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Abstract- The aim of this paper is to demonstrate the 
calculation procedure of the robustness based structural design 
by analyzing failure events on a self-evident simple example. 
Therefore, the note at the beginning shortly reviews the 
probabilistic Event Oriented System Analysis (EOSA) and the 
definition of the robustness based on the entropy concept in the 
probability theory. The study jointly employs operational 
failure modes analysis, effects analysis, and the Advanced First 
Order Reliability Methods (AFORM). An example of a 
structural member presented by a number of random failure 
events illustrates the usage of the conditional entropy as a 
measure of structural robustness. The conclusion recommends 
the robustness based design for safety enhancement. 
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I. INTRODUCTION 

Robustness in contrast to vulnerability is a favorable 
property of structural systems. Still, there is not yet 
conformity among different definitions of robustness and of 
robust designs [1–7]. Therefore, this study investigates the 
usefulness of the probabilistic Event Oriented System 
Analysis (EOSA) [8] in the assessment of the structural 
robustness [9, 10]. 

EOSA in general considers systems and subsystems of 
random operational and failure events in a lifetime of a 
structure. Therefore, this approach enables a more objective 
evaluation of uncertainties since it involves the entropy 
concept for uncertainty assessment in the reliability analysis 
of the number of observable events. The entropy as a 
measure of information appears earlier in the information 
theory [11–14]. The unconditional information entropy has not 
been recognized earlier as a useful measure of practical 
importance in engineering. However, the properties of the 
conditional entropy enable understanding of the system 
behavior under random circumstances and a practical 
application of the entropy concept to robustness based as 
well as in redundancy based design [9, 10, 15, 16, 17]. 

The example of a basic structural element, a pillar (or a 
pile, a stanchion, a bar) under compressive load [18] (see Fig. 
1) demonstrates in the study how the event-oriented system 
analysis can provide a more comprehensive assessment of 
system performance and a more robust structural design.  

 
Fig. 1 Rectangular pillars supporting longitudinal girders of a car-deck 

on a car-carrier 

II. EVENT ORIENTED SYSTEM ANALYSIS EXAMPLE 

Event Oriented System Analysis considers structures 
built of a number of physical components as systems of 
events [8–10]. Every operational or failure outcome of all 
operational modes of each of the components is considered 
as a random event E. The system of events S consists of all 
observable events Ei with calculated, assessed or at least 
rationally judged probabilities of occurrence p(Ei), i = 1, 
2, … , N, where N is the total number of events in the 
system. The engineering reliability methods such as FOSM, 
FORM, AFORM, SORM or Monte Carlo simulation and 
Bayesian methods are on disposal for probability 
calculations [e.g. 19–23]. Methods of operational modes and 
effects analysis such as enumeration, minimal cut-sets, 
minimal tie-sets, event-tree and fault-tree analysis can 
identify all or at least the relevant and observable events Ei 
of a structural system [24–26]. Two types of events are of 
interest: operational events that represent some functional 
state or action mode of structure (status o) and failure events 
that represent some type of structural damage (status f). 
System S of N = No+Nf events, where some are operational, 

denoted i

oE
, i = 1,2, … , No and some are failure events, 

denoted j

fE
, j = No+1, No+2,…, No+Nf can be as 

represented by finite scheme: 
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Probability of the System S is equal to: 
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The subsystems of operational events O and of failure 
events F are also systems of events: 
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The subsystem probabilities of occurrence are: 

( ) ( )
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The System S under the condition that it is operational is 
as follows: 
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The System S under the condition that it has failed is as 

follows: 
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The overall reliability of the system, denoted R(S), 

corresponds to all of the outcomes when the system is 
operating: 

( ) ( ) ( ) ( )
1

oN
o o

i
i

R p p p E
=

= = = ∑S S O
 (7) 

The probability of failure of the system, denoted pf (S), 
is then equal to the probability of occurrence of a failure 
subsystem: 

( ) ( ) ( ) ( )
1

o f

o

N N
f f

f i
i N

p p p p E
+

= +

= = = ∑S S F
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Note that the sequences of the events are irrelevant with 
respect to intended reliability and uncertainty considerations 
that follow. 

