ON THE HIGH RANK 7/3 AND 27/3-CONGRUENT NUMBER
ELLIPTIC CURVES

A. S. JANFADA, S. SALAMI, A. DUJELLA, AND J. C. PERAL

AssTrACT. Consider the elliptic curves given by
Eno: y>=a°42sna” — (r* —s>)n’z

where 0 < 6 < 7, cos(f) = s/r is rational with 0 < |s| < r and ged(r,s) = 1. These
elliptic curves are related to the f-congruent number problem as a generalization of
the congruent number problem. For fixed 6 this family corresponds to the quadratic
twist by n of the curve Ep : y* = 2® 4 2s2? — (r? — 5?)z. We study two special cases
0 = 7/3 and 6 = 2w /3. We have found a subfamily of n = n(w) having rank at least
3 over Q(w) and a subfamily with rank 4 parametrized by points of an elliptic curve
with positive rank. We also found examples of n such that E, ¢ has rank up to 7
over Q in both cases.
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1. INTRODUCTION

The construction of high rank elliptic curves is an important problem concerning
elliptic curves. Dujella [5] collected a list of high rank elliptic curves with prescribed
torsion groups. The largest known rank, found by Elkies [8] in 2006, is 28. In this
work we search for high ranks in the family of elliptic curves related with 7/3 and 27 /3
congruent problem.

Let us briefly describe the problem. Consider 0 < # < 7 such that cos(f) = s/r
with 7 and s in Q, 0 < |s| < r and ged(r,s) = 1. A positive integer n is called a
f-congruent number if there exists a triangle with rational sides and area equal to nag,
where ap = V2 — 2. Tt is clear that if a positive integer n is 6-congruent, then so is
nt?, for any integer ¢, so we concentrate on square-free positive integers.

The problem of determining #-congruent numbers is related to the problem of finding
non-2-torsion points on the family of elliptic curves which are called 8-congruent number

elliptic curves,

Enp: y? = 23 + 2sna® — (12 — sH)n’zx,

where r and s are as above, see [28]. Observe that this curve is the quadratic twist by
n of the curve F1g.

This family of elliptic curves was introduced by Koblitz in [13, Section 1.2, Exercise
3], and systematically studied by Fujiwara [9, 10]. Let E, 9(Q) be the group of rational
points on E,, ¢ and denote by ry(n) its (algebraic) rank.

An ordinary congruent number is nothing but a m/2-congruent number and hence a
congruent number elliptic curve is just a 7/2-congruent number elliptic curve. Rogers
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[19, 20] and Dujella, Janfada and Salami [6], exhibited recently a list of congruent
number elliptic curves with 7 /5(n) up to 7.

We restrict our search for high rank #-congruent number elliptic curves to the cases
0 =m/3 and 27/3.

In this paper we present a family of values of n = n(w) such that the curves £y, () 2x/3
have rank at least 3 over Q(w). An equivalent result is valid for the 7/3 case. We also
exhibit examples of curves with rank up to 7 in both cases, 7/3 and 27/3.

Yoshida [24] proved that 7,/3(6) = 1, r;/3(39) = 2 and also 79, /3(5) = 1, 1oy /3(14) =
2. These are the smallest positive integers corresponding to the given Mordell-Weil
ranks. In this paper, we find the smallest positive integers n for which r,/3(n) = 3,4,5
in one case and 79,/3(n) = 3,4 on the other (the result for r,/3(n) = 4 is conditional,
assuming the BSD and GRH).

In our computations we use the Pari/Gp software [18], William Stein’s SAGE software
[26] and Cremona’s mwrank program [4| and the program package Magma [2].

2. PRELIMINARY RESULTS

In this section we recall some results about #-congruent number elliptic curves, in
particular, a criterion for a square-free positive integer to be a #-congruent number.
This, jointly with the subfamilies mentioned before, are the starting point for our search
of good candidates for high rank curves.

