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Zagreb, 2012.Dr
af
t



This doctoral’s thesis has been done at the University of Zagreb, Faculty of

Electrical Engineering and Computing, Department of Electronic Systems and

Information Processing.

Thesis Advisors: Professor Sven Lončarić, PhD
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Medicine, Cor et Vasa and Liječnički vjesnik, and reviewer in many cardiology

journals. He got the Rector’s Award in 1985, the Ladislav Rakovac diploma in

2004, the International League of Humanists award in 2008, and the Croatian

Academy of Sciences and Arts award in 2010.

Dr
af
t
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gdje je napredovao od znanstvenoga novaka preko vǐseg asistenta, docenta,

izvanrednog profesora do redovitoga profesora 2008. g. Usporedno s fakul-

tetskim obvezama radi i na KBC-u Zagreb od 1989., gdje je obavio specijal-

izaciju iz interne medicine a potom i subspecijalizaciju iz kardiologije. Danas je

predstojnik Klinike za bolesti srca i krvih žila KBC-a Zagreb i dekan Medicin-
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Summary

The dissertation describes a method for registration and model-based analy-

sis of transaortic valvular flow ultrasound images. The image analysis is done

from segmented images, where the segmentation is obtained by segmentation

propagation from the atlas. The results showed that variability of the auto-

mated segmentation relative to the manual is comparable to the intra-observer

variability. From the segmentation morphological feature are extracted and it

was shown that the symmetry of aortic outflow profile relates to postopera-

tive functional recovery of patients with aortic stenosis, and that it is is better

predictor of functional recovery than other routinely used measurements. The

accuracy of the segmentation depends on the registration, which in turn de-

pends on the atlas and correct alignment of atlas and image. Thus, methods

for atlas formation and definitions of image similarity measure are investigated.

We show that the atlas constructed from multiple template images and multi-

ple expert segmentation is fast method for atlas formation which produce atlas

whose properties are comparable to atlas obtained by more complex atlas for-

mation methods. It is also discussed under which circumstances the proposed

method produces the same result as the classical atlas fusion method. Also, a

novel image similarity measure, named absolute joint moments, is proposed. It

was shown, that absolute joint moments can be observed as a generalization

of the correlation, but also, via cumulant expansion of the probability density

function as the approximation of the mutual information. Experimental results

also showed that absolute joint moments combine good properties of both

correlation coefficient and mutual information.

Keywords: medical image analysis, Doppler ultrasound imaging, cardiac out-

flow velocity profile, image registration, template matching, model-based seg-

mentation, segmentation propagation, atlas formation/construction, similarity

measure, absolute joint momentsDr
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Sažetak

Registracija i analiza ultrazvučnih slika protoka

preko aortnog zaliska utemeljena na modelu

U ovom radu prikazana je metoda za registraciju i analizu ultrazvučnih slika

protoka preko aortnog zaliska utemeljena na modelu. Uporaba ultrazvučnih

snimaka protoka je česta u kliničkoj dijagnostici i predstavlja dio svakodnevnog

posla za kardiologe. Automatiziranje tog posla može olakšati i ubrzati postupak

donošenja kliničke dijagnoze, te povećati pouzdanost i ponovljivost mjerenja.

Ultrazvučne slike protoka dobivene su na temelju Dopplerovog efekta, te prika-

zuju kretanje objekta u ravnini ultrazvučnog vala. Za dijagnostiku je od posebne

važnosti mjeriti brzine protoka, a mjereći kretanje preko aortnog zaliska Dopp-

lerovom metodom u zapisu, uz protok, često zabilježimo otvaranje i zatvaranje

zaliska. Zahvaljujući svom iskustvu kardiolozi su u stanju razlikovati koji dio

ultrazvučne snimke predstavlja klinički važnu informaciju, a koji nevažnu, te su

u stanju izmjeriti valjane vrijednosti čak i kada otvaranje i zatvaranje zalistaka

zakrije dio informacije o protoku krvi. Prvi korak u obradbi i razumijevanju

sadržaja slike, pa time i mjerenja objekta u slici, je segmentacija slike. Metode

segmentacije slike temeljene na modelima predstavljaju jednostavan način da

se potrebno predznanje ugradi u proces segmentacije slike. Osnovna ideja je

da se algoritmu za segmentaciju dodijeli primjer na temelju kojega će on seg-

mentirati sve ostale slučajeve. Kao primjer može poslužiti jedan element skupa

(npr. prototip) ili vǐse njih (uzorci). Kada govorimo o modelu, podrazumije-

vat ćemo primjer oblikovan na temelju raspoloživih uzoraka ili odabran iz njih.

Ipak, važno je napomenuti kako metode segmentacije modelom obično ne pod-

razumijevaju i ne zahtijevaju treniranje prilikom izgradnje modela, tipično za

druge algoritme što pokušavaju implementirati računalnu inteligenciju. Tipičan

način ugradnje znanja u proces segmentacije je definiranje para sastavljenog

od slike i pripadajuće segmentacije koju je predložio stručnjak, u našem slučaju

kardiolog. Par definiran slikom i pripadajućom segmentacijom obično nazivamo

atlasom. Koristeći atlas (odnosno bilo koju segmentiranu sliku) možemo seg-

mentirati neku drugu sliku koristeći metodu prenošenja (eng. propagation)

segmentacije. Prenošenje segmentacije sa slike koja ima poznatu segmentaciju

na sliku koja nije segmentirana vřsi se tako da se dvije slike upare u procesu reg-
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istracije (uparivanja) slika nakon čega se segmentacija s atlasa preslika na sliku

koju želimo segmentirati. Pretpostavka ovog procesa je da je moguće upariti

slike na način da segmentacija pridružena atlasu odgovara željenoj segmentaciji

slike. U osnovi to ovisi o definiciji sličnosti izmedu dviju slika i dopuštenoj ge-

ometrijskoj transformaciji, odnosno o sposobnosti optimizacijskog algoritma da

pronade najveću sličnost medu slikama u okvirima dopuštene transformacije.

Nakon uvoda, pregleda nužnih matematičkih elemenata i pojmova, pre-

gleda dosadašnjih istraživanja i opisa dohvata podataka ovaj rad opisuje četiri

glavna dijela istraživanja, te njihove rezultate. Prvi dio se bavi segmentaci-

jom ultrazvučnih slika protoka preko aortnog zaliska te izlučivanjem značajki

iz dobivene segmentacije. Drugi dio ispituje metode za oblikovanje i/ili odabir

modela, dok se treći dio bavi definicijom mjere sličnosti. Posljednji, četvrti dio

pokazuje uporabu i korisnost razvijene metode za segmentaciju slika protoka

preko aortnog zaliska. Prvi i posljednji dio predlažu rješenje zadanog prob-

lema koristeći varijacije postojećih metoda, dok sredǐsnji djelovi opisuju nov

metodološki pristup, odnosno predstavljaju teoretsko unaprjedenje i/ili poopće-

nje postojećih metoda. Od rezultata bismo istaknuli da predložena automatska

segmentacija utemeljena na modelu daje segemntaciju čija je varijabilonost u

odnosu na segmentaciju koju je načinio kardiolog tek neznatno veća od varija-

bilosti dviju segmentacija načinjenih od istog kardiologa. Takoder, morfološke

značajke izlučene iz segmentacije su pokazale da je simetričnost protoka preko

aortnog zaliska u svezi s oporavkom pacijenta nakon zamjene zalistaka i da

mjera simetričnosti bolje predvida oporavak pacijenta no druge, rutinske mjere

aortnog protoka. U teoretskom dijelu rada raspravljali smo kako točnost sege-

mentacije ovisi o atlasu i mjeri sličnosti izmedu dviju slika. Pokazali smo da atlas

izgraden na temelju vǐse slika i vǐse segmentacija dobivenih od kardiologa postǐze

svojstva slična atlasima izgradenim mnogo složenijim metodama. Takoder samo

pokazali uz koje uvjete ovaj način konstrukcije atlasa rezultira atlasom koji

postǐze istu točnost kao segmentacija nastala kombiniranjem vǐse atlasa - poz-

natija i kao fuzija atlasa. Nova mjera sličnosti koju predlažemo nazvali smo

medumomentna mjera jer je temeljena na apsolutnoj sumi medusobnih mome-

nata. Pokazali smo da ovakva mjera može biti promatrana kao generalizacija

korelacije, ali i da raspisom funkcije gustoće vjerojatnosti preko kumulanata,

može biti gledana kao aproksimacija medusobne informacije. Eksperimentalni

rezultati su takoder pokazali da medumomentna mjera kombinira dobra svojstva

i korelacije i medusobne informacije.

Ključne riječi: dohvat i analiza medicinskih slika, Dopplerov ultrazvuk, aortni

protoci, registracija slike, poravnavanje s prototipom, segmentacija modelom,

propagacija segmentacije, odabir/izgradnja atlasa, mjera sličnosti, medusobni

momentiDr
af
t



Contents

1 Introduction 1

1.1 Clinical motivation . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Technical motivation . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6

2.1 Probability theory basics . . . . . . . . . . . . . . . . . . . . 6

2.2 Generating functions . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Moments and cumulants . . . . . . . . . . . . . . . . . . . . 11

2.4 Image registration basics . . . . . . . . . . . . . . . . . . . . 12

2.5 Geometric transformation . . . . . . . . . . . . . . . . . . . . 13

2.6 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Taylor series and Hermite polynomials . . . . . . . . . . . . . 16

3 Prior Art 18

3.1 Medical image analysis . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Blood flow velocity profile analysis . . . . . . . . . . . 19

3.1.2 Image segmentation . . . . . . . . . . . . . . . . . . 19

3.2 Model-based segmentation . . . . . . . . . . . . . . . . . . . 20

3.2.1 Template matching . . . . . . . . . . . . . . . . . . . 20

3.2.2 Deformable models . . . . . . . . . . . . . . . . . . . 20

3.2.3 Model image . . . . . . . . . . . . . . . . . . . . . . 21

3.2.4 Atlas-based Segmentation . . . . . . . . . . . . . . . 22

3.2.5 Atlas and its use in medical applications . . . . . . . . 22

3.3 Atlas construction . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Image Registration . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Transformation . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Image similarity measure . . . . . . . . . . . . . . . . 27

3.4.3 Optimization algorithm . . . . . . . . . . . . . . . . . 29

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Data Acquisition 31

4.1 Ultrasound imaging and Doppler effect . . . . . . . . . . . . . 31

4.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 32

i

Dr
af
t



4.3 Image preprocessing . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Lower and upper signal boundary . . . . . . . . . . . . 33

4.3.2 Ejection period extraction . . . . . . . . . . . . . . . 34

4.3.3 Noise reduction . . . . . . . . . . . . . . . . . . . . . 35

5 Atlas-based Segmentation of Cardiac Outflow Velocity Profiles 36

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.1 Registration . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Atlas Construction . . . . . . . . . . . . . . . . . . . 41

5.2.3 Atlas-based Segmentation . . . . . . . . . . . . . . . 41

5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Phantom study-based registration validation . . . . . 43

5.3.2 Real image-based registration validation . . . . . . . . 44

5.3.3 Inverse consistency-based registration validation . . . 45

5.3.4 Atlas-based segmentation validation: Healthy volunteers 45

5.3.5 Atlas-based segmentation validation: Patients . . . . . 48

5.3.6 Cardiac parameter-based segmentation validation . . . 49

5.3.7 Intra-observer variability . . . . . . . . . . . . . . . . 51

5.3.8 Statistical analysis of manual and automatic parameter

measurement . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . 54

6 Atlas Construction 57

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Least biased atlas construction . . . . . . . . . . . . . . . . . 58

6.2.1 Image registration . . . . . . . . . . . . . . . . . . . 58

6.2.2 Average intensity model . . . . . . . . . . . . . . . . 59

6.2.3 Median intensity model . . . . . . . . . . . . . . . . . 59

6.2.4 Construction of least biased model with respect to trans-

formation function . . . . . . . . . . . . . . . . . . . 59

6.2.5 Average shape and intensity model . . . . . . . . . . . 60

6.2.6 Experiments and Results . . . . . . . . . . . . . . . . 61

6.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Atlas fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Relation to other works . . . . . . . . . . . . . . . . . 64

6.3.2 Theoretical considerations . . . . . . . . . . . . . . . 65

6.3.3 Experiments and results . . . . . . . . . . . . . . . . 67

6.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 71

7 A Framework for Image Similarity Measure Construction 72

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Absolute Joint Moments . . . . . . . . . . . . . . . . . . . . 74

ii

Dr
af
t



7.3.1 Framework for constructing image similarity measures 76

7.3.2 Proposed image similarity measure . . . . . . . . . . . 76

7.4 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.4.2 Image degradation model . . . . . . . . . . . . . . . . 78

7.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . 79

7.5.1 Robustness test . . . . . . . . . . . . . . . . . . . . . 79

7.5.2 Accuracy test . . . . . . . . . . . . . . . . . . . . . . 81

7.5.3 Execution time test . . . . . . . . . . . . . . . . . . . 89

7.5.4 Medical image registration test . . . . . . . . . . . . . 90

7.6 Overall comparison . . . . . . . . . . . . . . . . . . . . . . . 91

7.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . 91

8 The Use of Developed Models in Clinical Practice 94

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . 96

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9 Conclusion 100

A A1 126

A.1 Relationship between AJM and MI . . . . . . . . . . . . . . . 126

A.2 AJM Properties . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.3 AJM existence conditions . . . . . . . . . . . . . . . . . . . . 138

A.4 Numerical computations consideration . . . . . . . . . . . . . 139

iii

Dr
af
t



Chapter 1

Introduction

Main focus of this thesis is analysis of transaortic valvular flow ultrasound im-

ages. Morphological features of the aortic outflow ultrasound images are often

used in clinical practice for diagnosis of cardiovascular diseases. In current clin-

ical practice, the features are extracted from expert’s manual segmentation.

To relieve the clinicians from the increasing load of work due to the increase

of cardiovascular diseases, the goal is to develop an automated method. Due

to the intrinsic properties of the problem the model-based approach is used.

In order to implement a model-based segmentation, first a model needs to be

costructed. Second, a correspondence between model and target image needs

to be defined in order to propagate the segmentation from the model to a

target. For this reason the thesis focuses on investigating model formation

techniques and the very definition of correspondence, as well as the transaortic

valvular flow segmentation and analysis.

The thesis is structured as follows. The rest of this chapter explains the

motivation and describes the problem. Afterwards, a preliminary definitions and

notation are given in Chapter 2. Following preliminaries, the overview of the

prior art in the model-based segmentation and accompanied methods for model

construction, and definition of correspondence between image and a model, are

given in Chapter 3. In Chapters 4–8 data acquisition is presented, followed by

presentation of the results to each challenge described in the problem state-

ment (Section 1.3). Chapters 5 and 8 describe a solution of a novel problem

using the problem specific variants of the existing methods. On the other hand,

Chapters 6 and 7 describe a novel methodological approach and gives a differ-

ent theoretical framework in order to generalize and/or increase properties of

current methods. At the end appendices are listed and the conclusion is given.

1.1 Clinical motivation

To highlight the idea that motivated the research let’s observe the heart as a

muscular pump. The muscle develops force to pump blood through the blood

vessels. Any change in muscle (e.g. myocardial deformation like ischemia) or
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in the diameter of the blood vessel (e.g. narrowing of the valve like aortic

stenosis) would lead to change in force and pressure, and subsequently - flow.

Thus, by observing the time-change of the velocities, the pathologies can be

noticed. This indeed is the often clinical routine, where the cardiac patients

are examined using Doppler ultrasound to get a useful information about blood

velocities through the cardiac valves [20]. The Doppler signal used for this is a

continuous wave Doppler signal that represents time-change of velocities along

a scan line. Diagnostically useful informations are in the shape of this signal,

or in it’s morphological feature. To acquire them, the signal segmentation and

quantification is necessary.

In current clinical practice, basic segmentation and measurements of

aortic outflow Doppler traces are routinely obtained by manual tracking of

Doppler traces. Manual tracking of the traces is often cumbersome, time-

consuming and dependent on the expertise of the cardiologist/sonographer.

Moreover, a detailed analysis of Doppler echocardiography traces is often lim-

ited by a high frequency workflow in the echocardiographic laboratory.

Several studies highlight the problem of cardiovascular diseases in a

modern world, in th meantime indirectly showing the clinicians’ increasing

amount of work in the field [66, 7, 247]. Here are some statistical details

extracted from these studies:

At the beginning of the 20th century, cardiovascular disease was

responsible for fewer than 10% of all deaths worldwide, while today

that figure is about 30%, with 80% of the burden now occurring in

developing countries [66]. In 2001, cardiovascular disease was the

leading cause of death worldwide [66]. In United States, coronary

heart disease caused 1 of every 5 deaths in 2004 [7]. Croatia is

not an exception from this case, as according to the statistics of

the Croatian National Institute of Public Health from 2004, cardio-

vascular diseases were responsible for 53% of all deaths in Croatia,

which is roughly twice more than deaths caused by neoplasms or ap-

proximately three times more than all other causes of death [247].

There is also studies showing a tremendous increase of more than

60% in coronary heart disease death rates between 1988 and 1998

in Croatia [66].

Therefore, it is expected, that the automatic segmentation of images

could relieve clinicians from the labor intensive aspects of their work while

increasing the accuracy, consistency, and reproducibility of the interpretations,

in the meantime allowing them to focus more on other aspect of their work.

The reason why ultrasonic imaging is routinely used in clinical practice is its non-

invasive property [201], however, ultrasonic imaging suffers from several issues,

such as low spatial (or temporal) resolution, ill-defined boundary, poor contrast,

acquisition artifact or other noise place additional demands on segmentation.
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1.2 Technical motivation

Clinically obtained aortic outflow velocity images sometimes differ significantly,

resulting in low (local) correlation and different resolutions with differing tex-

ture. Additionally, Doppler ultrasound images inherently contain a lot of (spe-

ckle) noise, various acquisition artifacts, and poor contrast, making the seg-

mentation even more challenging. Some of these challenges are depicted in

Figure 1.1, e.g. notice how the brightness and contrast vary across images. An

example of the object that needs to be segmented is the object within the white

ellipsoid in the Figure 1.1a. This object represents the velocities of the objects

along the scanning line when the heart valves are open i.e. when the blood

flows form the heart into the aorta. Although the region of interest is usually

the largest bright region within image, this is not always the case, as we can see

in the Figure 1.1d. Additional problems are low velocity rejection region which

depends on the machine settings (clutter filter), and can significantly vary in

size (see Figure 1.1b) depending on the user’s settings, and aliasing and valve

clicks (see Figure 1.1c and Figure 5.1).

To reduce the influence of some of the artefacts, the preprocessing step

described in Chapter 4, will be applied to images, but this will not solve every-

thing. For example, valve clicks represent a portion of the signal concatenated

to the end or the beginning of the region of interest which arise at valve open-

ing and closing. This obviously distorts the information about blood outflow

velocities, since in many cases the maximal velocity recorded by Doppler ul-

trasound does not represent the maximal blood outflow velocity but rather the

maximal valve velocity. This is a typical example of the ill-defined boundary

between valve clicks and blood outflow since it is expected of the segmentation

procedure to be able to differentiate between valve clicks and blood outflow.

It is illusory to believe that segmentation facing all these problems can

be achieved using pixels’ intensities information only. As a solution to this,

usually a prior knowledge is utilized. One way to do this is to incorporate

the knowledge within the segmentation process in the form of the model that

will be used as a prototype or template for segmentation of desired object.

Comparative advantage of the model-based segmentation with respect to the

other segmentation methods is the ability to segment the image with no well

defined relation between regions and pixels’ intensities. This is usually the case

when the objects of the same structure need to be segmented (i.e. have the

same texture), and the information about difference between these object is

incorporated in spatial relationship between them, other objects, or within their

morphometric characteristics.

Following this, the model-based approach seemed a natural choice for

this type of problem. In addition, the use of models for image segmentation is

one of most active and successful research area in image segmentation com-

munity (as we will see in Chapter 3).
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(a) Dashed ellipsoid indicates problem

with the poor contrast

(b) Dashed ellipsoid indicates the low

velocity region

(c) Dashed ellipsoid indicates artifacts

(referred by cardiologist as aliasing

and valve clicks)

(d) Dashed ellipsoid indicates largest

bright region

Figure 1.1: The figure depicts the issues with the region-based approach of

the aortic profile detection and segmentation, such as poor contrast (a), large

low velocity region (b), various artifacts (c), and other bright region apart from

region of interest (d).

1.3 Problem statement

Challenges that analysis and quantization of any image impose are challenges

to accurately segment the image and subsequently extract relevant (morpho-

logical) features. A decision is made to use the model-based segmentation for

ultrasound aortic outflow profile segmentation. In order to perform a model-

based segmentation, firstly we have to have a model, and secondly we have to

have a definition of the correspondence between model image and the image.