Systems are either complete when Σp(Ei)=1, i=1, 2, …, 
N or incomplete when Σp(Ei) < 1. In any case, the relation 
holds: 

1

( ) ( ) ( ) ( )
N

i
i

p p p p E
=

= + = ∑S O F
         (9) 

Structural systems consist of a great number of 
components and the number of possible operational and 
failure events is growing rapidly sometimes denoted as 
combinatorial explosion. 

EOSA provides the option for analysis of incomplete 
systems in order to consider only the important and relevant 
events with respect to the system safety. The event oriented 
system analysis applies to any relation of sets of events or 
subsystems, such as exclusive or inclusive sets, as well as 
dependent and independent events. EOSA requires proper 
partitioning of the system of events to a set of mutually 
exclusive events, for example, the well-known exclusion-
inclusion expansion of union of events [27]. 

III. UNCERTAINTY MEASURES 

The entropy is the only function appropriate for the 
uncertainty measure according to the uniqueness theorem 
[12]. Uncertainty of a single random event E is the simple 
entropy function H [28] also representing how an event is 
unexpected, as follows: 

( ) ( )2logH p p E= −
            (10) 

Entropy of a complete probability distribution or of a 
complete system of events H(S) expresses the Shannon’s 
entropy [9] as follows: 

1 1

1( ) log log
N N

i i i
i i i

H p p p
p= =

= − =∑ ∑S
     (11) 

Another measure of uncertainty is the Renyi’s entropy of 
order one [13] that in its limiting case is relevant to 
incomplete systems of events: 

1

1 1

( ) ( log ) /
N N

i i i
i i

H p p p
= =

= −∑ ∑S
   (12) 

The most important properties of entropy regarding 
EOSA application are listed as follows. 

The entropy of a system is equal to zero, when the state 
of the system can be surely predicted, i.e., uncertainties do 
not exist at all. This occurs when one of the probabilities of 
events pi, i = 1, 2, ..., N is equal to one and all the other 
probabilities are equal to zero. 

The entropy is maximal when all events are equally 
probable, and the probability of failure is equal to pi = 1/N, 
and it amounts to H(S)max = log N, the Hartley’s entropy 
[29]. 

The entropy increases as the number of events increases. 

The entropy of a system of events S [9] amounts to: 
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If the system is incomplete [13], the entropy is: 
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Maximum entropy, either for complete of incomplete 

systems equals to: 

( ) ( )1
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log /NH N p=   S S            (15) 
Using conditional probabilities of a subsystem Si 

consisting of m events of the same status, the conditional 
entropy is as: 

1
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The maximal conditional entropy of the subsystem Si 

amounts to max( / ) logm iH m=S S . 

Relative uncertainty 
( )

( )max

N

N

H
H

S
S  of systems S with 

same number of events as well as the average number of 

equally probable events denoted ( ) ( )2 NH
NF = SS  may be 

useful for practical purposes. Entropy of System S, under 
the condition that the system is operating (status O), is as 
shown: 

1
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Entropy of System S under the condition that the system 
is failing (status = F), is as shown: 
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It is obvious that the entropy of the operational modes in 
Eq. (17) and of the failure modes in Eq. (18) only depends 
on the states of the operational and failure modes, not on 
any other states. The maximum entropy of an operating 

system is S max( / ) log
oN oH N=S O and of failing 

system is max( / ) log
fN fH N=S F . 

IV. ROBUST DESIGN 

The aim of the structural design in the first step is to 
assure that the structural strength and all the responses to all 
operational demands will remain within the elastic 
capabilities of the applied materials. The failures are 
expected to occur when the design loads exceed some 
nominal or working material properties not necessarily 
leading to structural collapse. In uncertain operational 
environments, the structural reliability analysis has an 
important role to assess the probability of failures as defined 
by the widely adopted rule based design procedures. 
However, since the designed structural strength is normally 
below the ultimate strength, additional checking of the 
ultimate strength is sometimes requested. The reliability 
analysis of the ultimate strength has the role to assess the 
probability of structural collapse. 

EOSA defines robustness as the system’s capability to 
respond to all failures uniformly. In terms of modern robust 
design methodologies, the aim is not only to eliminate noise 
factors, but also to create insensitivity to them [1]. In the 
EOSA’s way of thinking, the structural robustness is the 
insensitivity to possible modes of structural failures by 
structural design equally sensitive to all applied loads. 
Therefore, the fully robust behavior according to EOSA 
implies equal failure probabilities of all failure modes under 
all loading conditions by avoiding week links and removing 
vulnerabilities from the operational profile of the system. 