We use the Mestre-Nagao sum, the Mestre’s conditional upper bound for the rank of
elliptic curves over Q and the root number as sieving tools in order to reduce the size of
the lists and selecting only the best candidates for high rank. We briefly describe these
items below.

It is known that for the usual congruent numbers there exist a close relation with
elliptic curves, and in fact the following classical result holds: n is a congruent number
if and only if r;/2(n) > 0, see e.g. [13, Section 1.9, Proposition 18]. A similar theorem
was proved by Fujiwara, see [9], for #-congruent numbers.

Theorem 1. Let n be arbitrary square-free positive integer and consider the elliptic
curve Ey, g as above. Then

i): n is a O0-congruent number if and only if there exists a non-2-torsion point in

En,& (@)7

ii): forn #1,2,3,6, n is a 0-congruent number if and only if ro(n) > 0.

Kan [12] proved the following result which gives a family of #-congruent numbers for
every 0 < 6 < m.

Lemma 2. A square-free positive integer n is a 0-congruent number if and only if n is
the square-free part of

(1) pa(p + q)(2rq + p(r — s)),
for some positive integers p, q with ged(p, q) = 1.

Yoshida [24, 25| proved important results concerning @-congruent numbers. In par-
ticular, in [24] he gave the root numbers for the cases 7/3 and 27/3 (see Table 1).

Now we recall the Mestre-Nagao sum for an elliptic curve £ over Q. Reduce E modulo
a prime p and suppose that IV, is the number of points on E with coordinates on Fj,.
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TABLE 1. Root-numbers

2n/3 7/3

1,2,3,6,7,11,13,14, 18 (mod 24) +1 -1
5,9,10,15,17,19,21,22,23 (mod 24) —1  +1

For any positive integer ¢, let P; be the set of all primes less than ¢ and a, = p+1—N,.
The Mestre-Nagao sum is defined by

—a, + 2
p

pEP peP: P

It is experimentally known [14, 17| that high rank curves have large values S(t, E). We
cite [3] for a heuristic argument which links the Mestre-Nagao sum to the Birch and
Swinnerton-Dyer conjecture [1].

Now we describe the Mestre’s conditional (assuming the Birch and Swinnerton-Dyer
conjecture and GRH) upper bound (see |15, 7]) for the rank of an elliptic curve over Q.
Let E be an elliptic curve with conductor N. For an integer m > 1, let

0 if p|N
my\ 9
b(p )_{a;”—i-a’;n if p JN,

where oy, and o, are the roots of 2% — apz + p. Let

(1 — z) cos(mz) + sin(wz) /7 if x € [0,1],
F(m):{o if 2 > 1.

Take a positive real number A\ and write
M) = 2(log(27r) +/ (F(m/)\)/(ez 1) - efz/a:) da?).
0

The Mestre’s conditional upper bound for the rank of E is defined as

772 O
MO E) = T (los(N) ~2 37 b F(mlos(p )/)\)1 &(p) ~ M),

m<e)\

3. A FAMILY WITH GENERIC RANK AT LEAST 3

3.1. Twists. Observe that, once 0 is fixed, the curve
Eng: vy =2+ 2snz® — (r? — s*)n’x
is the quadratic twist with parameter n of the curve Ey 9 :  y? = 23 +2s2% — (12 —s?)x.
General results about twists can be applied for any # and we can find families of rank
at least 2 over Q(r,s) by direct applications of results given in Mestre [16] or Rubin
and Silverberg [21], [22] (see also [11, 27]).
In our particular cases, § = /3 corresponds to s = 1 and r = 2 and 6 = 27/3 to

s = —1 and r = 2, we are lead to study the quadratic twists of the curves
Er3: 234227 -3z
Eory3: 2= g3 —22% -3z

Each curve is the twist of the other by —1 so their twists can be studied jointly.
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3.2. A family of twists for § = 27/3 with rank > 3.
3.2.1. Rank 1. We start with the twists of the curve