Thus, apart from segmentation, we have to solve the problem of model con-

struction/selection, and the problem of defining the similarity between images.

Finally, once the model-based segmentation is done, we are interested in an-

swering to the challenge of practical use of the developed method in clinical

practice, apart from reliability and reducing amount of manual work which is

expected from the automated method.

Therefore the challenges imposed to this thesis are the following:
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• Transaortic profile segmentation and feature extraction

• Model construction

• Image similarity measure definition

• Practical use of automated method for transaortic profile segmentation

The challenges are addressed in Chapters 5–8 in this exact order. Chap-

ter 5 describes a model-based segmentation of the transaortic profile. The seg-

mentation results and extracted features are compared to manual gold standard,

showing the reliability, accuracy and the potential of the developed method.

The chapter does not only solve the problem of aortic outflow velocity profile

segmentation, but also presents a more general approach for segmentation of

other (cardiac) images. Furthermore, it sets a framework for atlas construction

that is used further on. Chapter 6 discuss several methods for model construc-

tion, and introduces several ideas to increase the accuracy of the segmentation,

by careful model formation. In Chapter 7 image similarity measure (ISM) is pre-

sented, based on the absolute joint moments. In the chapter we show that the

novel ISM relates to both correlation coefficient and mutual information, and

combines their properties in a favourable way. Finally, Chapter 8 discuss the

relationship between functional recovery of the AS patients after aortic valve

replacement, and the shape of the aortic outflow velocity profile. Apart form

reliability, reduced amount of manual work, and accuracy comparable to intra-

observer accuracy of the method described in Chapter 5, Chapter 8 shows that

the developed method is useful in clinical practice.

V iskoni b� slovo...

Missale Romanum Glagolitice - 1483.
First Croatian printed book
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Chapter 2

Preliminaries

2.1 Probability theory basics

Definition 2.11 (Real-valued random variable) Let Ω be the set of all pos-

sible events and ω ∈ Ω one (elementary) event. A real-valued random variable
is a mapping from set Ω to real line R:

X : Ω→ R. (2.1)

Definition 2.11 states that for each realization of elementary event ω a

random variable X(ω) is a real value.

Definition 2.12 (Relative frequency and probability) If event ω ∈ Ω occ-
urred nω times in a n observation, then nω is called the frequency and the

nω/n = pω is called relative frequency, or experimental probability. The relative

frequency satisfies certain properties which can be used to built up an axiomatic

definition of the notion of the probability P (ω):

• 0 ≤ P (ω) ≤ 1, ∀ω ∈ Ω

• P (O) = 0, P (I) = 1, where I is certain event, and O impossible event

• P (ω1 + ω2 + . . . ) = P (ω1) + P (ω2) + . . . if ωi ∈ Ω, (i = 1, 2, . . . ) are
finite or countable many mutually exclusive events (i.e. ωiωj = O ∀i 6= j)

Definition 2.13 (Cumulative distribution function) The cumulative distribu-

tion function of a random variable X is defined by:

FX(x) = P(X < x), (2.2)

where the right side represents the probability that the random variable X has

value less than x .
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Definition 2.14 (Expected value) The general definition expected value (ex-

pectation) of the random variable X is given by:

E[X] =

∫
Ω

X dF =

∫
Ω

X(ω)F (dω) (2.3)

The expectation is also know as mean (sometimes denoted by µX).

If Ω is a set of real numbers the expected value of a continuous random

variable can be calculated as:

E[X] =

∫ ∞
−∞
x dF (x) (2.4)

=

∫ ∞
−∞
x f (x) d x (2.5)

This follows from the relation1 between cumulative distribution function and

probability density function:

f (x) =
d

dx
F (x). (2.6)

The Equation 2.5 corresponds well with its discrete case counterpart, where

for discrete random variables the expectation is defined as:

E[X] =

∞∑
i=1

xi pi , (2.7)

where pi stands for a relative frequency of the event xi . The latter equation has

also a physical interpretation where expectation represents the center of mass

(gravity), and pi is also referred as probability mass function. The summation in

the Equation 2.7 can be also interpreted as the vector product. More generally,

for continuous random variable, the expected value of an arbitrary function of

x , e.g. g(x), with respect to the probability density function f (x) is given by

the inner product of f and g:

E[g(X)] =

∫ ∞
−∞
g(x)f (x) d x. (2.8)

Notice the similarity with cross-correlation and convolution.

Definition 2.15 (Properties of expectation operator value) The expected va-

lue operator (or expectation operator) E is linear in the sense that

E[X + c ] = E[X] + c (2.9)

E[X + Y ] = E[X] + E[Y ] (2.10)

E[cX] = c E[X] (2.11)

where c is a real number (constant).

1With assumption that f is continuous at x .
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Combining the results from previous three equations, we can see that

E[aX + b] = aE[X] + b (2.12)

E[aX + bY ] = aE[X] + b E[Y ] (2.13)

for any2 two random variables X and Y and any real numbers a and b. The

Equation 2.13, generally holds for any number of random variables:

E[

n∑
i=1

ciXi ] =

n∑
i=1

ci E[Xi ], (2.14)

therefore we can say that expectation preserves linear combinations. Moreover,

we can also write:

E[

∫
R
g(t)X(t) d t] =

∫
R
g(E[X(t)]) d t (2.15)

since∫
Ω

∫
R
g(t)X(t) d t dF =

∫
R
g(t)

∫
Ω

X(t) dF d t (2.16)

However, the expectation operator and functions of random variables

generally do not commute:

E[g(X)] 6= g(E[X]) ≡ (2.17)∫
Ω

g(X) dF 6= g(
∫
Ω

X dF ) (2.18)

but, for a convex function g, the relationship is more accurately described by

Jensen’s inequality [86, 42]:

E[g(X)] ≥ g(E[X]) (2.19)

Notice that the expected value operator is not multiplicative, i.e.

E[XY ] = E[X] ·E[Y ] holds if X and Y are independent. In case the variables X
and Y are not independent, the error made by assuming the opposite is given

by covarinace:

Cov(X, Y ) = E[XY ]− E[X] E[Y ]. (2.20)

Definition 2.16 (Variance) The variance of a random variable X is defined as:

Var(X) = E[(X − µ)2] = E[X2]− µ2 . (2.21)

Standard deviation (σX) is square root of the variance, whereas the notation

σ2X is sometimes also used for variance.

2X and Y do not need to be statistically independent or even defined on the same probability

space.
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As perhaps noticed, the variance is expected value of the variable Y =

(X − E[X])2. We can generalize this by denoting the expected values of the
powers of X as the moments, and the expected values of powers of X − E[X]
as central moments. Here are formal definitions:

Definition 2.17 (Moments, central moments) The k th moment of a ran-

dom variable X is defined as:

µk = E[X
k ]. (2.22)

Similarly, the k th central moment of a random variable X is defined as:

µ′k = E[(X − µX)k ], (2.23)

where µX denotes mean, defined as in 2.14.

Definition 2.18 (Properties of central moments) The expected value oper-

ator (or expectation operator) E is linear in the sense that

µ′k(X + c) = µ
′
k(X) (2.24)

µ′k(cX) = c
kµ′k(X) (2.25)

µ′k(X + Y ) = µ
′
k(X) + µ

′
k(Y ) if k ≤ 3 and X and Y independent. (2.26)

where c is a real number (constant).

2.2 Generating functions

Definition 2.21 (Moment-generating function) The moment-generating func-

tion of a random variable X is defined as:

mX(t) := E
[
etX
]
, (2.27)

where t ∈ R.

Notice that mX is equal to Gp if z = e
t .

Definition 2.22 (Characteristic function) The characteristic function of a ran-

dom variable X is defined as:

mX(i t) := E
[
e itX

]
, (2.28)

where t ∈ R.

According to the usual convention of the continuous Fourier transform,

the characteristic function is actually a complex conjugate of the continuous

Fourier transform of p(x).
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Definition 2.23 (Cumulant-generating function) The cumulant-generating

function of a random variable X is defined as:

kX(t) := ln E
[
etX
]
, (2.29)

where t ∈ R.

The relationship between cumulant- and moment-generating functions

is given by identity:

kX(t) := ln mX(t). (2.30)

An important property of the moment-generating function is that:

mX(t) = mY (t)⇒ FX(x) = FY (x) (2.31)

This means that if two distributions have the same moment-generating func-

tion, then they are identical at all points. This is not equivalent to ”if two

distributions have the same moments, then they are identical at all points”,

because in some cases the moments does not exist even when the moment-

generating function exists, or vice versa. Log-normal or Cauchy distribution are

examples of these cases (for details consult [54], p.224).

Definition 2.24 (The moment problem) If there exists a sequence of mo-

ments µn(n = 1, 2, . . . ) given by:

µn =

∫
xn dF (x), (2.32)

can F be reconstructed from µn?

To address the problem defined in 2.24 one have to answer whether the

inverse mapping given by the Equation 2.32 exists and whether it is unique.

There are three classical moment problems which differ by different support of

F (different integral boundaries in the problem definition), namely: Hamburger

(support is R), Stieltjes (support is [0,∞]), and Hausdorff moment problem
(support is [0, 1]).

The problem can be generalized to the from:

g(n) =

∫
h(x, n) dF (x), (2.33)

for an arbitrary functions g(n) and h(x, n). Notice that this formulation of

the problem corresponds to the problem of reconstructing F from moment-

generating function (Equation 2.37).
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2.3 Moments and cumulants

A generating function is a clever way to write down a sequence of num-

bers [238]. For example, the moment-generating function is defined in Equa-

tion 2.27 can be used to find all the moments of the distribution. This becomes

more clear if we expand etX:

etX = 1 + tX +
t2X2

2!
+
t3X3

3!
+ · · · (2.34)

which leads to:

mX(t) = E(e
tX) = 1 + tµ1 +

t2µ2
2!
+
t3µ3
3!
+ · · · , (2.35)

where µk stands for k
th moment, which can be calculated (generated) from

the k th derivative of the moment-generating function (hence the name):

E
(
Xk
)
= m

(k)
X (0) =

dkmX
dtk

(0). (2.36)

Therefore, we can say that the moment-generating function is a clever

way of organizing the moments in one mathematical object. Notice also, that

the moment-generating function is the function of the form:

mX(t) =

∫ ∞
−∞
etx dF (x) (2.37)

=

∫ ∞
−∞
etx f (x) dx. (2.38)

Thus, the moment-generating function of a random variable is an alternative

definition of its probability distribution.

Similarly, the cumulant-generating function generates cumulants, and

we can define cumulants via cumulant-generating functions:

Definition 2.31 (Cumulant) Cumulants are the coefficients of Taylor (Maclau-

rin) expansion of the cumulant-generating function about the origin:

κn = k
(n)
X (0) =

dnkX
dtn
(0). (2.39)

The relationship between moments and cumulants can be established

via their generating function, e.g.:

kX(t) = ln(E(e
tX)) = −

∞∑
n=1

1

n

(
1− E(etX)

)n
= −

∞∑
n=1

1

n

(
−

∞∑
m=1

µ′m
tm

m!

)n
= µ′1t +

(
µ′2 − µ′1

2
) t2
2!
+
(
µ′3 − 3µ′2µ′1 + 2µ′1

3
) t3
3!
+ · · · . (2.40)
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2.4 Image registration basics

Definition 2.41 (Image) Image is a function

I : X → Y (2.41)

where X ∈ Rm and Y ∈ R.

Definition 2.42 (Source, target and reference image) Source image S(x) is

input image of the registration process. The input/source image is geometri-

cally deformed (G(x)) to match the target image T (x). The reference image
R(x) is the image against which the resulting image of the registration process

(S(G(x))) is evaluated.

Note that some authors do not distinguish between the target and ref-

erence image. However this distinction is helpful if we have training and testing

(or target and reference) image sets, and it was suggested in one of the earliest

papers dealing with atlas registrations [141].

Definition 2.43 (Image registration) Image registration is a process of find-

ing the optimal geometric transformation G for which the similarity measure
SM between source image S(x) and target image T (x) becomes maximal:

Goptim = argmax
G
SM(S(G(x)), T (x)) (2.42)

Definition 2.44 (Segmentation and labels) Image segmentation is the pro-

cess of partitioning an image into multiple segments. Image segment is part

of the image delineated by the border (segmentation). Label is identification

object assigned to the part of an image. Thus, labels can be presented as an

image:

L : X → [0, l ] (2.43)

where X ∈ Rm and l ∈ N.

Definition 2.45 (Template, prototype, model) Template is an object from a

population used as a target or a reference. Prototype is an object selected as the

most representative object of the population. Model is an object constructed

with intention to be used as a population representative.

Definition 2.46 (Atlas) Atlas is an ordered pair of intensity image I(x) and

label image L(x):

A(x) = (I(x), L(x)) (2.44)
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2.5 Geometric transformation

The goal of image registration is to determine parameters of the geometric

transformation (deformation field), that maps a source image into a reference

image.

The notation used throughout the paper denotes S(x) and T (x) as

the source and target image, respectively, where x stands for the coordinates

vector of the image. The deformed source image, or the output image (of the

registration process) is denoted as O(x) = S(G(x)). Sometimes, S′(x) will be
used to denote the geometric transformation of the image S(x) (i.e. S′(x) =

S(G(x))) obtained by the successive estimate of the registration transformation
G. The x denotes vector of the underlying image space. In our case x is the
ordered pair in Cartesian coordinate system (t, v), since Doppler ultrasound

images represent the instantaneous blood velocity (v) within the sample volume

(pulsed Doppler) or scan line (continuous wave Doppler) as a function of time

(t).

Perhaps the most elegant way to describe the geometric transformation

are homogeneous coordinates. The homogeneous coordinates were introduced

by August Ferdinand Möbius in his 1827 work Der barycentrische Calcül, to ease

claculus by representing affine (and projective) transformation in matrix form.

Here, we give definitions for few geometric transformations in 2D case, since we

will primarily use 2D images. The generalization for 3D case is straightforward

and for further reference please consult [201, 78].

Definition 2.51 (Translation matrix) Translation matrix is any matrix of the

form:

T =

 1 0 tx0 1 ty
0 0 1

 (2.45)

where tx and ty stand for translation in x and y direction, respectively.

Definition 2.52 (Rotation matrix) Rotation matrix is any matrix of the form:

R =

 cos θz − sin θz 0sin θz cos θz 0

0 0 1

 (2.46)

θz for where θz is the angle of rotation around z-axis.

Definition 2.53 (Scaling matrix) Scaling matrix is any matrix of the form:

S =

 sx 0 0

0 sy 0

0 0 1

 (2.47)

where sx and sy stand for scaling factor in x and y direction, respectively.
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The rigid transformation is defined as transformation that preserve all

distances. This means that rigid transformation allows image only to rotate

and translate. Using homogeneous coordinates this can be written in matrix

notation as:

x′ = RT x (2.48)

where x represents column vector with the coordinates of the image with ap-

pended one in the last row (see Eq. 2.49)

Definition 2.54 (Rigid transformation) Rigid transformation of the space

(x, y) to space (u, v) can in homogeneous coordinates be written as: uv
1

 =
 cos θz − sin θz 0sin θz cos θz 0

0 0 1

 1 0 tx0 1 ty
0 0 1

 xy
1

 (2.49)

All transformations mentioned and their combinations are special cases

of more general affine transformation which preserves straightness of lines and

parallelism, and whose homogeneous matrix is given by Definition 2.55.

Definition 2.55 (Affine transformation) Affine matrix is any matrix of the

form:

A =

 a11 a12 txa21 a22 ty
0 0 1

 ∀ai j , tx , ty ∈ R (2.50)

Curved transformations are the most flexible transformations. The sim-

plest functional form in which we can write this transformation is a polynomial

in the components of x:

x′ =

IJ∑
i j

ci jx
iy j (2.51)

2.6 Similarity measures

The purpose of an SM is to quantify the similarity between two images, usually

referred to as source and target image. Considering the elementary problem of

measuring the (dis)similarity between two images O and T , the simplest idea

is to use a distance measure, e.g. euclidean distance.

Definition 2.61 (Euclidean distance) Euclidean distance between O(x) and

T (x) can be calculated as:

d =

√√√√ n∑
i=1

(O(xi)− T (xi))2 (2.52)
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If images O and T are observed as random vectors we can define dis-

tance as:

D = E[(O(x)− T (x))2] (2.53)

= E[O(x)2 − 2 ·O(x)T (x) + T (x)2] (2.54)

= E[O(x)2]− 2 · E[O(x)T (x)] + E[T (x)2] (2.55)

where E[.] denotes the expectation operator. If the E[O(x)2] and E[T (x)2]

from the equation 2.55 are constant, the negative of the distance measure D

will have qualitatively the same behavior as the correlation between O and T :

C = E[O(x)T (x)] (2.56)

Correlation has a simple geometrical interpretation if O and T are vectors. If O

and T are (unit) vectors, their correlation is directly proportional (equivalent)

to angle between them.

The correlation between centered random vectorsO and T (i.e E[(O(x)−
µO)(T (x) − µT )]) has interesting property to achieve maximum not only if O
and T are identical but also if they are related by the function of the form:

T (x) = O(x) + k . This means that, in case when O and T are images, this

similarity measure is unaffected by the intensity offset which may happen due to

the homogeneous change in lightning conditions. The correlation coefficient,

given by Definition 2.62, represents a further enhancement in the robustness of

similarity measure, due to its ability to detect similarity between images whose

pixel values are in affine relationship (T (x) = a ·O(x)+k). This can be valuable
e.g. when images of the same object but with different contrast are compared.

Definition 2.62 (Correlation coefficient) Correlation coefficient between

O(x) and T (x) is defined as:

CC(T,O) =
E[(T (x)− µT )(O(x)− µO)]

σT · σO
(2.57)

where µO and µT denotes the image average, and σT and σO the image standard

deviation.

Moreover, it was also shown that the correlation performs well if the

images differ only by simple noise like Gaussian [231], or in some case Rician

[201].

Another approach is to characterize the relationship between T and O in

an information theoretic way, by utilizing the joint probability density function

(PDF) pTO = p(T,O). The joint PDF allows us to describe any type of

functional (or only statistical) relationship between images and any noise that

may exists in the image acquisition process. One way to measure the amount

of dispersion of the joint PDF is to use joint entropy [82]:

H(T,O) = −E[ln pTO(x, y)] (2.58)
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But alternatives are also mutual information (MI) and normalized mutual in-

formation (NMI).

Definition 2.63 (Mutual information) Mutual information betweenO(x) and

T (x) is defined as:

MI(T,O) = E[ln
pTO(x, y)

pT (x)pO(y)
] (2.59)

= H(T ) +H(O)−H(T,O) (2.60)

Mutual information was proposed as a more robust solution than joint

entropy, since joint entropy is defined only on the overlapping region of images

T and O (i.e. T ∩O), and was affected by the change in overlap. Later it was
shown that the normalization of the form:

NMI(T,O) =
H(T ) +H(O)

H(T,O)
(2.61)

produces even better results.

For our further reference, it is worthwhile to notice that MI can be

related to relative entropy [114] or Kullback-Leibler (KL) divergence [15], as a

measure of the difference between two probability distributions p and q.

Definition 2.64 (KL divergence) KL divergence or relative entropy between

two probability distributions p and q is given by:

DKL(p||q) = −
∫ ∞
−∞
p(x) ln q(x)dx − (−

∫ ∞
−∞
p(x) ln p(x)dx) (2.62)

=

∫ ∞
−∞
p(x) ln

p(x)

q(x)
dx (2.63)

in case p and q are continuous random variables, analogously, for a discrete

random variables p and q:

DKL(p||q) = −
∑
x

p(x) ln q(x) +
∑
x

p(x) ln p(x) (2.64)

=
∑
x

p(x) ln
p(x)

q(x)
. (2.65)

2.7 Taylor series and Hermite polynomials

If a function f (x) has all derivatives at x = a, then it can be represented with

the Taylor expansion as a power series [18]:
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Definition 2.71 (Taylor series) The Taylor series of a real or complex function

f (x) that is infinitely differentiable in a neighborhood of a real or complex

number a is the power series:

f (x) =

∞∑
n=0

f (n)(a)

n!
(x − a)n

= f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)

2!
(x − a)2 +

f (3)(a)

3!
(x − a)3 + · · · .

(2.66)

Maclaurin series are special case of Taylor series with a = 0.