When the system responds to all demands uniformly, 
there is a high uncertainty about which of the failure modes 
could occur (Eqs. 13 to 18). System robustness in EOSA is 
simply the conditional entropy of a subsystem of failure 
events: 

( ) ( ) ( )/ /
f

f f
NROB ROB H= =S S S S S  (19) 

A system of events is probabilistically robust in service 
if there are several failure modes. As the probability 
distribution of failure events is uniform, there is higher 
uncertainty about which of the failure event will occur. If 
there is only one failure event, the uncertainties about which 
failure will occur vanish, i.e. system’s sensitivity is 
increasing in terms of robustness. A system with a number 
of events with smaller failure probabilities is more robust 
(insensitive to demands) than a system with a single highly 
probable failure mode. Hence, the higher the entropy of the 
failure modes is, the higher the robustness is and the lower 
the system vulnerability is [9, 10]. 

V. EXAMPLE 

The next example demonstrates the redesign of a simply 
supported pillar of mild shipbuilding steel with rectangular 
cross section [18] under compressive load F on Fig. 2a, based 
on nominal elastic material properties using the robustness 
maximization criterion for uncertain conditions (19) as it is 
proposed in this technical note.  

 
Fig. 2a Pillar with a rectangular cross-section under compressive load 

F 

a. 
Prototy

 

b. 
Rob
ust 
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Fig. 2b Pillar with a rectangular cross-section under the compressive 

load 

Loads, dimensions and material properties of the pillar 
on Fig. 2a are uncertain quantities presented in Table 1. 

TABLE I RANDOM VARIABLES FOR ROBUSTNESS CALCULATION OF A 
PILLAR ON FIG. 2A 

Variable Mean value COV Distribution 

a 36 mm 0.01 Normal 

b 25 mm 0.01 Normal 

L 500 mm 0.01 Normal 

E 206000 N/mm2 0.01 Normal 

σF 235 N/mm2 0.06 Log-Norm 

F 150 kN 0.30 Normal 

A = a×b 900 mm2 0.10 Normal 

σCx 202.4 N/mm2 0.07 Log-norm 

σCy 219.3 N/mm2 0.07 Log-norm 

Three types of failure of a pillar are considered: 

1. Compressive yield (basic event A1); 
2. Buckling around x-axis (basic event A2); 
3. Buckling around y-axis (basic event A3). 

The corresponding limit state functions are of linear 
character as shown: 

1. g1 = A⋅σF – F 
2. g2  = A⋅σCx – F 
3. g3  = A⋅σCy – F 

Here, σCx and σCy are the Euler’s critical buckling 
stresses with respect to x and y axes. 

Reliability indices β and appropriate probabilities of 
failure are calculated by AFORM procedure [e.g. 19, 20] by 
a self-produced computer program as follows: 

βA1 = 3.125,  pf (A1) = 0.8888×10–3 
βA2 = 2.141,  pf (A2) = 0.1615×10–1 
βA3 = 3.153,  pf (A3) = 0.8082×10–3 

The number of compound events, Ei, is N = 2n = 8 
(Table 2). The example represents a typical series system 

since there is only one operational event, 1
oE  - the intact 

mode, and seven failure events, 
f

iE , i = 2, 3, …, 8. 
TABLE II COMPOUND EVENTS DEFINING THE SYSTEM OF OPERATIONAL 

MODES OF A LOADED PILLAR 

Event, Ei Failure Type 

1 2 3 4 5 6 71o f f f f f fE E E E E E E= − − − − − −  
− 

( ) ( )2 1 1 2 1 3 1 1,2 1,3
f f f f f f f f fE A A A A A A E E= − − = − −   compression 

( ) ( )3 2 1 2 2 3 2 1,2 2,3
f f f f f f f f fE A A A A A A E E= − − = − −   buckling 

( ) ( )4 3 1 3 2 3 3 1,3 2,3
f f f f f f f f fE A A A A A A E E= − − = − −   buckling 

5 1,2 1 2
f f f fE E A A= = 

 
Compr&buckling 

6 1,3 1 3
f f f fE E A A= = 

 
Compr&buckling 

7 2,3 2 3
f f f fE E A A= = 

 
buckling 

8 1,2,3 1 2 3
f f f f fE E A A A= =  

 
Compr&buckling 

System of events S is a typical series system and can be 
presented with finite scheme, Eq. (1): 

( ) ( ) ( )
1 2 8

1 2 8

...