Eonyz - y? =23 — 227 — 3z

with parameter (u+a)(u+b)(u+c), so we have the family of twists y*> = 2%+ A2% + Bx
where

A=-2wu+a)(u+0b)(u+c),
B =—3(u+a)*(u+0b)*(u+c)
Now we impose — (b + u)(c + u)? as the z-coordinate of a new point. This is the same

as choosin
¢ _ —3a — 4u + abw? + auw?

c=
1+ bw? + uw?
With this choice we get a family of twists with rank at least 1 over Q(b, u,w) which,
after clearing denominators, can be written as y? = 2> + Ay2? + Bz with

Ay = = 2(b+u)(=3 + bw? + uw?) (1 + bw?® 4+ uw?),
By = —3(b+ u)*(=3 + bw? + uw?)?(1 + bw? + uw?)?.

The z-coordinate of the infinite order point is 21 = —(b + u)(—3 + bw? + uw?)2.

3.2.2. Rank 2. We proceed by forcing 3(b + u)(1 + bw? 4+ uw?) as the x-coordinate of
a new point in the previous rank 1 family of twists. For this purpose it is enough to
choose

4+ u? + uw? + udw?
(14 u?)w?
Now the new family of twist can be written as y? = 2% + Agx? + Box with
Ay = —10(=2 4 u)(2 + u)(—1 + 2u) (1 + 2u) (1 + u?),
By = — 75(=24u)%(2 + u)?(—1 + 2u)?(1 + 2u)3(1 + u?)2.
The z-coordinates of the two infinite order points are
21 =(=2 4 u)(2 + u)(=1 + 2u)*(1 + 2u)*(1 + u?),
Lo = — 15(=2 +u)(2 + u)(1 + u?)2

These two points are independent, so the new family has rank at least 2 over Q(u).

b=

3.2.3. Rank 3. Finally we choose
70 — 10w + w?
3(5 + w?)

in order to get 5(—2 +u)%(—1+2u)?(1 4 u?) as z-coordinate of a new point in the rank
2 family. In this way we get y? = 23 4+ Azx? + B3z with

Az = —2(=5 4+ w)(—2 + w) (4 + w) (25 + w) (31 — 4w + w?)
(100 — 10w + 7Tw?) (1025 — 280w + 66w? — 4w® + 2w?),
By = —3(=5 4+ w)*(—=2 4+ w)?(4 + w)?(25 + w)*(31 — 4w + w?)?
(100 — 10w 4 7w?)?(1025 — 280w + 66w? — 4w® + 2w?)?
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The z-coordinates of the three independent points are given by

-1 2 2 2\2
(100 — 10w + Tw?)(1025 — 280w + 66w? — 4w® + 2w?),
x93 =3(—2 4 w)(4 + w) (100 — 10w + 7Tw?) (1025 — 280w + 66w? — 4w® + 2w*)?,

x3 =(31 — 4w + w?)*(100 — 10w + Tw?)?(1025 — 280w + 66w? — 4w + 2w?).

Xr1 =

For w = 10, after reducing coefficients, we get the rank 3 curve given by y? = 23 —

4422% — 1465232, The specialized points are
P, ={-2873/81,1562912/729}, P, = {867,13872}, P35 = {2873/4,48841/8}.

A calculation with mwrank [4] shows that these three points are independent. An
argument of specialization [23] proves that this family has rank at least 3 over Q(w).

Observe that the parameter for the rank 3 family of twists can be made both positive
and negative for infinitely many values of w, so we get a family of rank 3 twist for both
27/3 and 7/3 congruent number problem.

3.3. A subfamily with rank > 4. We can find a subfamily with rank > 4 in the
family 32 = 23 + A32? + Bsx by forcing

1
—7(-5+ w)3(=2 4+ w)%(4 4+ w)*(25 + w)?(31 — 4w + w?) (100 — 10w + Tw?)
to be the z-coordinate of a point on the curve. We get the condition
(2) 25w — 26w + 699w? — 3770w + 13300 = 22.