For example, the expansion for natural logarithm is given by Equa-

tion 2.67, and it is valid ∀x ∈ 〈0, 2], while the (Maclaurin) expansion of the
exponential function is given by Equation 2.68 and it is valid ∀x ∈ R.

ln(x) = (x − 1)−
(x − 1)2

2
+
(x − 1)3

3
−
(x − 1)4

4
+ · · ·

=

∞∑
n=0

(−1)n
(x − 1)n+1

n + 1
=

∞∑
n=1

(−1)n−1
(x − 1)n

n
(2.67)

ex = 1 + x +
x2

2!
+
x3

3!
+ · · ·

=

∞∑
n=0

xn

n!
(2.68)

Definition 2.72 (Hermite polynomials) Hermite polynomials are polynomials

orthogonal with respect to measure e−x
2
(normal distribution), and are given

by:

hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2 (2.69)

In each field we must be careful to distinguish three aspects of the theory: (a) the formal logical content,

(b) the intuitive background, and (c) applications. The character, and the charm, of the whole structure

cannot be appreciated without considering all three aspects in their proper relation.

William (Srećko) Feller
An Introduction to Probability Theory and Its Applications - Volume I
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Chapter 3

Prior Art

Before we try to solve the problem specified in Chapter 1, in this chapter, we

will first review the existing solutions of similar problems covered by the lit-

erature. This chapter also gives an overview of the existing techniques used

in medical image analysis and image segmentation, with main accent on the

methods proposed for segmentation of arotic outflow velocity profiles. Thus,

the model based segmentation techniques used in medical applications are dis-

cussed. Since our main focus are atlas based segmentation techniques, an

overview of atlas construction methods is given. This is followed by the state

of the art in the field of image registration. Papers in the field of image reg-

istration can be classified in various ways, depending on the image acqusition

technique or depending on the building blocks used, namley: geometrical tran-

sofrmation, optimization and similarity measure. A stronger emphasis is on

similarity measures (SM) than other registration components since Chapter 7

presents a novel image similarity measure.

3.1 Medical image analysis

Medical image analysis deals with problem of extraction of meaningful informa-

tion from images acquired by medical imaging techniques like: magnetic res-

onance imaging (MRI), nuclear medicine tomography (like PET or SPECT),

computed tomography (CT), ultrasound, etc. Many works and textbooks cover

the filed of medical image analysis (see [201, 217] and their references), how-

ever, our main interest is in the analysis of the ultrasound images, or to be more

specific, ultrasound blood flow velocity profiles analysis. Often, the fist step

in image analysis is image segmentation, whose goal is to simplify or change

the representation of an image into something more meaningful or easier to

analyze. Many ultrasound image segmentation methods are covered by survey

paper of Noble et al. [150], however, our particular interest lies in the model-

based segmentation since they provide an elegant way to incorporate a prior

knowledge to the image segmentation process.
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3.1.1 Blood flow velocity profile analysis

To the best of our knowledge there are no studies on the analysis of blood flow

velocity profiles obtained by Doppler ultrasound published in literature, apart

from the works of Tschirren et al. [221] and Bermejo et al. [10]. Tschirren et

al. presented an automated cardiac cycle and envelope extraction of brachial

artery flow profile based on image processing operations such as thresholding

and correlation. However, this approach is not suitable for the cardiac outflow

profiles mainly because it also segments the valve clicks (see Figure 5.1), not

just the blood outflow. The work of Bermejo et al. analysed outflow profiles

that are averaged and manually segmented, with a goal to analyse the valvular

dynamics, so this work uses both a different methodological approach and a

different hypothesis.

On the other hand, the published research on image segmentation and

registration techniques is rather extensive (see [201, 251] and their references).

3.1.2 Image segmentation

Image segmentation, defined as the separation of the image into regions, is one

of the first steps leading to image analysis, interpretation, and object quantifi-

cation [47]. From segmented image the desired objects can be separated from

the background, measured, counted or in other means quantified. Its goal

is to simplify or change the representation of an image into something more

meaningful or easier to analyze. It is used in many practical applications in

machine vision, biometric measurements, medical imaging etc. for the purpose

of detecting, recognition or tracking of an object. The image segmentation

techniques can be classified with respect to the object, sensor (modality) or

application, where different surveys already exist (see e.g. [160, 150] or [239]).

If the image segmentation is observed as a pattern classification problem we can

(similar to [237]) divide the field in the two schools: one that uses features and

one that uses templates for segmentation. The approach of the first school can

be observed as an indirect method where features are compared, rather than ob-

jects (or patterns [237]) as in the second school. However, the first approach is

faster, due to the preprocessing step that reduced the amount (dimensionality)

of the information. The feature-based and template-based techniques roughly

corresponds to low-level and high-level segmentation techniques as classified

in [47]. Here adjectives low-level and high-level do not describe the level of

complexity of the problem, but rather the level of abstraction, same as in the

low-level and high-level computer vision. Thus, in the template-based image

segmentation the segmentation problem is moved away from the pixel intensity

properties to more abstract formulation of the problem, where the higher level

of a priori information is used in the segmentation process.
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3.2 Model-based segmentation

Model-based segmentation is essentially a template or prototype matching tech-

nique. The problem of matching a template to an object is actually quite old,

and has been approached in a number of different way, and addressed by nu-

merous names. Here we give an overview on the existing techniques.

3.2.1 Template matching

The correlation can be observed as the most common solution to the problem

of template matching. Matched or North filters [223, 151] address this problem

via Fourier transform of the image and the template, where after multiplication

the peak is sought. This kind of a template matching used a fixed template with

a measure of ”goodness” of matching [56], where the peak of the ”goodness”

function is sought by the exhaustive search. The Fischler and Elschlager’s [56]

spring-loaded templates and Widrow’s rubber mask [237], came as a natural

extension to the problem, since they introduce a deformable template.

3.2.2 Deformable models

Th approach proposed by Fischler and Widrow was popularized more than a

decade later, by the works of Terzeopoulos et al. [103, 213, 214, 215], in which

the term model superseded the term template, and the term energy/cost func-

tion superseded the term ”goodness” of match. The formulation of the energy

function via differential equations enabled easier implementation of the opti-

mization algorithm, and faster search for minimal energy/cost. The deformable

models grown to be one of most active and successful research area in image

segmentation under various names such as deformable surfaces or contours

[117, 67, 109, 250], active contours or surfaces [71, 11], snakes or balloons

[103, 121, 222], active shape [41, 39] or appearance [38, 40], etc., and are usu-

ally divided to parametric deformable models [103] and geometric deformable

models [23, 137]. Geometric deformable models utilize either curve evolution

theory [190, 191, 24, 249] or level set methods [125, 154, 33, 187, 188]. The

level set formalism [152] is interesting as it introduces several new possibilities

by allowing topological changes. In addition, efficient numerical schemes are

available, and the extension of the method to higher dimensions is easy. A

comprehensive survey on the deformable models and their use in the medical

image analysis can be found in [143], or [242], while the work of Gibson et al.

[68] provides a survey on different techniques used for deformable models in

computer graphics.

Compared to other methods of segmentation, model-based segmenta-

tion has the ability to segment images without well defined relation between

objects and pixels’ intensities. This turns out to be very valuable when the ob-

jects of the same texture need to be segmented, or when the border is occluded
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by excessive noise. To understand the possible shortcoming of the model based

methods, it has to be understood that the successful mapping of one dataset

into the other does not guarantee that it also makes sense as an anatomi-

cal mapping, even if the alignment looks perfect. For example, to map a leg

into a nose is perfectly possible, but this does not allow any reasonable phys-

iological interpretation. To cope with this problem some authors propose the

use of statistical models [210], which use statistical information about possible

anatomical variations. The parametrization and dimensionality reduction can

usually be effectively achieved by PCA [93]. Active shape [41, 39] and active

appearance models [37, 38, 40] fall into the category of statistical models.

3.2.3 Model image

If we model solely the shape of the object, or it’s color and texture (appearance)

and the physical property of the object (like elasticity), we build either active

shape or active appearance model. While different classification and various

extensions to these classes are possible (see [242]), we are interested in the

case when the whole scene is interpreted as one object. This is particularly

important when one wants to model not just one object and its morphological

features, but multiple objects and geometrical relationship between them.

An image represents a scene captured by the imaging device (sensor).

If we are to find the objects in the images that do not depend only on the

pixel property of the object or the morphological characteristics of the objects

itself, but on the relationship between objects as well, it is natural to model

the whole scene, not just the objects. The model of the scene can be obtained

in several ways, e.g. from computational (numerical) phantom (e.g [35, 185,

153, 120, 107, 95], or [88] p.439.), or from physical (imaging) phantom (e.g.

[65, 203, 147, 204, 95]). Similarly, a sample image can be used as a template

[173], or several images can be used to construct a model image [173, 240, 230].

A further discussion about various methods for model construction is given in

Section 3.3.

If we are to determine the correspondence between target image/scene

and the model, we utilize geometrical transformation to maximize similarity (or

minimize distance) between them. This actually describes the process of image

registration, whose background is described in more details in Section 3.4.

When the correspondence between model and target has been determined, the

segmentation of the target image is determined via segmentation propagation.

Segmentation propagation is a process in which the segmentation/labels from

the model is/are transformed by the same geometric transformation for which

the maximal similarity between the model and the target is achieved. Thus, the

model consists not only of image model but also of the segmentation model.

An pair image plus segmentation (labels), we refer as the atlas.
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3.2.4 Atlas-based Segmentation

The advantage of atlas-based segmentation when compared to other image

segmentation is a relatively simple way to introduce a prior knowledge about

shape and distribution of the segmented structures. This simplicity is due to

the fact that only a presegmented image is necessary as a reference that guides

the segmentation, e.g. no training is necessary to store the expert information.

On the other hand the main disadvantage of an atlas-based segmenta-

tion is the computational complexity, i.e. the time necessary for atlas construc-

tion and registration wherever iterative procedure (e.g. [138, 252, 119]), or a

complex non-rigid registration (e.g. [45, 202]) is utilized. Since the atlas-based

segmentation is usually used when the information from the gray level intensi-

ties are not sufficient, it is difficult to produce objective validation. Whenever

the manual or semi-manual segmentation is used as a golden standard one can-

not observe this as objective validation since it is user dependent. As a solution

for this problem, the unsupervised evaluation which is automatic and user in-

dependent by definition and thus considered (more) objective, can be proposed

(as in [248]). However, if we do have automatic (unsupervised) evaluation why

not use it for further enhancement of the segmentation procedure? Naturally,

after we have used this evaluation within a segmentation process we cannot

(re-) use it to objectively evaluate the segmentation process, and by looking

for the different evaluation method we again end up with (semi-) manual gold

standard. Other evaluation methods for registration or segmentation can be

fund in [225, 111, 234].

3.2.5 Atlas and its use in medical applications

Models with a common anatomical substrate are in medical applications often

known as atlases. Atlas incorporates useful prior information for segmenta-

tion and registration tasks, so variation within population can be described

with fewer (transformation) parameters. Atlases have broad application in

medical image segmentation and registration and are often used in computer

aided diagnosis to measure the shape of an object or detect morphological

differences between patient groups. Various atlas-based techniques are devel-

oped for different human organs, like multiple abdominal organs (liver, kidneys

etc.), [122, 156, 229, 198], prostate [113, 49], lungs [106, 199, 200], head

and neck [71, 166, 70], heart [63, 129, 158, 128], and especially the brain

[87, 2, 55, 94, 13, 127, 126, 8, 178, 52, 53, 206, 218].

3.3 Atlas construction

From a set of images, any image can be used as a template, where the most

representative instance is referred as the prototype. Sometimes, the most
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appropriate image to represent the set will not belong to the set. Different

methods to select or construct the representative instance from the set are

presented in this section. To set the nomenclature, we distinguish between

prototype, template and model. An instance from the population is referred

as template, while the most representative one (under whichever criterion)

is referred as prototype. If the information from several templates is used

to construct the population representative we refer to it as model. Thus,

the prototype is carefully selected from the population, while the model is

constructed. It is important to notice that in an atlas formation procedure it

is possible to have template, prototype or model for both image and labels. As

we will see, most of the authors only discussed how to select or construct atlas

image, since it is a common belief that insufficient similarity between the atlas

and the target image often results in local mismatches, which in turn leads to

segmentation errors [230, 43].

The most trivial approach for atlas image selection is just to pick a

random image from a population sample, but by doing this, we have a great

chance to pick an image that does not represent a typical instance from the

population. To produce better result, one could try to use several instances

from the sample simultaneously (templates). As an alternative, one could find

the instance closest to the sample mean (prototype), hoping that it would

be sufficiently close to the population mean. Another alternative is to try

to construct the image (or atlas) that reflects the population mean. The

latter approach actually constructs model from several templates. One might

expect that by introducing more information in the atlas formation process

would lead to better atlas, so that algorithms for prototype selections are of

lesser importance, however, it turns out that the easy way to build a model is

to root the model on the prototype. Moreover (as we will see later on), the

assumption that more information lead to better atlas will turn out wrong.

So, the easy way to build a model is to pick one individual from a sample

(a root image on which the model image is going to be built), and transform

other instance onto that target, to assure that all instances have the same

spatial frame for further processing [253, 155]. The prototype is most suitable

as the root image, since model is always biased toward root image, which is

especially visible if the root image is picked far from the population mean, as

noticed by several authors (see [175, 16, 17]). Some authors proposed how to

select the least biased root image, while others tried to find the way how to es-

timate (or converge to) the true mean of the population. Therefore, prototype

selection is referred by many groups that actually sought another way to con-

struct the least biased model. For example, Marsland et al. in [138] proposed a

method for least biased selection of root image, using iterative algorithm that

minimizes the distance and maximizes the mutual information. Park et al. in

[155] proposed an alternative in which the selection of the root image is based

solely on distance. Furthermore, Park argues that the least biased atlas should
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be done in this way because it is less affected by inherent noise in the images,

and, since it uses estimation technique instead of iterative algorithm, is faster.

Bathia et al. in [13] proposed the approach where one arbitrary image is used

just as an intensity reference (but not shape), after which the similarity between

images is maximized using non-rigid transformation. To assure that the image

calculated in this fashion is actually the mean (with respect to transformation)

they put the constrain that the sum of all transformation is equal to zero. In

[94], Joshi et al. proposed the method which is invariant to target image selec-

tion since after the construction of the atlas in the space frame of the target

image, the target image is transformed to the space frame of the mean trans-

formation. The mayor improvement of this work is that this was done for large

deformations which was not the case with [13]. As the dissimilarity measure

the squared error distance was used and it was shown that the optimal atlas

(for the selected dissimilarity measure) is an average intensity atlas. A similar

work using Kullback-Liebler divergence is described in [127] by Lorenzen et al..

Warfield et al. [235], proposed a group-wise registration hoping that this would

lead to average and anatomically valid atlas. Guimond et al. [73] propose an

iterative averaging algorithm to reduce the bias, by calculating average image

and average deformation in order to find average shape and intensity. In [218]

the iterative technique whereby the atlas converges to the unknown population

mean is suggested by Toga and Thompson. Both algorithms suggest inde-

pendent shape and intensity averaging. Zöllei et al. in [253] investigated the

performance of four approaches to atlas formation. Two approaches used root

image while the other two try to converge towards the population average,

where one of the algorithm is congealing algorithm proposed by Zöllei et al.

and Learned-Miller in [252] and [119].

The prototype selection is easier, usually computationally less intensive,

and gives the atlas with the smallest possible bias but nevertheless it is still

biased. The estimation of the root image reduces bias but may give the result

which, in some case, falls out from the space of possible samples. This is

somewhat similar to calculating the mean value of the bits in a computer. The

expected result is around 0.5, but it falls out from the sample of possible events

which is {0,1}, since a bit with value 0.5 is an impossible event. In the case of
medical atlas this could result with the atlas which is anatomically impossible.

However, this can be solved with two separate atlases for each class (in the bit

example above, this would be classes 1 and 0). Therefore, the critical underling

assumption is that images used for model image construction and the allowed

deformations are carefully selected so that they lead to anatomically valid atlas.

Moreover, since the estimation of one mean image from the population is

essentially a kind of an averaging procedure, the averaging of the image may

lead to fuzzy borders and blurred anatomical features. To cope with the lack

of detailed anatomical features on the average anatomical image some authors

suggested to overlay the average anatomical image with high-resolution single-
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subject image [224].

The previously mentioned papers discussed various methods for proto-

type/root image selection and model construction. However, after the paper

of Rohlfing et al. [173], multi-atlas based approach became popular. Rohlfing

et al. in [173] (and in more details in [174]) compared atlas constructed from

prototype image, model image and one or more template images. First, one

random individual from the set was selected (a template), second, the average

shape atlas was constructed (a model), third, the most similar instance from

the set was selected as atlas (a prototype) and fourth, several individual images

were used as atlases and multi-classifier approach (as in [90]) was introduced

before final segmentation (several templates). In these works Rohlfing mod-

elled only image (not segmentation) and showed that the multi-atlas based

approach leads to most accurate segmentation. After this finding, more stud-

ies using multi-atlas segmentation emerged [112, 80, 240, 1, 113, 3, 230, 87,

245, 76, 70, 108]. Some of them also showed that multi-atlas segmentation

outperforms methods that use a single atlas, like [112, 80], but it was recently

noticed that the adding more atlases does not always improve result, on con-

trary, after some point adding more atlases can deteriorate the result, albeit

usually very slowly [1]. This can be explained in a similar way as the feature

selection phenomenon known from pattern recognition [89]. This approach to

image segmentation became known as atlas fusion, by analogy to classifier fu-

sion techniques. Among these works several variations exist, such as different

stopping criterion for selection of atlases that are to be fused to provide the

most accurate classification (segmentation) (e.g. [113, 230]), or local instead

of global use of atlas (e.g. [240, 230]).

3.4 Image Registration

Due to the development of acquisition devices the diversity of applications for

image registration have grown significantly. For example, Zitova et al. in [251]

states that, according to the database of the Institute of Scientific Information

(ISI), within the period 1993–2003 more than 1000 papers were published on

the topic of image registration. More recent numbers, from the same database,

show that in just last two years (2011 and 2012) more than 4000 papers were

published on the topic of image registration. Therefore, we will not aim to

cover all the publications within this fields, but rather just survey the methods,

with the accent on the publications within field of medical imaging.

A comprehensive survey of image registration methods can be found in

[19], and the studies [51, 140, 134, 83, 177] offer a review of the methods in

the field of medical imaging, while paper by Toga and Thompson [219] discuss

the role of image registration in brain segmentation. More recent surveys on

image registration are the work of Mäkelä et al. [136], which covers the field

of cardiac image registration, the work of Pluim et al. [161], which covers
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mutual information based studies in medical imaging and the work of Zitova

and Flusser [251] which discuss various use of of image registration in computer

vision. Various other disciplines utilized image registration methods such as:

computer aided diagnosis, atlas construction, computer vision, remote sensing,

cartography etc. ([19, 251, 134, 75]).

Noticing the variety of use of image registration, and having in mind that

in just the last two years more than 4000 papers on topic of image registration

were published, one can conclude that the definition that aims to cover all these

disciplines can only state that image registration is the process of overlaying

two or more images to achieve maximum correspondence. If we want to make

the definition useful we have to specify the ”overlaying”, ”correspondence”

and how to ”achieve [its] maximum”. The interrelationship between these

processes, and how they form the process of image registration is depicted in

Figure 3.1.

x

G

T S

SM

Figure 3.1: The diagram shows the process of registering two images T and S.

The correspondence between them is defined by similarity measure (denoted

SM), whose output is used to control the geometric transformation (G). The
geometric transformation warps the underlying space of images S (denoted

with x) so that S(G(x)) match the image T .

In Figure 3.1 we can notice the three basic building blocks of image

registration:

1. Transformation

2. Similarity measure

3. Optimization algorithm
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The transformation is a class of geometric transformation (or parameters of

freedom) which explains how we actually overlay one image onto the other

(denoted T in the Figure 3.1). The similarity measure is also known as align-

ment measure, registration function etc., or more general, energy function,

cost function or score. It quantifies the similarity (correspondence) between

two images. The optimization algorithm drives the registration to find the

similarity measure maximum, and in Figure 3.1 is shown as a feedback loop.

The registration algorithms can be classified with respect to expected

variation in the scene. The variations can be due to the subject variation, or

due to the sensor variation. Thus we distinguish between registration of two

images of the same subject (intra-subject registration, e.g. [207, 102]), two

images from different subject (inter-subject registration, e.g. [211, 189]), and

registration pf an image to a model (model-based registration, e.g. [8]). Alter-

natively, we can have the change of the sensor type (multi-modal registration,

e.g. [236, 132, 45, 126]), or change of the sensor position (multi-view reg-

istration, e.g. [27]). If we register two images which also differ by the time

of image acquisition we can also speak of multi-temporal registration. The

latter is especially important for cases like motion tracking, or segmentation of

the growing tumor. Naturally, cross-classes image registration methods exist,

so it is natural to have multi-modal intra-subject registration, or mono-modal

inter-subject registration.

Alternatively, we can classify image registration with respect to algo-

rithms used for its building blocks. This is partially done in the following sec-

tions.