...

o f f

o f f

E E E

p E p E p E

 
=  
 
 

S
 

AFORM provides only the joint failure probabilities of 
up to two joint events. After neglecting the intersection of 
three or more events [19], the following seven modes for the 
pillar on Fig. 2 are calculated: 

1 1,1 2,2 3,3 1,2 1,3 2,3
-4 -2 -4 -5 -7 -4S

0.982972 8.74 10 1.53 10 8.08 10 1.44 10 7.18 10 8.08 10  

o f f f f f fE E E E E E E 
=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

The failure probability matrix is as follows: 

4

5 2

7 4 4

8.74 10
P 1.44 10 1.53 10

7.18 10 8.08 10 8.08 10

sym−

− −

− − −

 ⋅
 = ⋅ ⋅ 
 ⋅ ⋅ ⋅ 





 
The upper Ditlevsen’s bound [19] of the failure 

probability of the system S is calculated: 

 
System reliability is complementary and equals to the 

probability of operational events: 

( ) ( )1 0.983oR p E= =S
 

The Renyi’s entropy is as shown, Eqs. (13), (14) and 
(15): 

 (Hmax = 2.8074) 

Robustness of the system is calculated as the conditional 
entropy of the failure modes, Eqs. (18) and (19): 
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ROB
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Maximum robustness is ROBmax (S) = log (Nf) = log (7) 
= 2.585. Hence, the robustness of the prototype is 22% of 
the attainable robustness. 

A. Robustness Based Structural Design 

The aim of the robustness based structural design in this 
study is to find out the most robust structural configuration 
of a pillar on Fig. 2a, by employing EOSA. 

Therefore, the example firstly investigates the effect of 
cross-sectional properties a and b on the system robustness. 
The weight of the component remained constant throughout 
the analysis, that is: 

cross sectional area is constant, A = 900 mm2 and 

pillar length is constant,  L = 500 mm. 

The most robust structural configuration obtained 
expectedly for the symmetrical cross section a = b = 30 mm 
confirms the common engineering reasoning that the pillar 
with symmetrical cross-section should be most insensitive to 
the applied load, Fig. 2b. The result also confirms that 
EOSA provides quantitative measure for the intuited robust 
structural behavior in engineering.  

The robustness of the new configuration (new cross 
section) amounts to ROB(S) = 1.78, which is an significant 
increase of 69% of the maximum log26, Fig. 3, compared to 
the 22% of the prototype. At the same time, the reliability of 
the system increases slightly changes from 0.983 to 0.996. 

 
Fig. 3 Robustness, entropy, reliability and probability of failure for 

pillar cross section 

System of events for the pillar with highest robustness 
clearly shows a more uniform distribution of failure 
probabilities of the prototype: 

1 1,1 2,2 3,3 1,2 1,3 2,3
-4 -3 -3 -6 -6 -3S

0.996041 8.83 10 3.08 10 3.08 10 2.73 10 2.73 10 3.08 10  

o f f f f f fE E E E E E E 
=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

Reliability indices and probabilities of failure for the system 
with maximum robustness are calculated as previously: 

βA1 = 3.1251, pf (A1) = 0.8888×10–3, 
βA2 = 2.73961, pf (A2) = 0.3075×10–2, 
βA3 = 2.73961, pf (A3) = 0.3075×10–2. 

Secondly, the example investigates the effect of the 
pillar length L on the system robustness for symmetrical 
cross section a = b = 30 mm under the condition that the 
system reliability is R(S)≥0.99. This was investigated due to 
practical reasons, since the minimum required reliability is 
often a limiting parameter in structural design. That is even 
more pronounced for lengths ranged from 50 mm to 250 
mm, where the reliability is constantly R(S) = 0.9991, Fig. 4. 
The attained robustness ROB(S) = 2.01 is 78% of the 
maximal value for L = 423 mm. That is a significant 
increase with respect to the robustness of the prototype of 
length L=500 mm. The result indicates that the pillar 
shortening at 0.846 L of the initial length, which can be 
arranged by adequate bracketing at both ends, Fig. 2b, 
significantly increases the system robustness, Fig. 3. The 
system of events that represents pillar with maximum 
robustness (L=423 mm, a=b=30 mm) is: 

1 1,1 2,2 3,3 1,2 1,3 2,3
-4 -4 -4 -7 -7 -4S

0.998218 8.87 10 8.95 10 8.95 10 7.96 10 7.96 10 8.95 10  

o f f f f f fE E E E E E E 
=  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 
Fig. 4 Comparison of robustness and reliability 

The increase in structural robustness results in more 
uniform failure probability distribution, Fig. 5. Typical 
pillar end support is presented on Fig. 6. 