It can be transformed to the elliptic curve
V? = X%+ X% - 17220X — 352800

with positive rank (rank is equal 2 with generators [255, 3450], [—22, 126], corresponding
to the points (w, z) = [315/74,695275/5476], [8, —342] on the quartic (2)). Hence, we
get infinitely many rational parameters w for which the curve y? = 23 4+ Asz? + Bsx
has the rank > 4.

4. STRATEGIES AND RESULTS

4.1. General setting. Now we attempt to find high rank elliptic curves F), ¢ in two
cases § = w/3 and 27 /3. We will use the expression (1) and the families given in the
previous section as sources for good candidates for high rank curves. We shall use the
following notations: 79(n) for the rank and sgp(n) for the 2-Selmer rank (see e.g. [6]),
which is an upper bound for the rank; that is r9(n) < sg(n).

We proceed in three steps, depending on the range and the form of the square-free
positive integers n.

Step (I) In this step we take all the square-free positive integers n < 5 x 10%. By a
direct computation with mwrank, we find the 2-Selmer rank of E,, ¢ for all square-free
n in that range and in each case § = 7/3 and 27/3. Our computations show that there
are no integers n with sp(n) > 6. Table 2 presents the distribution of the number of
these square-free integers according to the values of sp(n). Finally, we compute directly
rank rg(n) with mwrank to find the smallest n’s with 7,/3(n) = 3,4,5 as well as the
smallest n’s with 7y, /3(n) = 3,4.
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TABLE 2. Distribution of sg(n)

sg(n) 0 1 2 3 4 5 >6 Total

0 =m/3 783043 1401045 734290 116158 5045 52 0 3039633
0 =2m/3 760511 1374165 751192 144641 9038 86 0 3039633

Step (II) We consider all square-free §-congruent numbers n > 5x 10 of the form (1)
in Lemma 2 with 1 < p,q < 10%, gcd(p, q) = 1, and having at least 4 odd prime factors.
We get a list with more than 7x 10° elements for each of the cases § = 7/3 and = 27/3.
Using the Mestre-Nagao sum, we reduce by Pari/Gp program the length of this list.
In fact, we choose the n with S(103, E, 4) > 15,5(10%, E,.9) > 20,5(10°%, E, ) > 40,
for which s;/3(n) > 6, and sy;/3(n) > 5. After computing the values of rg(n) for
these candidates by mwrank, we finally select the n with 7. /3(n) = 6,7 and the n with
Tox/3(n) = 5,6. In the cases in which mwrank do not give exact value rp(n) we compute
the Mestre’s conditional upper bound M (X, E,, g) for ro(n) with 15 < X < 24.

Step (III) In this part we use the families in section 3 in order to search for good
candidates for high rank. Since curves in the families with rank 3 and 4 have large
coefficients, we find the family with rank 2 the most suitable for our purpose. The search
for rank 6 curves is conducted upon the rank 2 family with u = p/q for 1 < p < ¢ < 4000
with sieving conditions S(523, E,, 9) > 18, S(1979, E,, g) > 28 and the Selmer rank > 6.

The search for rank 7 is made in the same family of twists with u = p/q for 1 <p <
g < 13000 with the following conditions, root number equal to —1, S(523, E,, 9) > 20,
S5(1979, E,, ) > 30 and the Selmer rank > 7. The ranks are calculated with mwrank.
For the case 27w/3 for p = 4127 and ¢ = 10004, i.e. for n = 12748697412909916241
the corresponding curve has rank 7. In this case, the direct application of mwrank
gives only 6 < rank < 7, but applying mwrank to an isogenous curve give the seventh
independent point.

In the next subsections, we collect the results. We find the smallest integers n such
that 7,/3(n) = 3,4,5 and ry,/3(n) = 3,4, and we exhibit examples of curves with rank
up to 7 in both cases.