3.4.1 Transformation

Geometric transformation used in image registration process can be roughly

divided to global and local (as in e.g. [134]). However, global transformations

are usually used for initial alignment which is later improved by more complex

local transformation (e.g. [179, 159]). The transformations can also be divided

with respect to their complexity, thus we distinguish between rigid and nonrigid

transformations (formulae for different type of transformations are given in

Chapter 2). The nonrigid transformations are usually divided into affine (e.g.

[207, 6, 12, 189]) and curved transformations (e.g. [129, 168, 116, 202]),

sometimes also referred as free form deformations (FFD, e.g. [179, 63, 45,

146]), and typically implemented [198, 178] using splines [227, 228, 226, 184].

More ideas for implementation of nonrigid geometric transformations can be

found in e.g. [84, 50].

3.4.2 Image similarity measure

The purpose of image similarity measure (SM) is to quantify similarity between

two images usually referred as source and target image. Various information
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from image data is used for calculating the SM, thus we can classify SM ac-

cording to the information content used as landmark-based or (pixel property)

intensity-based SMs. Landmarks can be extrinsic [192, 60] and intrinsic [165],

where intrinsic landmarks can be sub-classified as anatomical [12] or geometri-

cal landmarks [208, 243, 130]. If we are to compare the images based on their

landmarks, the selection of Euclidean distance (or SSD) seems natural, with

different variations such as incorporating weighting factor (e.g. Mahalanobis

disatnce [133, 220]) or leaving some sample out (e.g. RANSAC algorithm

[57, 64, 254]). An alternative to this is to use some kind of correlation or an

entropy function. The alternative becomes clear if the intensity information is

exploited to calculate the similarity between images. Actually, intensity-based

SMs are increasingly used in medical image registration [170]. Probably the

most prominent correlation and entropy functions are correlation coefficient

(CC) and mutual information (MI).

It is well known [201, 231] that the selection of CC, defined as in Equa-

tion 2.57 is an optimal choice if the pixel values between images can be related

by an affine function even if a reasonable amount of noise is added. As most

mono-modal image registration techniques assume that type of a functional

relationship between images, CC was considered a dedicated measure for this

type of problems, and often the first choice. Similarly, MI defined in Equa-

tion 2.60 is established as a valuable SM for a multi-modal image registration

[34, 232].

All good properties, as well as the shortcomings, of MI and CC come di-

rectly from their definition. For example, CC is fast since it uses only summary

statistics. The calculation of only mean and standard deviation, which are suf-

ficient to describe an affine functional relationship between pixel values, makes

CC a good and fast measure for registration of images with affine relationship

between their pixel values. However, many image registration problems vio-

late the assumption of an affine relationship between image pixel values, thus

making CC a suboptimal choice for images with more complex functional re-

lationship between pixel values[171, 201]. On the other hand, the definition

of MI includes much more statistical information about the relationship of the

images S(x) and T (x). This property comes directly from the joint probabil-

ity density function pTS = p(T, S), which fully characterized the relationship

between images T and S, without any assumptions on a type of functional re-

lationship between images, and including any noise that may exist in the image

acquisition process. Many of the disadvantages of the MI come from the very

same thing - joint probability density function (PDF). As we are dealing with

digital images (joint) PDF can be only estimated or approximated, which nat-

urally leads to slower implementation, sensitivity to interpolation [171, 162],

sensitivity to number of bins (in case of estimation) or sample selection (in

case of approximation). Similarly, MI suffers from sensitivity to the change in

image overlap region. These come directly from the inherent property of the
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joint entropy [82], and some methods to reduce these sensitivities are already

proposed [205, 162].

In this perspective we can say that the main difference between CC and

MI is whether SM incorporates a (few) summary statistic values, or all the

statistical information in the form of a PDF. If we embrace this perspective

on SM we can see that many measures proposed earlier in the literature are

derivatives of two most prominent SM. Roughly we can classify them as either

CC-based (e.g. [171, 12, 168, 5, 58, 62, 102, 104, 157, 244, 81]), or MI-based

(e.g. [135, 232, 132, 235, 129, 181, 169, 131, 233, 21, 124, 216]), which are

sometimes also referred as (information-theory) IT-based similarity measures

(see [44, 246, 25, 123]).

It is worthwhile to mention several other papers which organize various

similarity measure, or compare their performance, such as: [26, 185, 195, 196,

172].

3.4.3 Optimization algorithm

Optimization algorithm drives the image registration towards similarity mea-

sure maximum. Generally we classify optimization methods as constrained [13]

and unconstrained, or as deterministic and nondeterministic [46, 91]. Most of

the papers listed herein belong to classes of unconstrained and deterministic

optimization algorithms. However, for use of evolutionary algorithms in image

registration (as a special case of nondeterministic algorithms) we suggest to

consult the paper by Damas et al. [46] and its reference. There are many

existing algorithms for optimisation and for details we suggest to consult the

in-depth and comprehensive book by Fletcher [61] or Numerical recipes by Press

et al. [164].

3.5 Conclusion

In this chapter we presented the most important ideas and papers from the

filed of model-based segmentation and image registration, where main accent

was on the field of medical image registration. Hopefully, this overview will

be helpful in understanding the ideas that motivated our work, research and

contributions described in the following chapters.

We would also like to mention that there are several toolkits freely avail-

able on the Internet that can be used for image registration, e.g. [180, 112, 77],

where elastix (described in [180]) is used in one of our experiments. Addition-

ally, it is interesting to mention the works of Christensen et al., Skrinjar et al.

and Lorenzen et al. (see [126, 31, 197, 30]), where image registration process

is observed through prism of inverse consistency and transitivity. Although they
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do not guarantee the accuracy of the registration [126, 31], they are sometimes

used as measure of quality of the registration, and one of our experiment (see

Chapter 6) suggests that this would be a preferable in order to improve some

of the registration (and segmentation) results.

尽信书不如无书。
Asian proverb

30

Dr
af
t



Chapter 4

Data Acquisition

4.1 Ultrasound imaging and Doppler effect

Ultrasound imaging is a noninvasive medical imaging technique, which utilizes

the ultrasonic wave to measure distance and velocity. In order to acquire data,

ultrasonic signal is transmitted into a medium and both specular and scatter

reflections are on the receiver recorded as a function of time. The time period

between transmitting the signal and receiving an echo is known as ”time of

flight”. The time of flight is proportional to the distance between the transducer

and the object causing the reflection. If the velocity of the wave in the medium

is known, the exact distance can be calculated. Velocity of a moving object

can also be calculated from the ultrasound data by exploitation of the Doppler

effect. An every-day example of this phenomenon is that of an object (e.g. car

or motorcycle) passing by, when the sound emitted by the object is observed

differently when the object approaches to the observer than when it moves away

from her. The difference between the observed and the transmitted frequency

is the Doppler frequency or Doppler shift. It is used to to estimate the relative

velocity between the observer and sound source, or between the receiver and

the scattering object. The relationship between the transmitted (fT ) and the

received frequency (fR) is given by the Doppler equation[209, 79]:

fD = fR − fT = −
2|~v |cosθ
c

fT , (4.1)

with ~v denoting the velocity vector, θ the angle between the velocity vector and

the sound beam and c the velocity of sound. It is worthwhile to notice that

only the axial component of the motion of the object can be measured as any

motion perpendicular to the direction of wave does not induce a Doppler shift.

Usually, the received signal is subdivided into sequential time interval.

From each segment the spectral information (i.e. amplitude, frequency and

phase) can be calculated. If the amplitude is encoded as a gray value and

frequency as the amplitude of a time changing signal the resulting image is

called a spectrogram (or sonogram). An example of such image can be seen
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in the middle part of the Figure 4.1. The image shows the distribution of the

detected Doppler frequencies as a function of time and represents the differ-

ing velocities which occur simultaneously within the sound beam. In practice,

because of technical limitations, a compromise has to be made between the

velocity and temporal resolution of the spectrogram. In other words, when

an accurate velocity estimate is required, temporal resolution of the spectro-

gram has to be reduced and vice versa. For this reason two different image

acquisition systems using Doppler ultrasound have been developed: continuous

wave (CW) Doppler and pulsed wave (PW) Doppler systems. As its name

states CW-Doppler systems transmit continuous signal and therefore do not

contain spatial information. Within the thesis, ultrasound images acquired by

the CW-Doppler method are analyzed.

4.2 Data acquisition

As described in previous chapter CW-Doppler signal represents the time-change

of velocities along a scan line in a 2-D ultrasound imaging plane and is known

as the spectrogram. If the signal is generated by the blood outflow from the

heart into aorta (acquired by continuous wave Doppler) it is referred as the

aortic outflow profile (see Figure 4.1). The x-axis of the aortic outflow profile

represents time and y-axis velocities. In the thesis we will mainly work with

such signals.

Figure 4.1: CW Doppler outflow velocity profile of the blood flow through a

heart valve, as seen by the cardiologist at the workstation.

The Continuous Wave Doppler images of the aortic outflow used herein

were acquired with a clinical echocardiographic scanner (Vivid 7, GE Health-

care) using an apical 5-chamber view. Images were digitally stored in ’raw’

Dicom format, containing the spectral Doppler information in proprietary tags.

These ’raw’ Dicom images were converted into Hierarchical Data Format (HDF)
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using an Echopac workstation (GE Healthcare). From the HDF file, the image

containing the aortic velocities was extracted (see Figure 4.2).

Figure 4.2: CW Doppler outflow velocity profile from the HDF file. For better

visibility, color and brightness enhancement is done.

The traces were acquired in several hospitals and constitute of patients

with diagnosed coronary artery disease (CAD) and aortic stenosis, and healthy

volunteers. The total number of images used in each experiment varied around

140 images, and the exact numbers are given for each experiment separately.

4.3 Image preprocessing

After conversion of the image from the Dicom data format to HDF the aortic

outflow profile needs to be extracted. This was done in semi-automatic way.

First lower and upper signal boundary is detected, and secondly the ejection

period was detected by an expert cardiologist. Finally, the speckle noise is

reduced using median filter. The outline of preprocessing is shown below:

1. determine zero-velocity line (lower signal boundary)

2. determine maximal-velocity line (upper signal boundary)

3. extract ejection period

4. apply median filter for image noise reduction

4.3.1 Lower and upper signal boundary

The low velocity rejection region (see Figure 5.1) depends on the machine

settings (clutter filter), and can significantly vary in size (see Figure 1.1(b))

depending on the user’s settings. This velocity rejection region may present

a problem for a region based approach to image segmentation since it may

arbitrarily vary around zero and occlude the low velocities of the object of

interest.

To detect the lower and upper signal boundary, the image is projected

onto the y-axis. Afterwards, the image projection is smoothed, divided by 2,
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and plotted together with the image projection, as shown in Figure 4.3. Now,

the low velocity region is easily recognized as the part of the signal for which

the smoothed projection is higher than the original signal. The zero-velocity

line is defined as the medial part of this region. The maximal-velocity line is

detected as the rise of the smoothed projection by 10% from the end of the

signal.

Figure 4.3: The projection of the image onto the y -axis (solid line) and

smoothed signal divided by 2 (dotted line). x-axis is in pixels, y -axis shows

the sum of intensities.

The smoothing of the projection of the image onto the y-axis is done

using the convolution between the original signal and the Gaussian filter with

σ = 10px .

Figure 4.4: Illustration of graphical user interface used for indicating opening

an closuring of the valve.

4.3.2 Ejection period extraction

To time the cardiac cycle, a single ejection period (from opening until closure

of the valve) was manually indicated by an expert cardiologist. To ease this
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work, a software application was implemented with a graphical user interface

as illustrated in Figure 4.4. From the individuals included in the study one or

two heart beats were acquired, and the resulting outflow profiles are used as

data for further processing.

4.3.3 Noise reduction

Since we primarily expect speckle noise in the images, two median filters were

introduced. This is done just after the zero-velocity line detection, to avoid the

low velocity region blurring in cases when this region is rather thin. The mask

of the first median filter is 3-by-3, while the second mask dependents on the

size of the original image. In the case the image size is M-by-N, the mask will

have the size (M-by-N)/100. The result is rounded to integer.

γνω̃θι σεαυτόν
The inscription in the pronaos of the Temple of Apollo at Delphi
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Chapter 5

Atlas-based Segmentation of
Cardiac Outflow Velocity
Profiles

5.1 Introduction

The chapter presents a method for segmentation of aortic outflow velocity

profiles from cardiac Doppler ultrasound images. The core of this chapter is

the research from one of our papers (namely [100]). Alternative approaches

were also investigated by our team with varying success and some of them

are described in papers [97, 101, 99]. In [101] slightly different geometric

transformation and genetic algorithm were utilized in the image registration

process. In [99] we investigated a less computationally intensive approach based

on boundary modeling in the form of a (truncated) harmonic decomposition

[163, 29, 186] and coupled with random sample consensus [57].

The method proposed herein is based on the statistical image atlas de-

rived from ultrasound images of healthy volunteers. The chapter describes atlas

formation, and atlas based segmentation of aortic blood velocity profiles fol-

lowed by the experimental results. The ultrasound image segmentation is done

by registration of the input image to the atlas, followed by a propagation of the

segmentation result from the atlas onto the input image. In the registration

process, the normalized mutual information is used as an image similarity mea-

sure, while optimization is preformed using a slightly modified multiresolution

gradient ascent method. The geometric transformation used is specially for-

mulated for outflow profiles. Since the inherent problem of the segmentation

validation is the difficulty of obtaining the reliable reference, several validation

techniques are used. The experiments can broadly be divided in two major

groups of registration and segmentation validation.

The registration is evaluated using an in-silico phantom image, 30 de-

formed images from healthy volunteers, and inverse consistency test as pro-
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posed by Christensen et al. [31] and Lorenzen et al. [126].

The segmentation is evaluated on 59 images from healthy volunteers

and 89 images from patients, using manual segmentation by an expert cardi-

ologist. In this way the segmentation is tested on the set of images which are

anatomically far from the atlas, since only the healthy volunteers were used

for atlas construction. To check the usability of the proposed segmentation

in clinical practice, several cardiac parameters with diagnostic potential are ex-

tracted from atlas-based segmentation and ground-truth segmentation. When

compared to intra-observer variability these parameters also show the segmen-

tation accuracy.

Experimental validation conducted shows excellent results. Cardiac pa-

rameter segmentation evaluation showed that the variability of the automated

segmentation relative to the manual is comparable to the intra-observer vari-

ability. Therefore, the proposed method is useful for computed aided diagnosis

and extraction of cardiac parameters.

5.2 Method

This section presents the proposed method for atlas-based segmentation. In

atlas-based segmentation, the input image is registered to the pre-segmented

atlas image. The registration result returns the parameters of geometric map-

ping from the input image onto the atlas image. With the inverse geometrical

mapping the segmentation from the atlas is propagated on to the image.

An example of the outflow velocity profile from a healthy volunteer is

given in Figure 5.1.

Figure 5.1: The outflow velocity profile from a healthy volunteer. The low

velocity region is marked with the black ellipse, and the valve clicks which define

the relevant part of the phase cycle are marked with arrows at the bottom of

the figure.
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In the following sections a new registration algorithm, composed of

a geometric transformation, similarity measure and optimization algorithm is

described. Next, the method for creation of an atlas image is proposed. The

atlas image is manually segmented by an expert cardiologist and the result is

mapped to the source image to provide the segmentation result. At the end of

Section the atlas-based segmentation procedure is described.

5.2.1 Registration

The registration method consists of transformation and optimization with re-

spect to the defined similarity measure. After detection of region of interest

by detecting the ejection time and low and high velocity region as described

in Chapter 4, the images are initially aligned. The initial alignment matched

phases of all outflow velocity profiles and resized all images to have the same

resolution.

The rest of the registration procedure stretches the image along the

velocity axis, in several bands, and is described in more details below. NMI

is used as a similarity measure. The similarity measure is maximized using a

modification of the gradient ascent optimization algorithm. This section is

divided into three subsections dedicated to the major parts of the registration

procedure: transformation, similarity measure and optimization algorithm.

Transformation

After the relevant phase of the cardiac cycle is extracted as described in Chap-

ter 4 and all images are aligned, by the geometric transformation G given by:

G(t, v) =
[
e(t, v) 0

0 f (t, v)

]
·
[
t

v

]
(5.1)

where e(t, v) and f (t, v) are arbitrarily function of time and the velocity. Since

the initial transformation resized all images to have the same resolution no

transformation in t dimension is required, therefore we can now set e(t, v) = 1.

All the possible inter-individual changes in the profiles can now be governed

only by the variable f (t, v) from the Equation 5.1, which we call the stretching

function. It is important to notice that the stretching function is a function

of time, i.e. f (t, v) = f (t), so the stretching function itself can be used to

quantify the instantaneous blood velocity change for different outflow profiles.

For practical reasons, a parametrized stretching function is used. The

function is parametrized by selecting N equidistant points, which are sorted

in a row vector. The vector is denoted as f and will be addressed as the
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transformation vector. This can be written as follows:

ti =
(i − 1) · P
N − 1 ,∀i = 1, .., N

fi = f (ti)

f = [f1...fN] (5.2)

where P stands for phase cycle of outflow velocity profile. Now, the transfor-

mation of an image is described and quantified with the transformation vector

components. The reconstruction of a stretching function from the transfor-

mation vector is done using linear interpolation. If one selects N = 11, as

we did in this study, the image transformation and the transformation vector

components can be visualized as depicted in the Figure 5.2, where white circles

represents the transformation vector components, and the curve interpolated

between them represents the interpolated stretching function (f (t, v)).

Figure 5.2: The original image (left) and the transformed image with transfor-

mation vector components (right).

It is also important to notice that since the transformation function

is parametrized and has N degrees of freedom, the optimization space is N-

dimensional. The details of the optimization algorithm are described further

in the section 5.2.1. In the next section, we will first discuss the similarity

measure.

Similarity measure

As a similarity measure, normalized mutual information (NMI) is used. How-

ever, it is important to notice that the similarity measure is not calculated for

the set of pixels in the overlapping region of T (x) and S′(x) = S(G(x)), i.e.
within C = T ∩ S′, as assumed in [59]. Instead, it is calculated for all pixels
in the target image except for the low velocity region (see Figure 5.1). The

region over which the NMI is calculated may be written as

D = R \ ({S′(i)} ∪ {T (i)}),∀i ∈ L (5.3)

where L is the set of pixels from the low velocity region (both in image S and

T ). Low velocity region is decided after projection of the image onto the y-axis
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as shown in Figure 5.3, as set of pixels having the projection lower than 10%

of the projection maximum.

Figure 5.3: Region L is decided after projection of the image onto the y-axis.

Black arrow indicates end of low velocity region.

The reason not to calculate NMI over the region C is because C is

a function of G, i.e. C = C(G), so to avoid influence of the transformation
function on the similarity measure. The problem of non-existent values for the

source image is solved as suggested by Roche et al. in [170]. In short, these

values are artificially generated during the transformation, using the pixels from

the image border.

Optimization Algorithm

The gradient ascent numerical optimization method is used to find the global

maximum of the energy function. The pseudocode for this algorithm is given

below, where E stands for the energy function. The energy function E is

calculated as the Normalized mutual information between two images S(G(x))
and T (x) (see Equation 2.61), over the region D, as defined in Equation 5.3

and described in section 5.2.1. Same as above, f and N denote the deformation

vector and its dimension.

Function gradient ascent(starting point, E)
define: µ, γ, δ, tolerance
f = starting point
do
for i = 1 to N
sample E around fi with µ
approximate dE/dfi from sampled points
if dE/dfi > γi · δ
γi = 0.95 · γi
end if
end for
f = f + 3 · µ · γ · (dE/df )/norm(dE/df )

while norm(dE/df ) > tolerance
return f

In this algorithm, δ is an estimation of the optimization function gradient

at the starting point (according to Fletcher [61]). The gradient has to be

smaller for every next step to assure that the algorithm converges. This is
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done using γ, which modifies the convergence rate, forcing the change of f to

be smaller for every next step.

Since Doppler ultrasound images contain a lot of noise, registration of

these images is very sensitive to the initial conditions and the convergence step,

and may easily end up in a local (instead of global) optimum. To assure the

accuracy and robustness of the proposed method, a two-step multiresolution

optimization approach is used. This approach is described in the pseudocode

below.

Define S(−→x ), T (−→x ), star ting point
Resize S(−→x ) and T (−→x ) to 100x100px
Define f i l t = gaussian filter with σ = 9px
Sb = convolution(S(

−→x ), f i l t)
Tb = convolution(T (

−→x ), f i l t)
Define E(

−→
f ) = NMI(Sb(G((−→x )), Tb(−→x ))−→

f1 = gradient ascent(E(
−→
f ), star ting point)

Define E(
−→
f ) = NMI(S(G(−→x )), T (−→x ))

−→
f2 = gradient ascent(E(

−→
f ),
−→
f1 )

With this implementation of the multiresolution approach a trade-off

between speed and accuracy is made, since the images are not downsampled.