 
Fig. 5 Probability distribution of failure modes probabilities 
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Fig. 6 Importance of pillar end supporting 

VI. CONCLUSIONS 

The paper investigated how the Event Oriented System 
Analysis that employs methods of operational modes and 
effects analysis, engineering reliability methods and the 
entropy concept in probability theory could enhance the 
robustness of structural systems, that is, how to reduce 
sensitivity to possible failure modes.  

The procedure implies on one hand theoretically and 
experimentally well approved and widely adopted 
mechanical criteria for yielding and buckling failures of 
structural elements. On the other hand the procedure implies 
less certain statistical data about random loads and uncertain 
material properties combined with probabilistic theory of 
well established structural reliability to deal with operational 
uncertainties. It is taken for granted that statistics and 
probabilistic theories are well established in the past and 
their results can be extended to engineering problems of 
structural safety without additional proofs. However, it is 
almost impossible and for sure fully impractical to prove the 
accuracy of probabilistic reliability analysis of complex 
structural systems by experimenting. The lack of proofs can 
be compensated by systematic data collection about 
structural uncertainties of loads, workmanship and material 
properties as well as by well thought-out usage of the 
potentials of the probabilistic reliability theory for structural 
safety assessments. 

Nevertheless, the methods of probabilistic reliability 
analysis are at present the only practical approach that can 
deal with structural safety assessment under uncertain 
operational and service conditions. 

The computational procedure on digital computers 
combines two programmable modules, one for calculation 
of structural failure modes and another for probabilistic 
system analysis using some of the well-known methods for 
reliability analysis. The first part is problem dependent and 
has to be programmed for particular structural requirements. 
The second one is normally available as a software solution 
for any of structural reliability methods that suits best. Here, 
the combinatorial explosion in case of greater number of 
events under consideration might be the limiting condition 
in selection of appropriate hardware configurations. 

The example of a robust design methodology based on 
event-oriented system analysis, exhibited in the paper, 
brings forward following observations: 

The entropy measure of robustness is highly sensitive to 
variations in mechanical and material properties of 
structural elements. 

The system robustness may distinguish different 
distributions of failure probabilities even among structures 
of the same reliability. 

The robustness of a structural configuration may indicate 
maximum robustness under various imposed structural and 
operational constraints. 

The increase in structural robustness provides more 
uniform distribution of failure probabilities. 

At the end, the paper recommends the robust design 
based on event-oriented system analysis as a potentially 
useful tool in structural safety enhancement. 

REFERENCES 

[1] Arvidsson M, Gremyr I. Principles of Robust Design 
Methodology. Wiley InterScience, Qual Reliab Eng Int 2008, 
24:24-35 

[2] Taguchi G, Chowdhury S, Taguchi S. Robust Engineering-
Learn How to Boost Quality While Reducing Costs and 
Time to Market. New York: McGraw-Hill, 2000. 

[3] Ben-Haim Y. Uncertainty, probability and information-gaps. 
Reliab Eng Syst Safety 2004 , 85 (1-3): 249-266. 

[4] Baker JW, Schubert M, Faber MH. On the assessment of 
robustness. Struct Safety 2008, 30(3): 253-267. 

[5] Lee MCW, Payne RM, Kelly DW, Thomson RS. 
Determination of robustness for a stiffened composite 
structure using stochastic analysis. Compos Struct 
2008,86(1) : 78-84. 

[6] Salazar DE, Rocco CM,  Zio E. Robust Reliability Design of 
a Nuclear System by Multiple Objective Evolutionary 
Optimisation. Int J Nuclear Knowledge Management 
2007,2(3) :  333-345. 

[7] Park G-J, Lee T-H, Lee KH, Hwang K-H. Robust design: an 
overview. AIAA J 2006 ; 44 : 181–91. 