4.2. The case 0§ = 7/3. Rank 3: The integers 407 and 646 are the two smallest ones
among 116158 integers n less than 5 x 10° with sz/3(n) = 3. We have r./3(646) = 3,
while for n = 407 Magma gives that the analytic rank is 1, so by Kolyvagin’s theorem
77/3(407) = 1. Therefore, the value n = 646 is the minimum value producing a curve
with rank 3.

Rank 4: The smallest n that we have found with rank 4 is n = 172081. There are 63
integers n less than 172081 with s, /3(n) = 4. For 29 cases mwrank gives 0 < r/3(n) <
4, and for all these cases the 4-descent implemented in Magma gives that the rank is
< 2. In the remaining 34 cases, mwrank gives 2 < 7/3(n) < 4. In the most of these
cases the 4-descent shows that rank is equal to 2. However, in three cases: n = 31622,
143222, 150866, we are not able to show that rank < 4 unconditionally. In these cases,
we use Mestre’s conditional upper bound (with A = 11), which gives 7,/3(n) < 2, so
7z/3(n) = 2 (conditionally). Thus, the value n = 172081 is, conditionally (assuming
BSD and GRH), the minimum value giving a curve with rank 4.
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Rank 5: The direct computation shows that n = 221746 is the smallest among
52 integers n in the observed range with s;/3(n) = 5, and since r,/3(221746) = 5,
n = 221746 is the smallest positive integer giving rank 5.

Rank 6: The smallest n that we have found with rank 6 is n = 11229594411. We do
not know if it is the smallest one with this property. The values of n given in Table 3
also give curves with rank 6.

TABLE 3. Case 7/3. Other n with rank 6

40004232681, 158763281079, 167514827545, 198606002595,
251819173095, 271314827665, 3302971161265, 3492293850595,
5144668978371, 6634009064865, 17073273800095, 40582123000419,

45563330326345, 7658263493840940211.

Rank 7: The only n that we have found giving rank 7 is n = 365803464586. We do
not know if it is the smallest one.

TABLE 4. Ranks in the cases 6 = /3

ro(n) n Generators of Ey, g : y2 = 2% + 2snz? — (r? — s?)n?z
3 646 [-722,34656], [6137,521645], [-1216,40432].
4 172081 [-505141,-61627202], [-58621,-78669382],

[-440076,-143244738], [224175,92987790].

5 221746 [345450,207822720]1, [-15792,49357896]1, [994896,11300360401,
[-13254,-45063600], [-386575,-255989965].

6 11229594411 [904103532759/25,-992069570757491352/125],
[1541731888897/16,2090318638263775025/641,
[265444083202036/2025,4636387440736982658134/91125],
[719501508201/64,40873417425022581/512],
[13006760076899764/269361,1693181585331404000267498/139798359],
[60286669020153449/278784,11896090671289659453790795/147197952].

7 365803464586 | [433764757524,212456676940982628],
[1291274050073, -1689545579159165609],
[-59335333874904423/3644281,-570541659890431976790514695/6956932429],
[11954902524369/4,-45277466996084516865/81,
[2138828658027602/5329,56890395483549429623312/389017],
[786769181014433554/80089,721982407380536692088852160/22665187],
[-562236028164373765342/540237049,
3617165210435366625559445197360/12556729729907].
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4.3. The case ¢ = 27/3. Rank 3: The smallest n with sy /3(n) = 3 is n = 221. Since
Tor/3(221) = 3, we conclude that n = 211 is the smallest n for which the rank is 3.

Rank 4: The smallest n that we have found with rank 4 is n = 12710. There are
two smaller positive integers with Selmer rank equal to 4 (n = 4718 and n = 6398) but
having analytic rank 0, so by Kolyvagin’s theorem the algebraic rank is also 0. Thus
the minimality of n = 12710 follows.