The downsampling is avoided since it causes histogram changes, which in turn

may cause some of the artefacts similar to the ones mentioned in [162].

5.2.2 Atlas Construction

The purpose of a statistical atlas is to combine many images into a single image,

which represents a statistical average of all images. In this method, we have

used the arithmetic image averaging operation to construct the atlas. After all

aortic outflow velocity images are aligned and resized, the atlas is constructed

as an average intensity atlas using the formula:

A(t, v) =
1

K

K∑
i=1

Si(t, v) (5.4)

where Si are the images used to construct the atlas. Using this approach the

atlas image from K = 59 images from 30 healthy volunteers is constructed for

the purpose of this study. The resulting image is shown in Figure 5.5 (left).

5.2.3 Atlas-based Segmentation

The idea of atlas-based segmentation is based on the use of a representative

reference (or atlas) image, where the desired structure is manually segmented

by an expert cardiologist. In our case, the desired structure is the aortic outflow
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velocity profile. Expert segmentation is done only once, and is later automati-

cally propagated to the other images of this type. When a new patient image

is acquired, the segmentation is conducted in four steps:

(a) The new image that needs to be segmented is declared as a source image.

(b) The source image is registered to the reference image, resulting in a set

of parameters describing the geometric transformation.

(c) The segmentation of an aortic outflow profile from the reference image

(the atlas) is propagated to the source image.

(d) The source image along with the propagated segmentation is backward

transformed (using the inverse set of parameters) to its original form.

This procedure is depicted in Figure 5.4 where each step is represented

with one image. As the reference image, the manually segmented atlas is used.

(a) Source image (b) S(x)→ R(x) (c) Propagated seg. (d) Bck. transform

Figure 5.4: The segmentation procedure: Each image represents one step

described in Section 5.2.3. All axis are in pixels.

5.3 Experiments and Results

This chapter is focused on evaluating the registration algorithm accuracy and

the comparison of atlas-based segmentation with the segmentation done by an

expert cardiologist. First, the registration validation using an in-silico phantom,

along with the phantom construction, is presented. Second, the validation on

real data is presented, where the exact geometric transformation between data

sets is known. Third, the validation of the registration accuracy on a set of

test data based on inverse consistency is presented. Fourth, the atlas-based

segmentation is validated on 59 images from healthy volunteers manually seg-

mented by an expert cardiologist. Fifth, the same segmentation validation is

done on 89 images from patients with a diagnosis of either coronary artery

disease or aortic stenosis. Sixth, the segmentation is validated by comparison

of the cardiac parameters extracted from the manual and automated segmen-

tation. Finally, intra-observer variation is studied and compared with the error

between manual and automated segmentation.
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5.3.1 Phantom study-based registration validation

The outflow velocity is modeled using a linear combination of sinusoidal func-

tions. The attenuation is modeled by an inverse tangent function:

P (t, v) = c1 − c2 · arctg(v − F (t) + c3)) (5.5)

where c1, c2 and c3 are constants used for centering the image on the coordinate

system, and F (x) is constructed as:

F (t) = sin(πt) +
sin(2πt)

4
+
sin(3πt)

6
(5.6)

The attenuation of low blood velocities is modeled similar to eq. 5.5 using the

function:

A(v) =
1

π
· arctg((v − a1) · c4) + c5 (5.7)

The parameter a1 can be used to set the percentage of the outflow velocities

that will be attenuated, in our case it is set to 10%. The resulting image is

shown in Figure 5.5.

Figure 5.5: The average intensity atlas (left) and the phantom image (right)

To validate the registration accuracy on the phantom image, the source

and target image have to be defined. Part of the registration error is due to the

suboptimal performance of the optimization algorithm and the properties of the

similarity measure. This error can be quantified if the desired transformation is

known. For this reason the following experiments are constructed. An image

with different velocity outflow profile shape is constructed from the phantom

image using a random transformation. Random transformation is here defined

by a transformation vector, whose eleven elements are picked from the uniform

distribution on the interval [0.7,1.4]. Using the random transformation, 50

variations of the phantom image are constructed.

In the first experiment the original phantom is selected as a source image

and the deformed phantoms as target images. Here, the goal of the registration

algorithm is to reconstruct the deformation function. The registration error can

now be calculated as difference between deformation and the transformation
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as found by optimization algorithm. Since the transformation is parametrized

by the transformation vector this reduces to:

e1 = ‖f1 − f2‖2 (5.8)

where f1 and f2 are row vectors which represent respectively random deforma-

tion of the phantom image and the deformation approximation as found by the

registration algorithm. The average error vector components from 50 different

phantom transformations equals to µ(e1) = 1.68% with standard deviation of

σ(e1) = 0.92%.

In the second experiment, the original phantom is labeled as target

image and the deformed phantoms as source images. Now the registration

algorithm has to find the inverse transformation function. For each pair of

images the registration error is calculated using the Equation:

e2 = ‖1− f1 · f3T‖2 (5.9)

where f1 and f3 are row vectors, which represent the random deformation of the

phantom image and the inverse, as found by the registration algorithm. Same

as before, the mean error vector components and their standard deviation are

calculated. Mean error is µ(e2) = 2.15% and standard deviation σ(e2) =

1.92%. One may notice that the error and deviation is smaller in the first

experiment, which is due to the direction of the registration algorithm. In

the first experiment the registration algorithm searches for the transformation

parameters in the same direction that is used for the deformation, while in the

second experiment the opposite direction is used (i.e. in this experiment the

deformation model is not the same as the transformation function).

5.3.2 Real image-based registration validation

The similar experiment, as the one explained above on the in-silico phantom im-

age, is conducted on real images of cardiac aortic outflow velocities. This was

done since the phantom image used in previous section does not have any (spe-

ckle) noise, does not model valve clicks and small deviations of the time frame

which are possible to show up in the real images. In this experiment, from a set

of 59 images, each was deformed with thirty random transformation vectors

and the registration algorithm searched for vectors that will re-transform these

images back to their original form. The vector elements used for the deforma-

tion are randomly picked from the uniform distribution on the interval [0.7, 1.4],

and the starting vector for the optimization algorithm is the unity vector. The

error vector is calculated using the equivalent formula as in Equation 5.9 and

denoted as e3. In this experiment the average error is µ(e3) = 2.93% with

standard deviation of σ(e3) = 2.03%.
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5.3.3 Inverse consistency-based registration validation

The final registration experiment is based on the inverse consistency test. Al-

though inverse consistency does not guarantee the accuracy of the registra-

tion, it is often preferable or even used as measure of quality of the registration

[31, 126]. This, along with the desire to quantify the bi-directional transforma-

tion error, are the main reasons for the additional validation using the inverse

consistency test [30, 92]. Each of the images from the set is registered to

all the others images from the set. In this way, the registration is done bi-

directionally (i.e. the image I1 s registered to image I2 and vice-versa). Using

the notation .∗ for Hadamard product (where only the corresponding vector el-
ements are multiplied) and f(I2, I1) for the transformation vector received after

registration of image I1 to image I2, the mean error vector is calculated as:

e4 =
1

N

N∑
i=1

|1− (f(i)(I2, I1) . ∗ f(i)(I1, I2))| (5.10)

where N represents the total number of registration experiments. If the number

of images is n then the total number of registration experiments equals to

N = n2+n
2
, since registration of an image onto itself is also taken into account.

The average vector component error is equal to 2.89%.

5.3.4 Atlas-based segmentation validation: Healthy volun-
teers

The atlas-based segmentation validation is done on 59 outflow profiles from

30 healthy volunteers. The expert manually segmented the atlas image (con-

structed as described in section 5.2.2), and this atlas is used as a template for

the segmentation.

Figure 5.6: The comparison of manual (black) and propagated (white) seg-

mentation. Both axes are in pixels.
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Figure 5.7: Propagated segmentation with small deviation of automated seg-

mentation (white) from the manual segmentation (black). Both axes are in

pixels.

Figure 5.8: Propagated segmentation with larger deviation of automated seg-

mentation (white) from the manual segmentation (black). Both axes are in

pixels.

With the procedure as described in section 5.2.3 the manual segmen-

tation is propagated from the atlas image to the rest of the 59 images. These

images are compared with the ones that are segmented manually by the same

cardiologist. For the brevity of the presentation, only some of the results, that

are representative of all results, are presented. These images are shown in

Figures 5.6, 5.7, 5.8 and 5.9. In Figure 5.6, we may see the manual and the

automated segmentation results that correspond very well. In Figure 5.7 we

want to point out the small bumps that exist in the automated segmentation,

while there is no trace of them in the manual segmentation. Although, the

automated segmentation corresponds well to the manual segmentation, the

bumps may be explained as an inherent intensity change. If we take a look at

the Figure 5.8 we may notice that, around the peak, the automated segmen-

tation peaks over the manual segmentation. Nevertheless, this segmentation

result explains well the shape of the signal despite the selection of a different
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Figure 5.9: The comparison of manual (black) and propagated (white) seg-

mentation on the outflow profiles with the starting valve click. Both axes are

in pixels.

threshold. In the Figure 5.9 the outflow profiles with the starting valve click

is shown. In clinical practice, the cardiologists try to distinguish between the

blood flow and the valve click based on their experience, since only the blood

flow bears significant information for diagnosis. It can be seen how the manual

segmentation performs across different intensities, as if there is no valve click.

When this is compared to the automated segmentation there is a difference,

but automated segmentation also managed to ignore the valve click. This last

results (Figure 5.9) demonstrate also the important improvement compared to

the work of Tschirren et al. [221] since these results cannot be reproduced

using just envelope detection. When the numerical results of the manual and

automated segmentations are compared, this knowledge from the visual in-

spection should also be taken into account, since it is disputable whether some

of these errors are errors indeed. If manual and propagated segmentations

are observed as sampled function and denoted as mi [t] and pi [t], respectively,

where i stands for the instance of the Doppler outflow image, the error may

be measured as average difference between mi [t] and pi [t] and written as:

de =
1

K ·M

K∑
i=1

M∑
t=1

|mi [t]− pi [t]| (5.11)

where K stands for the number of images, i.e. K = 59, and M for the number

of samples in the time (phase) frame, i.e. M = 100. Using this measure we may

say that the propagated segmentation deviates in average by 4.6 pixels from the

manual. Since all the images have been resized to 100-by-100 pixels, images

have 100 samples in the velocity direction and so do the functions mi [t] and

pi [t]. Since the transformation is done along th y -axis this error corresponds

to 4.6%.

The sample correlation coefficient between manual and propagated seg-

mentation of all outflow profiles is also calculated. This is done using the
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Equation:

r =
1

M − 1

M∑
t=1

m[t]− µm
σm

·
p[t]− µp
σp

(5.12)

Here r denotes the sample correlation coefficient for one instance of the out-

flow profile, and M, m and p are used as defined above. The average sam-

ple correlation coefficient of the population is r = 0.98 with the population

standard deviation σr = 0.024. The minimal and maximal sample correlation

coefficient between manual and propagated segmentation are rmin = 0.86 and

rmax = 0.99, respectively, which shows excellent statistical correlation between

manual results and the proposed method for atlas-based segmentation.

5.3.5 Atlas-based segmentation validation: Patients

In the previous subsections, the validation is done on the aortic outflow profile

that is either artificially created or belongs to the data set that is used to

create the atlas. To validate the segmentation procedure on the outflow profiles

from different data sets 89 outflow profiles are selected. 36 of these outflow

profiles belong to patients with coronary artery disease (CAD) and 53 of them

belong to patients with aortic stenosis (AS). Again, the manual segmentation is

propagated from the atlas to all the instances of the patients outflow profiles as

described in section 5.2.3. These images are compared with the ones that are

segmented manually by the same cardiologist. In Figure 5.10, representative

images of the patients with diagnosed CAD and AS are presented, with both

manual and automated segmentation of the outflow profile.

Figure 5.10: The comparison of manual (white) and propagated (black) seg-

mentation for patients with diagnosed CAD (left) and AS (right)

If the same measurements as for normal patients are used (see Subsec-

tion 5.3.4), we can see that the average automated segmentation error with

respect to the manual segmentation is de = 5.08% for the patients with diag-

nosed aortic stenosis, and de = 8.70% for the patients with diagnosed coronary
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artery disease. At the same time, the correlation coefficient between manual

and automated segmentation is r = 0.98 both for the patients with AS and

CAD. The maximum sample correlation coefficient is rmax = 0.99 for both set

of patients, while the minimum sample correlation coefficient is rmin = 0.96,

for patients with CAD, and rmin = 0.92, for patients with AS.

5.3.6 Cardiac parameter-based segmentation validation

In this subsection, we describe a segmentation validation procedure based on

the comparison of the cardiac parameters extracted from two aortic outflow

profiles. The first aortic outflow profile is obtained by the proposed automatic

segmentation method, while the second aortic outflow profile is obtained by

manual segmentation. Cardiac parameters that are measured are: time to

peak, peak value and rise-fall time ratio. These parameters have shown to have

potential for use in diagnosis of some of the cardiac disease (see [97] or [32]),

however, they are not routinely used in clinical practice since their extraction

is often subjective, being both dependent on computer display (brightness and

resolution) as well user interpretation, as will be shown in the next section.

Let ttpm and ttpa denote time-to-peak values extracted by manual and

automated procedures, respectively. Similarly, let the same notation be used

for the maximum value and rise-to-fall-time-ratio parameters (maxm, maxa,

tr f m, and tr f a). Since outflow velocity profiles belong to different patients,

different pacing and different velocities are expected. Therefore, to exclude

the variation due to different patient characteristics and to observe the seg-

mentation variation only, relative parameter errors are calculated and given as

percentages rather than absolute values.

In this experiment, we calculate the relative error between the auto-

mated and manual segmentation, which in the case of time-to-peak parameter

is expressed as:

ettp =
ttpa − ttpm

ttpm
(5.13)

For comprehensive analysis of method accuracy we calculated three

statistical error measures: mean error, standard deviation of error, and mean

absolute error. If a systematic error (bias) is present, it will be evident from

the mean error and from the mean absolute error. Standard deviation of error

does not detect systematic error. If no systematic error is present, then the

mean error will be equal to zero and hence is not useful for error evaluation.

In this case, both standard deviation of error and mean absolute error can be

used for accuracy evaluation.

In Table 5.1 mean error, standard deviation of error, and mean absolute

error of the observed cardiac parameters (automated vs. manual) are presented.

The results from patients with diagnosed coronary artery disease (CAD), pa-
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tients with diagnosed aortic stenosis (AS), and volunteers with normal outflow

profiles (N) are given in separate columns.

Table 5.1: Mean error, standard deviation of error, and mean absolute error

between cardiac parameters obtained from manual and automated segmenta-

tion. Rows 1-3 show errors for time-to-peak parameter, rows 4-6 show errors

for rise-to-fall-time-ration parameter, rows 7-9 show errors for peak-value pa-

rameter.

CAD AS N

µ(ettp) 2.71% -4.15% 8.91%

σ(ettp) 17.62% 14.77% 18.16%

µ(|ettp|) 12.65% 11.75% 13.38%

µ(etr f ) 4.94% -5.74% 11.88%

σ(etr f ) 27.09% 20.74% 24.21%

µ(|etr f |) 18.34% 16.67% 18.47%

µ(emax) -9.33% 2.66% 2.92%

σ(emax) 8.14% 4.82% 5.91%

µ(|emax |) 10.22% 4.58% 5.17%

It is evident from Table 5.1 that certain amount of systematic error

exists. Standard deviation of error and mean absolute error are measures

that show the amount of error, other than systematic error. The table shows

that standard deviation of error and mean absolute error are highly correlated.

Therefore, we can conclude that both measures can be used for evaluation of

error.

For the interpretation of the results, one should note that the time to

peak falls somewhere around the first quarter of the ejection time frame. For

the images presented here, that would be around 25 pixels. If e.g. time-to-

peak parameter estimate is inaccurate by one pixel only this will result in 4%

error. This can be observed on the Figure 5.10 (left) where the relative errors

in terms of the cardiac parameters are: ettp = 16.28%, etr f = 21.71% and

emax = 10.74%; which are the values that are comparable with the standard

deviation of the relative error in Table 5.1.

In addition to error measures, we have calculated the correlation be-

tween cardiac parameters extracted from manual and automated segmentation.

For example, for the time-to-peak parameter the correlation is defined as:

c(ttpa, ttpm) =

∑K
i=1 ttp

a · ttpm√∑K
i=1(ttp

a)2
√∑K

i=1(ttp
m)2

(5.14)
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The results have shown a very high statistical correlation between the cardiac

parameters extracted using our method and the cardiac parameters extracted by

the expert cardiologist. For example when time-to-peak parameter is measured

a correlation of c(ttpa, ttpm) = 0.988 is achieved, for the rise-fall time ratio the

correlation is c(tr f a, tr f m) = 0.974, and for time to peak c(maxa, maxm) =

0.997.

5.3.7 Intra-observer variability

In the previous subsections, the proposed method is compared to an expert

manual segmentation. However, it is well known that there can be a con-

siderable intra-observer and inter-observer variability of the results of manual

segmentation. The intra-observer error is the error between subsequent results

of the segmentation of the same image performed by the same person. The

inter-observer error is obtained when several different people segment the same

image. Typically, the inter-observer error is larger than the intra-observer error.

One must be aware of these errors when a manual segmentation by one or

more expert cardiologists is used as a validation reference, as these errors limit

the validation accuracy.

To quantify the intra-observer error the following experiment is con-

ducted. An expert cardiologist segmented 21 images that she already seg-

mented one week ago. If the segmentation results are observed as two sets

of measurements, this gives a total of 2100 measurements (since images are

resized to 100-by-100 pixels) for each set. If the measurements m1(i) from

the first set are interpreted as realizations of the random variable m1 and the

measurements m2(i) from the second set are interpreted as realizations of the

random variable m2 then the random variable dm defined as:

dm = m1 −m2 (5.15)

describes the difference between the two measurements. Since we do not

know which measurement is the reference one (which represents the correct

segmentation) we calculate the standard deviation as an estimate of the vari-

ance σ2(dm) of the random variable and the mean absolute error (µ(|dm|)).
Similarly, let da = a−m be the random variable representing the difference be-
tween the automated (a) and manual delineation (m). Since we had 59 images

from volunteers, and 89 images from patients, this results in a total of 14800

random variables. The realizations of these two random variables are shown in

Figure 5.11, with σ2(dm) = 28.94 and σ
2(da) = 47.51.

The mean absolute error between the automatic and the manual seg-

mentation is equal to µ(|da|) = 5.57px , while the standard deviation of the
difference is σ(da) = 6.89px . The mean absolute error between two different

segmentations of the same image made by the same cardiologist is equal to

µ(|dm|) = 3.62px , while the standard deviation of error is σ(dm) = 5.38px .
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Figure 5.11: The upper graph shows the difference between two manual seg-

mentations (intra-observer variability), while the lower graph shows the differ-

ence between manual and automated segmentation.

We conclude that the variability of the difference between the automatic and

manual segmentation is comparable to the intra-observer variability (6.89px vs.

5.38px).

The intra-observer variability of the cardiac parameter extraction is also

calculated. To compare it with the results from Section 5.3.6, the standard

deviation of the relative time-to-peak error is calculated as in Table 5.1 and

gives σ(ettp) = 11.91%, while the standard deviation of relative error of rise-fall

time ratio gives σ(etr f ) = 16.28%. When we look at the standard deviation of

relative peak value error, we can see that manual segmentation has a variability

of σ(emax)) = 5.15%. If these results are compared with the rest of the results
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in Table 5.1, we can see that the parameters from automated segmentation

varies from the manual segmentation just slightly more than the manual seg-

mentation from itself. The same is true if we observe the mean absolute error

since µ(|ettp|) = 9.07%, µ(|etr f |) = 12.54%, and µ(|emax |) = 3.43%. While
having in mind these results and the high correlation between manually and au-

tomatically extracted parameters we conclude that one may use the proposed

atlas-based segmentation for cardiac parameters extraction.

5.3.8 Statistical analysis of manual and automatic parame-
ter measurement

For statistical validation the automated and manual methods for parameter

measurement, the t-test is used. Let eaparam and e
m
param denote the automatic-

to-manual error (error between automatic and manual parameter extraction)

and manual error (human intra-observer error). The param in the subscript

identifies which parameter is tested (ttp, tr f or peak).

The proposed null hypothesis is: The mean values of the errors eaparam
and emparam are equal i.e. the intra-observer parameter error is equal to the

error between the automated and manual parameter extraction. The t-test

allows a comparison of two datasets with different numbers of samples. In this

experiment the first dataset has 21 and the second dataset has 148 elements

(Section 5.3.7). The t-test is performed using Satterthwaite’s approximation

to calculate the number of degrees of freedom and without assumption of

the same variability of both datasets (Behrens-Fisher problem). The p-values

calculated from the t-test are given in Table 5.2.