[8] Žiha K. Event Oriented System Analysis. Probab Eng Mech 
2000 , 15(3) : 261-275. 

[9] Žiha K. Redundancy and Robustness of Systems of Events. 
Probab Eng Mech, 2000, 15(4) : 347-357. 

[10] Žiha K. Event-oriented Analysis of Series Structural Systems. 
Struct Safety, 2001 , 23: 1-29. 

[11] Shannon CE, Weaver W. The mathematical theory of 
communication. Urbana University of Illinois Press. 1949. 

[12] Khinchin AI. Mathematical Foundations of Information 
Theory. New York: Dover Publications, 1957. 

[13] Renyi A. Probability theory. Amsterdam: North-Holland, 
1970. 

[14] Aczel J and Daroczy Z. On measures of information and 
their characterization. New York: Academic Press, 1975. 

[15]  Blagojević B, Žiha K. On the assessment of redundancy of 
ship structural components, OMAE 2008, In: 27th 
International Conference on Offshore mechanics and arctic 
engineering, Estoril, Portugal, 15-20 June, 2008. 



Advanced Shipping and Ocean Engineering (ASOE)  Dec. 2012, Vol. 1 Iss. 1, PP. 1-7 

- 7 - 
www.academicpub.org/asoe/ 

[16] Žiha K. Event-oriented analysis of fail-safe objects. Trans of 
FAMENA 2003; 27(1) : 11-22. 

[17] Žiha K. Redundancy based design by event oriented analysis. 
Trans of FAMENA 2003; 27(2): 1-12. 

[18] Blagojević B. Modeling of ship structural systems by events. 
Ph.D Thesis. University of Zagreb Croatia (in Croatian), 
2005. 

[19] Ditlevsen O, Madsen H. Structural reliability methods. New 
York : J. Wiley, 1996. 

[20] Madsen H., Krenk S, Lind NC. Methods of Structural Safety. 
Prentice Hall: Englewood Cliffs, NJ, 1986. 

[21] Ang AH-S, Tang W-H. Probability concepts in engineering. 
New York : J. Wiley, 2nd edition, 2007. 

[22] Rubinstein RY, Kroese DP. Simulation and the Monte Carlo 
Method. In: Wiley Series in Probability and Statistics. Wiley-
Interscience, 2nd edition, 2007. 

[23] Hamada MS, Wilson A, Reese CS, Martz HF. Bayesian 
Reliability, In: Springer Series in Statistics. Springer, 2008. 

[24] Choi SK, Grandhi RV, Canfield RA. Reliability-based 
Structural Design, New York: Springer, 2007. 

[25] Rausand M, Høyland A. System Reliability Theory: Models, 
Statistical Methods, and Applications. Wiley-Interscience, 
2nd edition, 2003. 

[26] Kreher DL, Stinson DR. Combinatorial Algorithms: 
Generation, Enumeration, and Search, CRC Press, 1998. 

[27] Hall, M. Combinatorial Theory. Blasdell Company: Watham, 
Massachusetts, 1967. 

[28] Wiener N. Cybernetic, or control and communication. Bell 
System Tech J 1948;27. 

[29] Hartley RV. Transmission of information. Bell System Tech 
J 1928; 7. 

 
Branko Blagojević (1968, Split) PhD in 
Naval Architecture (2005 Ship Design) - 
University of Zagreb, Faculty of Mechanical 
Engineering and Naval Architecture, Croatia. 
Associate Professor. Work experience: 
Shipbuilding, Information Technology, R&D, 
Educator. Head of the Department for Naval 
Architecture and Ocean Engineering at 

University of Split. About 10 publications in scientific and 
professional papers and about 20 presentations on conferences. 

Kalman Žiha (1948, Sombor) PhD in Naval 
Architecture (1989 Ship construction.) - 
University of Zagreb, Faculty of Mechanical 
Engineering and Naval Architecture, Croatia. 
Full Professor. Work experience: 
Shipbuilding, Information Technology, R&D, 
Educator. Former head of the Department for 
Naval Architecture and Ocean Engineering at 
University of Zagreb University. Scientific 

editor of the Journal Brodogradnja (Shipbuilding). About 30 
publications in scientific and professional papers and about 80 
presentations on conferences. Member SNAME since 1999. 

 