Rank 5: The smallest n that we have found with rank 5 is n = 16470069. We do not
know if it is the smallest one with this property.

Rank 6: We have found several positive integers n with ry;/3(n) = 6 where n =
456249066 is the smallest one. Other values are given in Table 5.

TABLE 5. Case 27w/3. Other n with rank 6

764046470, 902472906, 5062245006, 9667090290,
11801899970, 19969987310, 20240772006, 23819599518,
24080567966, 30834423438, 39360775454, 58181539130,
64256704710, 98708770590, 106366008126, 148280772990,

181684390314, 292826163630, 309000045354, 333515184002,
554883184814, 653918457570, 685374515826, 713465075246,
860842004286, 1185986591790, 1248260820170, 2004510092970,
2743972777910, 10745486363210, 55967962170246, 90952836208430,
104732378607110, 177348563238770, 219163751391326, 1459584795789354,
29410732919116094, 40315634933149394, 30375400815771401390.
TABLE 6. Ranks in the cases 6 = 27/3
ro(n) n Generators of Ey, g : y2 = 2% + 2snaz? — (r? — s2)n’z
3 221 [-204,1734], [-169,2704], [4131,-249696].
4 12710 [-310,384400], [-9920,-11532001,
[48050,5381600], [76880,16337000].

5 16470069 [-3115959/4,-198146948769/8],
[-16255958103/1024,-813789518594283/32768],
[118172745075/1849,-21701053829180880/79507],
[174895662711/3481,-10850526914590440/205379],

[18013358979/361, -275820552686448/6859].

6 4562490669 [1372171206,2930957696016], [24303608784,37149888797002801],
[1677715326,-33259028622624], [3635049873,-183588193835865],
[27273656667348/18769,39342846732689875284/2571353],
[36967427406/25,2217080599939296/125].

Rank 7: The integer n = 12748697412909916241 with 79, /3(n) = 7 has been found

4127

within the family of rank 2 of section 3. It correspond to u = {5555 in such family. The
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data for this curve are too large to fit in the table, so we give them here. The rank and
independent points were found by applying mwrank [4] to one of its 2-isogenous curves.
The curve is

y? = 2% — 25497394825819832482x% — 4875878571778079741951246524489067102432
and z-coordinates of 7 independent points are:
—3478204633589378700,

—11685945449719133341,
—6574179551855299730183742058990161459509481 /575598836877796985970025,
2582493196592574693159131199086103504610591321 /64687220044469657223311844,
937805074272703399240860666902959419125740930561 /18861375626453019864153493504,

110465973536551601097466070885180213004367806519686653884678929416873279865087505494460413809 /
11748335750378251588082756719839642493430053195853237296682112610898176,

60467717012835269079195671205236355556884315494450504834931884615838950389619168774330021927698790345943423897889681 /
242330170223125876400553676591840836189420653457595172659874108380495724928358099557362727572100.