Table 5.2: The p-values for tome-to-peak, rise-fall-time-ratio and peak cardiac

parameter.

ttp trf peak

p − value 0.6843 0.7398 0.3908

The p-values for all three cardiac parameter errors (time-to-peak, rise-

fall-time-ratio and peak value) are much above the traditionally used signifi-

cance level (α) of 0.05. One rejects the null hypothesis if the p-value is smaller

than or equal to alpha. Since α = 5% is much lower than the lowest p-value

we may conclude that there is no statistically significant difference (at the 5%

level) between the datasets or that there is no enough evidence to reject the

null hypothesis that the intra-observer parameter error is equal to the error

between the automated and manual parameter extraction. As we can see, this

is true for all the cardiac parameters evaluated.
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5.4 Discussion and Conclusion

A comprehensive validation of the registration method is conducted using an

in-silico phantom (Section 5.3.1), 59 outflow profile ultrasound images from 30

healthy volunteers (Section 5.3.2), and the inverse consistency test (Section

5.3.3). The exhaustive validation of the atlas-based segmentation is done with

respect to an expert manual segmentation. First, the 59 outflow profiles form

the healthy volunteers are segmented using the atlas described in Section 5.2.2

and segmentation described in Section 5.2.3. The validation is described in

Section 5.3.4. Second, 89 outflow profiles from the patients are segmented

using the same atlas and the same segmentation procedure and validated in

Section 5.3.5. In both experiments the difference and correlation between

manual and propagated segmentation is calculated. Third, the segmentation

is evaluated based on the cardiac parameters extracted from the automated

segmentation (Section 5.3.6). Finally, the results are compared to the intra-

observer variability of the manual segmentation (Section 5.3.7 and Section

5.3.8).

The phantom validation demonstrated that the registration is quite ac-

curate, with an error of the transformation vector around 2% (see Section

5.3.1), at the same time the validation on real images gives an error of the

transformation vector of around 3% (see Section 5.3.2). A portion of the er-

rors is due to the asymmetry of the forward and backward transformation as

explained in Section 5.3.3.

When the results of the automatic segmentation of healthy volunteers

are compared to the manual segmentation by an expert cardiologist, the dif-

ference, as an error measure of the automated segmentation, is 4.6%, on

average. The correlation between the manual and automatic segmentation is

on average r = 0.98. Thus, we may conclude that the proposed method for

the image registration may be used for the automatic segmentation of Doppler

ultrasound images. Additionally, due to the intrinsic properties of the method,

the method handles the valve click correctly and therefore is especially valuable

in the automatic segmentation of the aortic outflow profiles.

The segmentation validation on the patients showed that the automatic

segmentation with respect to the manual segmentation differs by 5.08% for the

patients with the diagnosed aortic stenosis, and 8.70% for the patients with

the diagnosed coronary artery disease. For both set of patients the correlation

of automated and the manual segmentation is around r = 0.98. All of this

shows us that the proposed atlas can be used for the patients as well as for the

volunteers.

The registration and segmentation results are condensed in Table 5.3.

If the standard deviation of the difference between manual and auto-

mated segmentation is calculated over the whole set (volunteers and patients)

and compared to the intra-observer variability we can see that both errors have
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Table 5.3: Condensed experimental results. First two rows show the registra-

tion error (measured on synthesized examples), while the last three rows show

the segmentation error (measured on empirical data).

Validation type Error

Phantom 2.2%

Real images 2.9%

Atlas/volunteers 4.6%

Atlas/AS 5.1%

Atlas/CAD 8.7%

the same order of magnitude (Section 5.3.7). The same conclusion holds for

the average of absolute values, which is summarized in Table 5.4. In addi-

tion, Section 5.3.8 shows that there is no statistically significant difference

between automatic-to-manual and manual (intra-observer) error. In this sense,

we can conclude that the accuracy of the method is fundamentally limited by

the (in)accuracy of the manual segmentation.

Table 5.4: Standard deviation and average of absolute values of percentage

difference between cardiac parameters from manual and automated segmenta-

tion.

Comp-Human INTRA

σ(ettp) 17% 12%

µ(|ettp|) 12% 9%

σ(etr f ) 23% 16%

µ(|etr f |) 18% 13%

σ(emax) 6% 5%

µ(|emax |) 7% 3%

As reported, the mean value of the absolute difference between the au-

tomated and the manual segmentation is equal to µ(|da|) = 5.57px , while the
standard deviation of the difference is σ(da) = 6.89px . When this is compared

to the mean value of the absolute difference between two different segmenta-

tions of the same image made by the same cardiologist (µ(|dm|) = 3.62px)
and the standard deviation of the difference (σ(dm) = 5.38px) it is obvious

that these two segmentations are relatively close to one another. This is even

stronger emphasized when the correlation between cardiac parameter extracted

from automated and manual segmentation is observed since correlations for

time-to-peak, rise-fall time ratio, and peak parameter are c(ttp) = 0.9875,
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c(tr/f ) = 0.9741, and c(max) = 0.9966, respectively. Therefore, we conclude

that the proposed atlas-based segmentation has comparable accuracy and pre-

cision to a human expert.

Atlas lifted up the heaven...

N.N.
A scene from Greek mythology

Qual è colui che forse di Croazia

viene a veder la Veronica nostra,

che per l’antica fame non sen sazia,

ma dice nel pensier, fin che si mostra:

’Segnor mio Iesù Cristo, Dio verace,

or fu s̀ı fatta la sembianza vostra?’;

Dante
Paradiso 31.103-108
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Chapter 6

Atlas Construction

6.1 Introduction

When comparing experimental data obtained from different subjects, a standard

approach is to display results on an atlas, as a common anatomical substrate.

Through time, different methodologies for atlas formation have been developed.

Many authors discussed the problem of least biased atlas selection, while many

others preferred multi atlas based segmentation, as previously already discussed

(see Chapter 3). In the sections of this chapter we discuss several methods

for atlas formation, and compare them based on their segmentation results,

which we believe should be the criteria which atlas is the most appropriate

atlas for the given task. First part of this chapter compares four methods for

atlas construction and is closely related to our earlier work (see [98]). Second

part of the chapter investigates the multi atlas based approach to the image

segmentation problem and discuss the possible improvement regarding accuracy

and speed.

The results from the first part of the chapter shows that there is no

significant error reduction if different approaches are used for model image

construction. However, further experiments shows that the proposed method-

ological improvement that is not based solely on image formation, but on the

appropriate segmentation selection as well does significantly improves the atlas

accuracy. We wanted to compare these results to other works that showed

how multi atlas based approach provides better segmentation results. For this

reason another experimental setup is constructed for the second part of the

chapter. In it, we first discuss the similarities between our approach and multi

atlas based approach, and follow with evaluation of the atlases based on the

segmentation accuracy.

The image set used in this chapter consist out of 140 ultrasound images

of cardiac outflow velocity profiles from both healthy volunteers and patients

(see Chapter 4), and it was evaluated using image registration algorithm de-

scribed in Chapter 5. Multi atlas based approach to image segmentation was

additionally evaluated on 18 3D-MRI images of the human brain using third

57

Dr
af
t



party software (elastix) for image registration.

6.2 Least biased atlas construction

In the further subsections an image registration method used for atlas evaluation

is introduced, and next, four methods for atlas construction are described, along

with the framework for atlas evaluation. In all methods for atlas construction,

described below, it is assumed that all the images are already rigidly aligned and

resized to the same resolution. The images are denoted with Ii , and the set

of images can be denoted as S = {Ii ; i = 1..N}, where N stands for number
of images. In this experimet, we use 140 images out of which 26 belongs to

healthy volunteers, while the rest 114 belong to patients. An instance of an

aortic outflow velocity profile of a patient and a healthy volunteer is presented

in the Figure 6.1.

Figure 6.1: An example of the patient (left) and the healthy volunteer (right)

aortic otuflow velocity profile.

6.2.1 Image registration

To register two images transformation function, similarity measure and op-

timization algorithm have to be defined. For registration of cardiac outflow

profiles we have used the transformation function that non-linearly transforms

image only along y-axis since this should be enough to describe all the possible

physical changes. This can be expressed with the following formulae:

T (x, y) = t(x) · y (6.1)

where t(x) denotes warping of image space frame along y-axis. This function

was only estimated from N stripes selected from the image and calculating only

the samples t[k ], after which the function t(x) was reconstructed using linear

interpolation. To measure the quality of the alignment between image, the

similarity measure was defined in the form of normalized mutual information

[59, 75, 132]. As an optimization algorithm a version of the gradient ascent

algorithm [61] with multiresolution implementation was used.
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6.2.2 Average intensity model

The average intensity image model is probably the easiest way of construction

an statistical model. The construction of an model can be explained with

formula:

Aav(x, y) =
1

N

N∑
i=1

Ii(x, y) (6.2)

6.2.3 Median intensity model

With median intensity image model we try to produce the atlas image only

from the set of the pixels already existent in the image set S. The value of an

each pixel at the position (x, y) in the median intensity model was calculated

as median of all pixels at the position (x, y), selected from the set of images

Ii :

Am(x, y) = median(Ii(x, y)); i = 1..N (6.3)

6.2.4 Construction of least biased model with respect to
transformation function

Let’s assume that all the images are already registered onto each other using the

approach described in Section 6.2.1. Now we can define the distance measure

to calculate how far is any image (let’s say Ii) of the set from the rest of the

images in the set (i.e. Ij∀i 6= j). Let’s define the distance measure as:

di j =

N∑
j=1,j 6=i

n∑
k=1

|log(ti j [k ])| (6.4)

Where ti j denote transfer vector that transforms the image Ii onto the image Ij ,

and k stands for k-th element of the transformation vector. The logarithm was

used in distance measure since the scaling of the image is done by multiplication.

In this way we assure the symmetry of the distance measure, i.e. that two

images (one stretched by factor α and other squeezed by the same factor)

have the same distance from theirs originals.

Defined in this way, the distance measure from the Equation 6.4 will

lead to selection of the image on which we can root the model. Now, when the

root image is selected, the rest of the images are mapped on this image and the

average intensity image is calculated (similar to the formula from the Equation

6.2). Finally, the average image formed in this fashion is then deformed in the

direction of the average deformation from all the images, that way assuring

that atlas has the same distance from all the images from the set.
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6.2.5 Average shape and intensity model

The atlas construction procedure described in this section is inspired with the

idea of shape-based interpolation of multidimensional object described in the

work of Raya and Udupa [167]. They presented the method that was used

for shape interpolation between slices acquired from medical imaging scanner.

The basic idea behind this approach is to convert the binary image (which

represents the segmented object) to gray image where the gray value of the

point represent the shortest distance (from the border of the binary image).

The distance is defined as positive for the points within an object and negative

for the points outside of an object. For an image this distance function can

be observed in 3D space. For a circular object the distance transformation will

have a shape of a cone, as shown in Figure 6.2.

Figure 6.2: The distance transformation (cone) of an circular object on the

plane.

Since the distance transformation of a binary image can again be rep-

resented as an (gray-level) image the process of averaging is by no means

different. When the gray images from multiple objects are calculated and the

images are averaged their mean shape can be extracted as a set of pixels with

value zero in the average gray image. In other words, the border of the mean

shape object is an isoline (contour line) with pixel value zero. We may think of

the gray images from the Doppler ultrasound scanner as a set of 3-D object,

if we represent the intensities as elevation (z-axis coordinate). This can help

us to extend the idea of Raya and Udupa to a 3D space. Now, the shortest

distance from the 3-D object is represented by isoplanes. The distance trans-

formation will now give a function that exists in 4-D space and in its discrete

form describes a set of isoplanes. After averaging this set we need to find the

isoplane with value zero (i.e. the distance is zero). This isoplane is shape av-

erage of the 3-D object. Since the 3-D object contains the informations from
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both the intensity and shape of an object form an 2-D Doppler image we can

say that this object is shape and intensity average of the images used for its

construction. We convert this object back to gray (2-D) image and use it as a

model.

6.2.6 Experiments and Results

In this section we evaluate four atlases type described in Sections 6.2.2 – 6.2.5.

The proposed method for atlas evaluation is based on the segmentation accu-

racy of each atlas and the steps of this method are depicted in Figure 6.3.

Figure 6.3: A flow chart of the proposed method for atlas evaluation.

The problem of segmentation evaluation lies in the fact that segmen-

tation accuracy may vary based on error from manual segmentation of an atlas

image (let’s denote it with em), registration error (er), error from suboptimal

choice of an atlas (ea) and gold standard error (eg). As a gold standard a

manual segmentation of an image was used, and since the same image and

same segmentation is used in all experiments this error is constant across ex-

periments. In this way, we expect that only segmentation accuracy is affected.

Similarly, one can use σ(em + er) to denote the uncertainty of a method, since

it depends on both the error from manual segmentation of an atlas image and

the registration error. With this, only the precision of segmentation is affected,

but since the same method is used in each experiment, the additional variation

across experiments (due to em and er) should be approximately the same.

When each instance of an atlas is constructed as shown in Figure 6.3

all the images that were not used for atlas construction, were transformed onto
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the atlas. The registration procedure for this is already described in Section

6.2.1. The transformation parameters were memorized and after the atlas

is segmented, this segmentation was backward transformed onto the images

where the segmentation evaluation is done. The segmentation accuracy and

precision is used to evaluate the atlases performance. In these experiments,

M = 50 images were used to construct an atlas image, and K = 22 times

different images from the set were selected, to compare the variation across

different atlas types, and across different image selection.

The preliminary results shows that segmentation error has a small vari-

ation across different atlas types. This is shown in Table 6.1. It has been

widely proven in the pattern recogni- tion field that combining multiple clas-

sifiers can yield more ro- Index Terms—Atlas-based segmentation, classifier

combination, combination of segmentations, majority voting, weighted voting.

bust and accurate results than using single classifiers

Table 6.1: Atlas performance comparison based on segmentation accuracy. A1
to A4 denote atlases described in Sections 6.2.2 to 6.2.5, respectfully.

Err

A1 5.2777%

A2 5.2824%

A3 4.5336%

A4 4.7182%

Additionally, the experiment was repeated K = 22 times for each

method for atlas construction. The results can be depicted as shown in Figure

6.4, where vertical lines shows one standard deviation of the segmentation er-

ror for different atlas type. We can notice that the error distribution overlap

significantly. From this we can conclude that there are cases when carefully

selected images for atlas construction outperform the carefully selected method

for atlas construction.

Knowing that segmentation also affects segmentation performance a

concept of least biased segmentation selection (as compared with least biased

image selection) is developed. All the images which contributed to atlas con-

struction were segmented, and this segmentation was propagated along with

image when atlas is constructed. The average segmentation is used as least

biased segmentation of an atlas image. The segmentation evaluation was con-

ducted in the same fashion as in the previous experiment. The results are shown

in Figure 6.5.

From the results we can conclude that least biased segmentation selec-

tion improves performance of any atlas since it has lower mean error as well as

the standard deviation.
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Figure 6.4: The average segmentation error along with denoted one standard

deviation range. The 1 to 4 on y-axis denotes atlases described in Sections

6.2.2 to 6.2.5, respectfully.

6.2.7 Conclusion

In this section we proposed a novel method for least biased atlas construction

(Section 6.2.5), and compared the results of this method with the performance

of three different atlases (Figure 6.4). Although our method outperforms them,

this improvement is not statistically significant. Additionally, we showed that

the selection of a least biased atlas image did not lead to significantly better

segmentation results, which may be contributed to the enough plastic transfor-

mation conducted within registration process. Finally, we presented the results

that show how carefully selected atlas segmentation may have greater impact

on segmentation accuracy than the atlas image selection.

6.3 Atlas fusion

In the previous section we discussed whether the atlas constructed from image

model and label model can produce better results than the atlas constructed

from the image model and its manual segmentation. The proposed approach

showed significant improvement from the classical approach. In this section

we challenge the idea that modeling both image and labels can produce results

similar to the multi atlas based approach. The idea is motivated by the fact

that both approaches incorporate the same amount of the information, and

was boosted by the results presented earlier.

In the following subsection we articulate the problem mathematically,

and discuss theoretical aspects of the problem. Finally, both approaches are
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Figure 6.5: The average segmentation error along with denoted one standard

deviation range. The 1 to 4 on y-axis denotes atlases described in Sections 6.2.2

to 6.2.5, respectfully. The results from least biased segmentation concept.

evaluated with respect to their segmentation accuracy.

In order to investigate the suitability of each atlas for image construction

each atlas construction method will be applied to two sets of data, namely aortic

outflow images, and MRI brain images. The registration itself is performed

using our own algorithm when the aortic outflow images are used and a third-

party software package named Elastix [180] is used for the registration of the

MRI brain images.

The results show that following our approach for the model construction

a time necessary to segment a set of images can be significantly improved, at

the cost of negligible deterioration of the segmentation result.

6.3.1 Relation to other works

The idea to ”average” both image and anatomical informations (e.g. labels)

was used before. E.g. Chiavaras et al. [28] created the probability maps of sulci

(depressions or fissures in the surface of the brain). Heckemann et al. [80] used

label fusion similar to both methods proposed herein, where they referred to it

as indirect method of atlas fusion, and to classical atlas fusion approach as a

direct method of atlas fusion. However, in the indirect method they propagate a

single atlas to a number of intermediate images, forming a set of atlases, which

are in turn propagated to the subject’s space. Thus, they do not average the

manual segmentation in order to reduce error but rather average the different

segmentation due to the image (subject) variability in order to reduce the

segmentation error. This was probably done due to the difficulties in obtaining

64

Dr
af
t



many multiple segmentations of different individuals. However, Heckemann et

al. refer that the indirect method is similar to the probability mapping, which

was used by many other research groups [211, 48, 69, 72, 74, 144, 193], so

probably many variations on the theme do exist. The traditional approach

of probabilistic atlas construction often still used [149, 148], constructs the

probabilistic atlas by utilizing affine transformations only. The Heckemann et

al. used nonrigid registration, but probably due to the difficulties in obtaining

many multiple segmentations they used indirect method and ended up with

different conclusion. It is also interesting to mention that Park et al. [156]

constructs probability atlas with thin plate spline deformation, on 32 manually

segmented CT images, and uses Bayesian framework to improve the results.

From the paper, it seems that the core of the atlas formation method is the

same as the method we propose herein. However, the paper does not compare

the results to any other atlas formation alternative, and as seen in Chapter 3

the result was neglected in many other research papers (e.g [173, 80, 230] just

to name a few) tracing the path towards atlas fusion as preferable multi-atlas

based segmentation. We can assume that many research groups followed this

direction due to the earlier insights from the pattern recognition field, where

it was shown that combining multiple classifiers can yield more robust and

accurate results than using single classifiers [110, 115]. Finally, the paper by

Artaechevarria et al. [4] which discuss the efficient classifier combination on the

example of atlas-based segmentation proposes an effective method for classifier

combination which corresponds to the method that we named here as All-R-

A-T. The paper compares the results with ideal classifier (oracle) in order to

numerically show that there is no theoretical deterioration in the performance

of the proposed lassifier. We, however, provide theoretical discussion on why

this occurs, and were unaware of this paper at the time when we evaluated

the results presented in this chapter and when we discussed the theoretical

background behind this concept. We came across this paper when we wanted

to additionally evaluate our results using independent software, since in the

their paper Artaechevarria et al. also used Elastix.

6.3.2 Theoretical considerations

As discussed in Chapter 3 the atlas formation process is the process of finding

the most representative object in the population, which we can observe as the

process of modeling of the ”average” object. Apart from simple averaging of

the object intensities, one can try to ”average” the labels utilizing some kind

of voting algorithm or other classifier combination technique. Naturally, more

abstract averaging is possible, such as averaging of the deformation field used

to map the objects one to another, or averaging position of the objects in the

manifold [241, 176, 212] of object etc. However, here the image and label

averaging is implemented same as before, by averaging intensity and shape,
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and voting.

Let Ξ denotes the averaging of either images or labels across image set

{Ii} or label set {Li}. We write ΞI = Ξi Ii for image model, and ΞL = ΞiLi for
label model. Following this the atlas formed by manual segmentation of the im-

age model we denote by AM = (ΞI, L) . Similarly, we can write AA = (ΞI,ΞL)

to denote image model paired with label model. The subscript M indicates

the manual segmentation in the model, while the subscript A indicates the

automatic formation of the segmentation from several instances of manual

segmentation. Notice that AM and AA represent two approaches to atlas con-

struction problem discussed in previous section. The multi atlas based approach

usually referred in the literature as atlas fusion approach can be written as ΞA,

where each atlas A is constructed from one manually segmented image, i.e.

A = (I, L).

