender systems, RecSys ’11, pages 305–308, 2011.

[5] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative
filtering to weave an information tapestry. Commun. ACM, 35(12):61–70,
1992.

[6] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and
evaluating choices in a virtual community of use. In Proc. of the SIGCHI
conference on Human factors in computing systems, pages 194–201, 1995.

[7] M. Mihelčić, N. Antulov-Fantulin, and T. Šmuc. Rapid Miner Recom-
mender Extension - user guide, 2011.

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens:
an open architecture for collaborative filtering of netnews. In Proc. of the
ACM conference on Computer Supported Cooperative Work, CSCW ’94,
pages 175–186, 1994.

[9] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM,
40(3):56–58, Mar. 1997.