REFERENCES

[1] B. J. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218
(1965), 79-108.
[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symb.
Comp. 24 (1997), 235-265.
[3] G. CampPBELL, Finding elliptic curves and families of elliptic curves over Q of large rank, PhD
Thesis, Rutgers University, 1999.
[4] J. CREMONA, Algorithms for Modular Elliptic Curves, Cambridge University Press, Cambridge,
1997.
[5] A. DUJELLA, High rank elliptic curves with prescribed torsion (2003 — 2012).
http://www.maths.hr/“duje/tors.html
[6] A. DuJELLA, A. S. JANFADA AND S. SALAMI, A search for high rank congruent number elliptic
curves, J. Integer Seq. 12 (2009), Article 09.5.8.
[7] A. DuieLLA AND M. JUKIG BOKUN, On the rank of elliptic curves over Q(i) with torsion group
Z/A7 x 7Z/AZ, Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), 93-96.
[8] N. D. Erkigs, Three lectures on elliptic surfaces and curves of high rank, Lecture notes, Ober-
wolfach, 2007, arXiv:0709.2908.
[9] M. FUITWARA, 6-congruent numbers, in: Number Theory, K. Gydry, A. Peths and V. Sés (eds.),
de Gruyter, 1997, pp. 235-241.
[10] M. FuJiwARA, Some properties of 0-congruent numbers, Natural Science Report, Ochanomizu
University, 118, no. 2 (2001) 1-8.
[11] F. Gouvéa and B. Mazur, The square-free sieve and the rank of elliptic curves, J. Amer. Math.
Soc. 4 (1991), 1-23.
[12] M. KAN, 0-congruent numbers and elliptic curves, Acta Arith. 94 (2000) 153-160.
[13] N. KoBLiTz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics
97, 2nd edition, Springer-Verlag, Berlin, 1993.
[14] J.-F. MESTRE, Construction de courbes elliptiques sur Q de rang > 12, C. R. Acad. Sci. Paris Ser.
1295 (1982) 643-644.
[15] J.-F. MESTRE, Formules ezplicites et minorations de conducteurs de variétés algébriques, Com-
positio Math. 58 (1986), 209-232.
[16] J.-F. MESTRE, Rang de certaines familles de courbes elliptiques d’ invariant donné, C. R. Acad.
Sci. Paris 327 (1998), 763-764.
[17] K. NaGAao, An ezample of elliptic curve over Q with rank > 21, Proc. Japan Acad. Ser. A Math.
Sci. 70 (1994) 104-105.
[18] PARI/GP, version 2.3.3, Bordeaux, 2008, http://pari.math.u-bordeaux.fr



10

A. S. JANFADA, S. SALAMI, A. DUJELLA, AND J. C. PERAL

[19] N. ROGERS, Rank computations for the congruent number elliptic curves, Exper. Math. 9 (2000),

591-594.

[20] N. Roaers, Elliptic curves 2° + y* = k with high rank, PhD Thesis in Mathematics, Harvard

University, 2004.

[21] K. RuBIN, A. SILVERBERG, Twists of elliptic curves of rank at least four, in: Ranks of elliptic

curves and Random Matrix Theory, Cambridge University Press, 2007, pp. 177-188.

[22] K. RUBIN, A. SILVERBERG, Rank frequencies for quadratic twists of elliptic curves, Exper. Math.10

(2001), 559-569.

[23] J. H. SimvERMAN, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New

York, 1994.

[24] SHIN-ICHI YOSHIDA, Some variant of the congruent number problem, I, Kyushu J. Math. 55 (2001)

387-404.

[25] SHIN-ICHI YOSHIDA, Some wariant of the congruent number problem, II, Kyushu J. Math. 56

(2002) 147-165.

[26] W.A. STEIN, SAGE: Open source mathematical software, Version 4.3.

27]

http://modular.fas.harvard.edu/SAGE
C. L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary
forms, J. Amer. Math. Soc. 8 (1995), 943-973.

[28] J. Topr, N. Yul Congruent number problems and their variants, in: Algorihtmic number theory,

Math. Sci. Res. Inst. Publ. 44, Cambridge University Press, Cambridge, 2008, pp. 613-639.

DEPARTMENT OF MATHEMATICS, URMIA UNIVERSITY, URMIA, IRAN
E-mail address: a.sjanfada@urmia.ac.ir

INSTITUTO NACIONAL DE MATHEMATICA PURA E APLICADA, RI0 DE JANEIRO, BRAZIL
E-mail address: salami@impa.br

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZAGREB, BIJENICKA CESTA 30, 10000 ZAGREB,

CROATIA

E-mail address: duje@math.hr

DEPARTAMENTO DE MATEMATICAS, UNIVERSIDAD DEL PAIs VAasco, ApTpo. 644, 48080 BILBAO,

SPAIN

E-mail address: juancarlos.peral@ehu.es