After setting the notation it seems natural to wonder whether

(ΞI,ΞL) = Ξ(I, L)

or equivalently, whether

AA = ΞA

Since atlas is defined as pair of image and labels, averaging the atlas implies

averaging both images and their labels. So, what is the difference between the

two approaches? The difference lies in the root image on which the atlas is

built. The multi-atlas based approach referred as atlas fusion maps all atlases

onto the image space, or more precisely, onto the image that needs to be

segmented. After mapping, all atlases are fused using some classifier fusion

technique. This can be observed as if the image that needs to be segmented is

used as the root image for atlas formation. On the other hand, the proposed

approach maps all atlases within atlas space, by selecting the most appropriate

image on which to root the atlas. After mapping, all atlases are blended into

one atlas, therefore, for image segmentation one more mapping is necessary.

Following this reasoning, it is expected that the latter approach will con-

tain some error. This error can be interpreted as error due to the inappropriate

root image selection, since no root image is more suitable for atlas construction

than the actual image that needs to be segmented. Alternatively, the error can

be contributed to the mapping inaccuracy due to the parametrization of the

deformation field. This will be discussed in more details further on and the

error will be measured in the following subsection.

Actually, what interest us is whether we can first deform all atlases to

an image, blend1 all atlases into a single atlas and then deform that model to

segment each image from the population, and would that produce the same

segmentation results as to directly fuse the atlas on each image from the popu-

lation. To express this in an analytical form we need to include the deformation

1via some kind of averaging procedure
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filed in our equations. Let DAB be the deformation field necessary to map the

object B to object A. Then the question is similar to the question of whether

the following identity holds:

DABΞ(DBCI, DBCL) = ΞDAC(I, L) (6.5)

where each of the operators is written in order in which it is applied to the atlas,

image or segmentation. However, since D operates on underlying image space,

and Ξ operates on image intensities or labels, they are mutually independent

operators, so the order of operations is irrelevant. This can be more obvious if

we write:

Ξi Ii(D(x)) = Ξi Ii(Di(x)) ⇐⇒ Di = D∀i (6.6)

where x stands for the coordinate vector of the underlying image space and

subscript indicates the index of the image which spans across all images from

the set (this was omitted in the Equation 6.5). If Di is constant with respect

to i (i.e. equals D), it is irrelevant whether we first apply the operator D

or operator Ξ over the set of images {Ii}. This means that the Ξ in the
Equation 6.5 can switch places with DAB, but not with DBC, or DAC, since

both DBC, and DAC are functions of i . If we rewrite Equation 6.5

ΞDABDBC(I, L) = ΞDAC(I, L) (6.7)

we can see that the left and the right side of equations are the same if

DABDBC = DAC holds. This is known as the transitivity property, and generally

does not hold for the deformation field calculated by the image registration of

two discrete images. However, there are several works that discuss and aim to

improve this (see [126, 31, 197, 30]). In following section we will not propose a

registration process that result in a deformation field with a transitivity property,

but we will make a tacit assumption that the transitivity holds for sufficiently

small deformations, and that our deformations are sufficiently small.

If the left and the right side of the Equation 6.5 are the same, this

means that both atlas formation approaches are the same. Both approaches

reflect the atlas fusion, whereas our approach fuses atlases in the atlas space,

and the classical approach fuses atlases in the image space. Our approach

has one more deformation than the classical approach, however, this is the

only deformation that needs to be done on-line, which means that by blending

the atlases in an off-line manner we can speed up the registration procedure

N times, where N is the number of atlases used. Whether this reduces the

accuracy remains yet to be seen.

6.3.3 Experiments and results

In this section several atlases are compared with respect to their segmenta-

tion accuracy. Atlases were evaluated using leave-N-out method on two sets.
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First set consisted from 140 images of aortic outflow profiles (same as in pre-

vious section), while the second set consisted of 18 3D-MRI brain images from

IBSR22 database. In each case K times N randomly selected images (without

repetition) were selected as the test set. The rest of the images were used for

atlas formation, which was evaluated on the test set. For the aortic outflow

profile images we selected N = 100 and K = 22, and for the MRI brain images

we used N = 11 and K = 50. The registration procedure used for the aortic

outflow images is the same as in previous Chapters, while the registration of

the MRI brain images was done using Elastix [180] with B-spline interpolation

[226, 179, 216] and Mattes MI implementation [139].

Figure 6.6: Atlas-based segmentation by propagation of manual segementation

from prototype source image.

+
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+

+
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..
.

Figure 6.7: Atlas-based segmentation by propagation of manual segmentation

from multiple template images.

Three alas formation methods schematically presented in Figures 6.6–

6.8 and evaluated here are:

• A classical atlas based segmentation (Figure 6.6)
2http://www.cma.mgh.harvard.edu/ibsr
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Figure 6.8: Atlas-based segmentation by segmentation propagation from one

atlas whose image and segmentation is constructed from multiple template

images and multiple manual segmentations.

• A classical atlas fusion approach (Figure 6.7)

• The proposed method of atlas fusion in the atlas space (Figure 6.8)

The first method (Figure 6.6) is actually a selection of prototype image paired

with manual segmentation. Arrow in the Figure 6.6 represent the deformation

from source to target image. The prototype and the root image was selected

as the image that needs to be least deformed to all other images from the

set. The method is further on referred as S-T method, since it maps the

source image (used as an atlas) to target image. Second method (Figure 6.7)

directly maps all images (atlases) to target image, and is therefore denoted as

All-T method. The arrows in the Figure 6.7 represent the deformation field

from template images to target image, and to be consistent with our previous

notation (see Equation 6.5) we could each arrow denote by DAC = DAC(i).

Third method maps all images to root image and then (after atlas formation)

mapping of the atlas to the target image. This method is referred as All-R-A-T

method. The arrows in the left side of the Figure 6.8 represent the deformation

field from template images to root image, selected as the most appropriate

instance from the set, and represent the deformation denoted in Equation 6.5

by DAB = DAB(i). Similarly, the arrows in the right side of Figure 6.8 represent

the deformation field from atlas constructed on top of the root image to target

image. This deformation is denoted in Equation 6.5 by DBC and is done only

once. Note that this deformation is the only deformation for which is necessary

to do the online registration, while in previous case to calculate the deformation

DAC the registration between target image and each image form the set {Ii}
was necessary. Thus, the latter approach may be used to significantly improve

the multi-atlas based segmentation. As always, this does not come at no cost.

To see how this increase in speed reflects to the accuracy, the segmentation

results for each method are presented in Figures 6.9 and 6.10.
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Figure 6.9: Similarity index between gold standard and atlas based segmenta-

tion calculated on aortic outflow image database and MRI brain database.
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Figure 6.10: MASD between gold standard and atlas based segmentation cal-

culated on aortic outflow image database and MRI brain database.

The accuracy of each method is evaluated using similarity index (SI)

[3, 120, 182] and mean average surface distance (MASD) [199, 3]. The SI is

given by:

SI =
2|Sa ∩ Sb|
|Sa|+ |Sb|

(6.8)

While MASD is given by:

MASD = d(Sa, Sb) + d(Sa, Sb) (6.9)

where d(Sa, Sb) is approximated with Sa \ Sb and d(Sb, Sa) is approximated
with Sb \ Sa.
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6.3.4 Conclusion

From Figures 6.9 and 6.10 we can see that in both experiments All-R-A-T

method performs almost as good as All-T method, and both method perform

better than S-T method. Overall better results are achieved for aortic outflow

database (larger SI) than for the MRI brain database, but this can be con-

tributed to more complex registration procedure necessary for the registration

of the 3D images. The results show that off-line atlas blending produces at-

las with almost the same segmentation accuracy as the on-line atlas blending

(fusion). The main advantage of the All-R-A-T method for atlas formation is

its ability to break the segmentation process in two steps, thus allowing the

atlas blending to be done only once. If this is done off-line, significant speed

up of the segmentation algorithm can be achieved, directly proportional to the

number of templates used for the atlas formation.

Nihilominous tamen scio, homines ita esse affectos, ut mayor pars eorum; qvi has meas Machinas viderint, imo

ij ipsi qvi antequam eas vidissent catalogum earu legerant, et mirificas esse censuerunt: postea spernent, et

pro vulgaribus habebunt.

Faust Vrančić
Machinae novae
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Chapter 7

A Framework for Image
Similarity Measure
Construction

In this chapter we propose a novel approach for estimating image similarity. This

measure is of importance in assessing image correspondence or image alignment

and plays an important role in image registration. Currently, this problem is

approached rather one-dimensionally, since most registration methods consider

the problem as either mono- or multi-modal. This perspective leads to the

selection of some form of either the correlation coefficient (CC) or mutual in-

formation (MI) as image similarity measure (ISM). We propose a more generic

framework for ISM construction, based on absolute joint moments, which can

be considered as a generalization of CC. Within this framework we propose a

specific ISM that provides a different trade-off between MI and CC in terms

of performance and computational cost for general registration problems. To

illustrate this, we compare CC and MI with the proposed ISM and performed

extensive experiments with regard to accuracy, robustness and speed. The eval-

uation demonstrated that the proposed ISM is a good combination of CC and

MI, with respect to speed and performance. Therefore the proposed method is

complementary to the existing CC and MI measures.

The idea to use the sum of absolute joint moments is actually an exten-

sion of the idea presented in one of our papers [96], and many results presented

here overlap with one of our paper currently under review. In the following sec-

tions and related appendices, we will show not only the performance of the

absolute joint moments, but also that absolute joint moments can be simpli-

fied to covariance (building block of CC) or converge to MI. While the first

idea generates naturally from the very definition of the CC, the second idea

was inspired by the Hausdorff moment problem [194, 54, 14, 145].
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7.1 Introduction

Image registration is an optimization process that utilizes a similarity measure

(SM) to find the optimal alignment of two images. The registration accuracy

depends on the selection of the optimization algorithm and geometric transfor-

mation as well as on the definition of the similarity measure. Therefore, it is

essential to use a suitable similarity measure for a given problem. The selection

of an image similarity measure, especially in case of medical image registra-

tion, is usually reduced down to the question whether a multi or mono-modal

registration is required. This black-and-white perspective leads to well known

answers and results in the selection of correlation coefficient (CC) for mono-

modal registration and mutual information (MI) for multi-modal registration.

However, the problem of registration can be approached from several

perspectives, and often the registration of the same two images can be per-

formed using different methodological approaches. For example, Zitova et al.

in [251] distinguishes not only a multi-modal approach, but also a multi-view or

multi-temporal. Similarly, Maintz et al. in [134], classify registration not only

from a intra-/inter-modality perspective, but also from a intra-/inter-subject

perspective. Perhaps for this reason many other ISM emerged over time (see

Chapter 3).

In Chapter 3 we roughly classified ISMs as either CC-based or MI-based.

It was also noticed that all good properties, as well as the shortcomings, of MI

and CC come directly from their definition. For this reason we will primary focus

on CC and MI1 , and investigate their properties and compare them to the ISM

that we propose. In the following section we will give some motivating examples

to show that there is room for improvement besides the exiting ISMs. Next,

we aim to propose a framework for ISM construction which will utilize a chosen

amount of statistical values, instead of only a few (such as: standard deviation,

skewness, kurtosis, etc.). Within this framework, we propose a specific ISM

to show that when constructed in this way, it combines beneficial properties of

the two most used ones: CC and MI.

Whatever similarity measure is used for image registration, it has to

satisfy one basic condition - at the exact location of the correct alignment of

two images, the similarity (measure) has to be maximal. To find the maximum,

image registration incorporates an optimization algorithm, which iteratively cal-

culates a similarity measure. The number of calculations may thus easily reach a

number of a few thousand, especially if the geometric transformation is nonlin-

ear. Therefore, the complexity of the similarity measure also plays an important

role in registration methods. For this reason in our experiments we measure

the performance of the similarity measure in terms of accuracy, robustness and

speed.

1In [96] we compared accuracy and speed of more CC- and MI-based measures
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7.2 Motivation

In previous sections we mentioned that CC is considered ideal for mono-modal

image registration due to its elegance, swiftness and with the implicit assump-

tion that in mono-modal image acquisition the relationship between pixel in-

tensity values is affine and only corrupted by Gaussian noise [201, 231]. Due

to its intrinsic properties, MI can be used in both mono-modal and multi-modal

applications, the latter for which it is extensively used.

This section provides three simple examples where either CC or MI (or

both) do not perform well (see Figure 7.1). There are other shortcomings of

either CC or MI (or both), many of them well known from the literature, that

you can find separately discussed in Appendix A.2.

As will be shown in the further sections, the performance of the MI may

vary, depending on the number of bins selected to approximate the PDF. To

distinguish one MI implementation from another, the number of bins is used as

index (e.g. MI8 and MI256). The three examples shown in Figure 7.1 are given

for each ISM implementation: CC, MI8 and MI256. The comparison between

the images is done while applying three different geometric transformation:

scaling, rotation and translation. The images which are to be aligned are

constructed from the same template image selected from the test set (see

Section 7.4.1) by simple noise addition, with An/As = 0.5 (for the details

about noise degradation model see Section 7.4.2). Since both images are

constructed from the same template, the correct alignment is already known,

i.e. the ISM should have a maximal value for unity scaling, zero rotation and

zero translation.

In the first example, the image is consecutively translated by one pixel in

the range [−30, 30]. In the second example the image is consecutively rotated
by one degree in the range [−30, 30] degrees. In the third example the image
is scaled by s = 0.9 + 0.01 · n where n ∈ {0, . . . , 20}. Figure 7.1 shows the
values for MI8, MI256 and CC calculated for the examples. Notice that MI256
does not perform well in the first example, and neither of the ISMs has the

maximum at the correct location for both rotation and scaling. Therefore, an

ISM defined in a different way might be able to produce a better result in these

examples, but then it obviously remains to be seen if its better performance

would be related only to this particular image. Both question will be addressed

further on (see Section 7.6).

7.3 Absolute Joint Moments

In this section we define source and target image as random variable and denote

them as S and T instead S(x) and T (x). The following notation is used:

µS = E[S], and E[(S − µS)n] stands for the n-th central moment of the
random variable S, or more generally the E[(S − µS)n(T − µT )m] stands for
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Figure 7.1: The graphs show the behaviour of CC, MI8 and MI256 for transla-

tion, scaling and rotation of an image (shown besides the graphs together with

the geometric transformation used).
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the joint central moment of the order (m, n) of the random variables S and T .

7.3.1 Framework for constructing image similarity measures

As mentioned in the previous section, the idea is to use more statistical infor-

mation from the images (instead only a limited amount as in CC) for the ISM

construction. The proposed information to use are the joint moments. The

motivation behind this becomes clear if we write Equation 2.57 in the form:

CC(T, S) =
E[(T (x)− µT )(S(x)− µS)]

σT · σS
, (7.1)

were σT and σS denote standard deviations.

If we rewrite Equation 7.1 to the following form:

CC(T, S) · σT · σS = E[(T (x)− µT )(S(x)− µS)], (7.2)

we can see that this is equal to the joint central moment of order (1,1). From

this, we propose a generalization in the form:

AJM = |
∞∑
n=1

∞∑
m=1

1

ωn

1

ωm
· E[(T − µT )n(S − µS)m]| (7.3)

that we refer to as the absolute joint moment (AJM) framework for ISM con-

struction. Notice that, if we take only the first element of the sum and select

ωn = ωm = 1, this reduces down to the absolute covariance (numerator of CC

from the Equation 7.1). However, by writing the equation in this way we incor-

porate higher order joint moments which turn out to be valuable for establishing

relationship between AJM and MI (see Appendix A.1 for details).

7.3.2 Proposed image similarity measure

For the proposed image similarity we use a specific selection of weights ωn and

ωm, which is computationally efficient and guarantees convergence of the sum.

Using the selected weights, Equation 7.3 can be rearranged into the form of

Taylor expansion of the exponential function:

AJM142 = |
∞∑
n=1

∞∑
m=1

1

n!

1

m!
E[(T − µT )n(S − µS)m]| =

= |E[
∞∑
n=1

∞∑
m=1

1

n!

1

m!
(T − µT )n(S − µS)m]| =

= |E[
∞∑
n=1

1

n!
(T − µT )n

∞∑
m=1

1

m!
(S − µS)m]| =

= |E[(eS−µS − 1)(eT−µT − 1)]| (7.4)

76

Dr
af
t



As the expectation is estimated on the overlapping region of images S and T

we will have only the estimation of AJM142:

ÃJM142 =
1

N
|
∑
x∈DX

(eS−µS − 1)(eT−µT − 1)| (7.5)

where we use N to denote the number of pixel pairs. The index was used to

differentiate the framework for ISM construction and the ISM itself. Index 142

is used to indicate that weights ωn and ωm are a sequence of factorial numbers,

which is sequence A000142 from the OEIS2 database. In further sections the

ÃJM142 will be the only ISM from this framework used and tested, so we

will denote it simply as AJM. For theoretical discussion on the existence of

the expectation and AJM, as well as the numerical computation consideration

please consult Appendices A.3 and A.4.

We will show that this ISM selected from the proposed framework,

compared to MI and CC, will have a different trade-off between speed and

performance as will result directly from the definition of AJM. In order to

show this, in further sections we will investigate the properties of the AJM and

compare them to MI and CC with regard to robustness, accuracy and speed.

7.4 Experimental data

7.4.1 Dataset

Figure 7.2: A representative collection of the images used in our experiments.

Images from publicly available databases were used to test the properties

of the registration implemented using the AJM as similarity measure. The test

set is constructed so as to have as much diversity as possible. First, we use

all 44 miscellaneous images from the SIPI database3. Since this database does

not have medical images, all 19 medical images from the VIS database4, are

2http://oeis.org/A000142
3http://sipi.usc.edu/database
4http://vis-www.cs.umass.edu/˜vislib/Medical/InfarctScan/images.html
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added to the set, as well as 3 mammography images from the MIAS database5.

From the MIAS set, only three images are selected since the variability of the

images from this set is low. Finally, 34 images of different objects from the

ALOI database6 are added to the set which makes the total number of images

in the testing set 100. The set constructed in this way contains images with

different context, from natural to artificially constructed images. Both color

and gray-scaled images are represented in this set, but all images are converted

to gray-scaled images before the registration. All the images are coded with

either 7 or eight bits per pixel and the resolution of images ranges from 128-

by-128 to 1024-by-1024. For the purpose of the experiment all images are

converted to double floating point precision and scaled to interval [0,1].

A few images from each database, forming a representative collection

of images from the test set, are depicted in the first row of Figure 7.2. In

the second row of the Figure 7.2 the same images after artificial degradation

is shown (see Section 7.4.2 for details). The pairs of images constructed in

this way will be used for the evaluation of the ISMs in most of the further

experiments.

7.4.2 Image degradation model

To evaluate the performance of the ISMs we will need a pair of each image.

Therefore we introduce several degradation models that will be applied on each

image in order to simulate different effects that may happen during the im-

age acquisition process such as: excessive noise, contrast changes or nonlinear

intensity distortion. The image degradation models are described in the follow-

ing subsection and, as can be noticed, are inspired by the paper of Maes et al.

[132].

Contrast inhomogeneity

A linear spatially-variant intensity transformation is used to simulate image

contrast inhomogeneity effects and is modelled by the following expression:

I ′(x, y) = α(x, y)I(x, y) (7.6)

where α(x, y) is defined as:

α(x, y) =
1

1 + k1 · ((x − xc)2 + (y − yc)2)
(7.7)

with (xc , yc) being the coordinates of the point around which the curve is

positioned and k1 the distortion parameter.

5http://peipa.essex.ac.uk/ipa/pix/mias/
6http://staff.science.uva.nl/˜mark/aloi//aloi˙grey˙red4˙view.tar
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Noise

Additive uniform noise from the interval [0, k2As ] is superimposed on the original

image. Here, As stands for the amplitude of the signal, and k2 for the amplitude

ratios between noise and signal (An/As).

Nonlinear intensity distortion

A non-linear intensity transformation is used to simulate pixel value distortion

and is described by the following polynomial:

f (Ixy) = (Ixy − i1)(Ixy − i2)(Ixy − i3) . . . (Ixy − in) (7.8)

where Ixy stands for the intensity level (at position (x, y)), and i1, i2, i3 . . . in are

roots of the polynomial that simulates the intensity distortion.

After each distortion, the image is normalized to keep the original range

of pixel values.

7.5 Experiments and Results

In the first two experiments (Sections 7.5.1 and 7.5.2) the image pairs, be-

tween which the correct alignment is to be determined, are the original and the

degraded image. Therefore, the gold standard is well known, since the correct

alignment is for unity scaling, and zero translation and rotation. To evaluate

the performance of the ISM, an exhaustive search for the global maximum is

done. This was done in order to assure that the suitability of the ISM, rather

than the search strategy, is evaluated. Each ISM between image pairs is calcu-

lated for a progressive shift of one pixel in the interval [-100,100], for stepwise

rotation of one degree in the interval [-180,179] and for scaling in steps of 0.01

to increase or decrease the scaling factor in the interval [0.5,2].

7.5.1 Robustness test

Various image degradations may alter the intensities and may affect the per-

formance of a similarity measure. To evaluate the robustness of a similarity

measure with respect to additive noise, contrast change, or nonlinear intensity

distortion, each degradation model (described in Section 7.4.2) was applied to

each image from the set (see Section 7.4.1) and the similarity between the

original and degraded image was calculated for different translation, rotation,

and scaling factor.

For the degradation model the parameters listed in the Table 7.1 were

used.

As can be assumed from the Table 7.1, only third order polynomials

were used for the robustness test. However, this selection ensures nonlinear

distortion, as can be seen in Figure 7.3.
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Table 7.1: Parameters range for the robustness test

Range

(xc , yc) image center

k1 [0.0001, 0.0004]

k2 [0.1, 1]

i1 [0.1, 0.5]

i2 0.5

i3 [0.5, 0.9]

i1 + i3 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.3: Polynomials used in the robustness test. The solid line represents

the case i1 = 0.1, while the dashed line represents the case i1 = 0.5.

Here, we will focus on the robustness of the ISMs with respect to the

amount of deformation. If the ISM is robust to the degradation effects, the

maximum of the ISM will be achieved for approximately the same transforma-

tion for any amount and type of degradation. Therefore, in this test, we assess

how the number of images with alignment error less than ξ, changes with re-

spect to the amount of degradation. ξ is defined as 5px for translation, 0.05 for

scaling (see Eq. 7.9 for error definition), and 9◦ for rotation - which represents

5% of the x-axis range (maximal deformation) in the Figure 7.7– 7.9. The

experiment is done for each degradation model and the alignment error was

measured for three different type of image transformation: translation, scaling,

and rotation. Only one degree of freedom was allowed in each degradation

model, namely: k1, k2, and i1. Each parameter was changed in ten equidistant

steps within the range allowed by the Table 7.1. The experimental results are
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given in Figures 7.4– 7.6. Figure 7.4 compares the performance of ISMs when

only translation is allowed, Figure 7.5 shows the performance for rotation, and

Figure 7.6 for scaling.

As anticipated, this experiment showed thatMI256 is not robust to noise,

and that CC is not robust to nonlinear intensity distortions. For the AJM, one

can observe that it is affected by high nonlinear intensity distortion. However,

for a moderate distortion, it still performs satisfactory. Therefore, AJM seems

robust to noise and to moderate amounts of nonlinear intensity distortion.

AJM is also fairly robust to contrast inhomogeneity, since the performance of

AJM is comparable to this of the other ISMs. All these conclusions hold for

translation, rotation and scaling.

The results of the previous experiment could vary if a different error

threshold ξ is selected. To estimate how this results would change for different

ξ selected, we performed the following test. Again, all three degradation models

were applied and the images were aligned after three different transformation.

However, the fixed parameters in this case are k1, k2, and i1. The parameters

are set to represent the largest degradation. The results are presented in

Figures 7.7– 7.9, where graphs of the ISMs for different distortion are plotted,

and in each figure a different transformation is used to achieve the correct

image alignment. In Figure 7.7 the alignment is achieved using translation

only, in Figure 7.8 using rotation, and in Figure 7.9 scaling. The graphs show

how many images are aligned with an error lower than a certain amount, and

therefore give insight in the distribution of the ISM error for the image dataset.

Figure 7.7– 7.9 show that, no matter what error threshold (ξ) is se-

lected, the order of the ISMs for their relative performance would remain ap-

proximately the same. For all experiments (with the exception of the com-

bination of rotation and contrast inhomogeneities), AJM is between CC and

MI with regard to the overall number of correct alignments and sometimes

even between the two different implementations of MI. This was as might be

assumed from its theoretical properties.

As expected, the experiments showed that no ISM could compete with

the performance of MI for large nonlinear intensity distortions. However, the

use of higher order moments was helpful, since AJM performs better than

CC for nonlinear intensity distortion. From the graphs, it is also clear that

in a noiseless environment MI256 performs better than MI8, but in a noisy

environment MI256 is not such a good choice.

7.5.2 Accuracy test

This test is used to evaluate the accuracy of localizing the exact position of

the maximum of the ISM. The image pairs for the experiments are the original

images from the test set and the degraded images, both of which are explained

in Section 7.4. The degraded images are constructed by applying all three
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Figure 7.4: Robustness of ISMs when only translation is used for alignment.

The graphs show the change in the performance of each ISM with regard to

the distortion. For contrast inhomogeneities, this parameter is k1, for noise

it is k2, and for nonlinear distortion the parameter is i1. For each ISMs, and

for each distortion, the y-axis shows the the number of images with alignment

error less than ξ, and the x-axis shows amount of distortion (i.e. k1, k2, and

i1). The performance of CC, AJM, MI8, and MI256 are plotted using circles,

solid line, triangles and dashed line, respectively..
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Figure 7.5: Robustness of ISMs when only rotation is used for alignment. The

graphs show the change in the performance of each ISM with regard to the

distortion. For contrast inhomogeneities, this parameter is k1, for noise it is k2,

and for nonlinear distortion the parameter is i1. For each ISMs, and for each

distortion, the y-axis shows the the number of images with alignment error less

than ξ, and the x-axis shows amount of distortion (i.e. k1, k2, and i1). The

performance of CC, AJM, MI8, and MI256 are plotted using circles, solid line,

triangles and dashed line, respectively.

83

Dr
af
t



N
o
is
e

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
40

50

60

70

80

90

100

C
o
n
tr
.I
n
h
o
m
o
g
.

1.5 2 2.5 3 3.5 4

x 10
−4

40

50

60

70

80

90

100

In
te
n
.D
is
to
rt
.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
40

50

60

70

80

90

100

AJM

MI8

CC

MI256

Figure 7.6: Robustness of ISMs when only scaling is used for alignment. The

graphs show the change in the performance of each ISM with regard to the

distortion. For contrast inhomogeneities, this parameter is k1, for noise it is k2,

and for nonlinear distortion the parameter is i1. For each ISMs, and for each

distortion, the y-axis shows the the number of images with alignment error less

than ξ, and the x-axis shows amount of distortion (i.e. k1, k2, and i1). The

performance of CC, AJM, MI8, and MI256 are plotted using circles, solid line,

triangles and dashed line, respectively..
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Figure 7.7: Distributions of the ISM errors when translation is used as geometric

transformation. The graphs show the total number (y-axis) of aligned images

with an error lower than x (value on the x-axis). The performance of CC, AJM,

MI8, and MI256 are plotted using circles, solid line, triangles and dashed line,

respectively.
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Figure 7.8: Distributions of the ISM errors when rotation is used as geometric

transformation. The graphs show the total number (y-axis) of aligned images

with an error lower than x (value on the x-axis). The performance of CC, AJM,

MI8, and MI256 are plotted using circles, solid line, triangles and dashed line,

respectively.
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Figure 7.9: Distributions of the ISM errors when scaling is used as geometric

transformation. The graphs show the total number (y-axis) of aligned images

with an error lower than x (value on the x-axis). The performance of CC, AJM,

MI8, and MI256 are plotted using circles, solid line, triangles and dashed line,

respectively.
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degradation model, where first additive noise is added, next contrast degrada-

tion is simulated and, finally, nonlinear intensity distortion is done on the pixel

value. For degradation of each image the parameters are selected randomly

within the value range listed in the Table 7.2.

Table 7.2: Parameter range for the accuracy test

Range

(xc , yc) within image

k1 [0.00005, 0.0005]

k2 [0, 1]

i1 . . . in [0, 1]

n {2, 3, 4, 5, 6}

As can be noticed from Table 7.2, the range of parameters is a bit

larger in this test than in the previous one. So higher contrast inhomogeneity

is allowed, as well as lower noise, similarly, nonlinear image distortion is imple-

mented as an n-th order polynomial, where n can range from two to six. Notice

that, according to the robustness test, the increase of the range of these values

will not go in favour of AJM.

The error in image alignment is measured separately for translation,

scaling and rotation. This is depicted in Figures 7.10, 7.12, and 7.11. The

circle represents the average error of each ISM, and the vertical line shows one

standard deviation from the average. The error for translation and rotation is

given in pixel and degrees, and the error for scaling is a unitless value calculated

as:

εS = log2(Di) (7.9)

where Di is the scaling factor (deformation amount) for which the maximal

ISM value is achieved. Index i stands for the measurement (image) number

and N denotes the total number of measurements (images). This is done so

that the scaling error is symmetrical, i.e. it gives the same error for squeezing

and stretching the image by the same factor. Also, it gives no error if the

images are scaled by the same factor.

Figures 7.10 and 7.12 show that CC,MI8, and AJM have approximately

the same error, but MI8 has the least and CC the largest variance. It is also

clear thatMI256 has both larger errors and variance than AJM. The Figure 7.11

shows the results for rotation. Notice that for rotation, MI8, MI256 and AJM

show similar results, all three being better than CC.

In Table 7.3, the overall averaged absolute registration error calculated

for translation (first column), scaling (second column), and rotation (third

column) is shown.
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Figure 7.10: Alignment error and its standard deviation for different ISM using

translation. y-axis is in pixels.
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Figure 7.11: Alignment error and its standard deviation for different ISM using

rotation. y-axis is in degrees.

7.5.3 Execution time test

Since CC, MI and AJM are implemented as defined in equations 2.57, 2.60 and

7.4 respectively, we can notice that the computational complexity of all three

measures is O(N). However, it is expected that CC will work faster than AJM
since it has to calculate only a product and a ratio instead of an exponential.

Similarly, we can expect that AJM is faster than MI since it does not requires

the histogram formation. To evaluate this, we measured the execution time of

all three algorithms. For this purpose, the Matlab Profiler was used.

The algorithm was implemented on a standard quad-core PC without

parallelization. The computation time required for one evaluation of the sim-

ilarity measure varies linearly with the number of samples in the overlapping

region between the two images. The results are shown in Table 7.4. The speed
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Figure 7.12: Alignment error and its standard deviation for different ISM using

scaling. y-axis is unitless value.

Table 7.3: The average absolute error for translation, rotation and scaling.

εT εR εS

CC 51.27 72.17 0.49

AJM 19.57 31.04 0.24

MI8 15.48 23.70 0.15

MI256 33.01 37.73 0.45

performance evaluation is calculated as the average from 1000 function calls

for an image size 512× 512.

Table 7.4: Execution time measurements.

Time

CC 20.772 ms

AJM 24.609 ms

MI8 50.010 ms

MI256 78.627 ms

7.5.4 Medical image registration test

The test investigates the suitability of the AJM for image registration. In

the test, 26 medical images are used. The images are aortic outflow images

acquired by Doppler ultrasound from healthy volunteers. In the registration the

Nelder-Mead simplex algorithm is used as an optimization algorithm, and the

same geometric transformation as in previous experiments (see Section 5.2.1)
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is also used here. Each image is registered onto itself, and the registration error

is measured as:

ε =
∑
i

|ln(fi)| (7.10)

where fi stands for scaling factor of the transformation vector f. Ideally, each

image registered to itself should result with the transformation vector whose

components are ones. The registration error measured by Equation 7.10 is

symmetrical, i.e. it returns same error for the same amount of squeezing and

stretching, and it returns zero if images are correctly registered.

For AJM used as ISM, the average registration error is 6.24% and for

MI256 the average error is 7.48%. The average number of function evaluation

necessary for AJM to converge was 231.54, while for MI256 it was 264.12.

7.6 Overall comparison

At the beginning of the Chapter (Section 7.2) some examples are given, where

CC, MI8, andMI256 are unable to find the exact alignment. To investigate how

AJM performs in a similar setting, the same experiments were repeated using

AJM. The results are presented in Figures 7.13, showing the performance of

AJM alongside CC, MI8, or MI256.

As can be noticed, in all three cases, AJM outperforms the other ISMs.

To check that this is due to the nature of this particular image, we ran this

experiment on all images from the dataset. To recall, both images were created

from the same original by simple noise addition, and we tried to align them using

translation, rotation and scaling. In each experiment we counted the number

of cases where AJM outperforms the other ISMs. The results are given in

Table 7.5.

Table 7.5: The total number of aligned image pairs for which AJM outperforms

other ISMs, with respect to given geometric transformation. Image pairs are

altered using a noise degradation model.

CC MI8 MI256

Translation 1 0 66

Rotation 69 60 67

Scaling 68 51 72

7.7 Discussion and Conclusion

The experiments show that AJM is robust to noise, fairly robust to contrast

inhomogeneities, and more robust than CC and less robust than MI for non-
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Figure 7.13: The graphs show the behavior of AJM alongside CC, MI8 and

MI256 for translation, scaling and rotation of an image (shown besides the

graphs together with the geometric transformation used).
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linear intensity distortion. The robustness test also showed that MI256 in not

very robust to noise. As a general conclusion, we can say that the robustness

of the AJM is a compromise between CC and MI.

The accuracy test shows that AJM is less accurate thanMI8 and overall

better than MI256. This difference between different MI implementation also

emphasizes how MI is affected by the number of bins of the histogram and the

interpolation techniques, while AJM is not. Both MI and AJM outperform

CC significantly, primarily due to the fact that CC cannot cope with nonlinear

intensity distortion. An additional strength of AJM is that it does not require

a statistically significant number of pixels for the calculation of entropy, so it

can be calculated for a smaller region compared to MI.

Although all three ISMs have similar complexity, AJM is a faster method

than MI since it does not require histogram calculations (nor estimations),

but it is still slower than CC. The comparison is qualitatively summarized in

Table 7.6.

Table 7.6: Performance of similarity measures

CC MI AJM

noise + -/+ ++

contrast inhomogeneity + + +

nonlin. intensity deform. - ++ +

speed ++ - +

overap invarinat + - -

insensitive to no. of bins + - +

insensitive to interpolation + - +

As a general conclusion, we can say that the experiments have shown

that the proposed ISM is able to determine the correspondence among images

with complex relationships between the pixel values and is computationally more

efficient and does not have some of the inherent disadvantages ofMI. It is also

clear (Table 7.6) that AJM142 from the AJM framework for ISM construction

provides a different trade-off between speed and performance and can be seen

as a useful compromise between MI and CC.

Birds of a feather flock together

A proverb

. . . �ÕÎ� �� �ñ�K. �ð@
�
@X é �� �ø


�
@X . . .

Chirvat türkisi a.k.a. Croatian song, 1588
One of the oldest texts written on Croatian using Arabic script
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Chapter 8

The Use of Developed
Models in Clinical Practice

This chapter describes an ongoing research that tries to relate the shape of

the aortic outflow velocity profile with functional recovery of the patients with

aortic stenosis (AS), after aortic valve replacement. The idea is to investigate

whether the shape of the aortic outflow velocity profile predicts the functional

recovery of patients with AS after aortic valve replacement. In order to do this

from the aortic outflow segmentation few morphological features are extracted

and their relation to three different population groups is studied preopearive

patients (PRE group), postoperative patients (POST group) and population

of healthy volunters used as control group (CTRL group). Some features (rise

time and fall time) have previously been proposed in aortic outflow analysis,

while we also measure the asymmetry of aortic outflow profile and use it as a

feature. After their mutual comparison, the fetures are related to mean pressure

gradient (PGmean) and aortic valve area (AVA) as typical measures of stenosis

severity, and to change of ejection fraction (∆EF ) as measure of functional

recovery. The results show that rise time, fall time and asymmetry index vary

across different populations, however POST group is closer to the CTRL group

than the PRE group, showing that selected features can meaningfully quantitize

the shape of aortic outflow velocity profiles. Furthermore the results show that

asymmetry index correlates to ∆EF and has better diagnostic accuracy than

either PGmean or AVA which are echocardiography measurements routinely

used in aortic stenosis severity quantification.

8.1 Introduction

The profile of Doppler traces of aortic outflow provides information on blood

flow velocities and pressure gradients which indicates the stenosis severity in

patients with AS. However, apart from valve properties (valve area) blood flow

velocities are also determined by other factors such as left ventricular (LV)
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contractility, or (systemic) afterload. Thus, the Doppler trace of aortic outflow

profile in patients with AS should reflect not only stenosis severity, but potential

LV functional (e.g. myocardial) damage as well.

It is a challenge to recognize patients with subclinical myocardial dys-

function in order to operate early enough to prevent irreversible myocardial

damage, but not so early as to subject them to unnecessary risks. In other

words, we would like to have a parameter with good diagnostic accuracy of

the functional recovery of patients with AS if they undergone the aortic valve

replacement. For this purpose we propose a novel parameter that we named

asymmetry index (asymm), which is calculated as the relative ratio of the areas

under the aortic flow velocity curves extracted from the model-based segmen-

tation of the aortic outflow profile images (see Figure 8.1 and Equation 8.1).

First we compare the asymmetry index with other morphological fea-

tures extracted from the aortic flow velocity curves. Since the functional re-

covery of the patients with AS after aortic valve replacement is measured by

the change of the ejection fraction (∆EF ), we also compare the asymmetry

index with ∆EF . To assess diagnostic accuracy of asymmetry index and other

parameters usually used for the same purpose, such as mean systolic pres-

sure gradient (PGmean) or aortic valve area (AVA), the comparison of the

area under receiver operating characteristic (ROC) curves was performed. The

ROC curves are calculated based on the functional recovery of the patients

(∆EF > 0 measurements).

8.2 Method

The study is conducted on 31 patients undergoing aortic valve surgery for

severe AS (as defined by the European Society of Cardiology guidelines [183])

preoperatively (PRE) and 9 months postoperatively (POST).

The analysis and feature extraction of morphological features is done

on the aortic outflow curves acquired from the atlas-based segmentation of

the aortic outflow images. The atlas used in atlas-based segmentation is con-

structed by All-R-A-T method described in Chapter 6 using 29 images from

normal patients. Extracted morphological features are rise time (tr), fall time

(tf ) and asymmetry index (asymm), where asymm is calculated as:

asymm =
A1 − A2
A

(8.1)

where A1 is area under first half of the aortic outflow curve, and the A2 is

area under second half of the curve. The A denotes the total area (A1 + A2)

under the curve. The morphological feature extraction is graphically described

in Figure 8.1.

Additional echochardiographic measurements are done using dedicated

software (Echopac, GE Horten, Norway). Ejection fraction (EF) was measured
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Figure 8.1: Image shows the aortic outflow curve with tr and tf measured from

10% to 90% and from 90% to 10 % respectively. A1 and A2 denote the left

and right area under the curve, respectively.

by the Simpson’s biplane method [118] using equation:

EF =
EDV − ESV
EDV

(8.2)

where EDV denotes end-diastolic volume and ESV denotes end-sistolic vol-

ume. Continuous wave Doppler traces of the aortic outflow were analyzed

by planimetry of the Doppler envelope in order to obtain the mean systolic

transaortic pressure gradient (PGmean), which was calculated by the modified

Bernoulli equation [9]:

∆P = 4 · (V 22 − V 21 ) (8.3)

Aortic valve area (AVA) was calculated from the continuity equation [9]:

A1 · v1 = A2 · v2 (8.4)

which states that area-velocity product is constant. In Equation 8.4 the A1 and

v1 are area and velocity measured at the left ventricular outflow tract, and v2
is measured aortic outflow velocity, and A2 is aortic valve area (AVA).

8.3 Experiments and Results

Table 8.1 shows the morphological features extracted from aortic outflow

curves alongside manual echochardiographic measurements. Measurements

from the patient group preoperatively (PRE) and nine months postoperatively
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(POST), are compared to measurements obtained on the control group. For

each population (PRE, POST and CTRL) the table lists mean values plus

standard deviations of each parameter. In addition, for each population a per-

centage of population having the asymmetry index lower than 0.25 is calcu-

lated. Already from this we can notice that the postoperative measurements

of asymmetry are more similar to the healthy population than the preoperative

measurements.

Table 8.1: Morphological features extracted from aortic outflow curves and

manual echochardiographic measurements from the same patient group preop-

eratively (PRE) and postoperatively (POST), and control group (CTRL).

PRE POST CTRL

asymm < 0.25(%) 96.77 16.13 0.00

asymm 0.16± 0.04 0.28± 0.04 0.33± 0.06
tr (ms) 58.94± 12.44 41.69± 11.48 32.00± 8.00
tf (ms) 125.56± 22.46 155.26± 23.66 153.00± 13.00
AV A (cm2) 0.80± 0.18 1.94± 0.44 3.54± 0.66
PGmean (mmHg) 48.29± 13.24 13.26± 5.04 3.14± 0.53
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Figure 8.2: The correlation between asymmetry index of the PRE group and

delta EF.

From Table 8.1 we can see that asymm was the lowest in the preop-

erative patient group indicating the most symmetrical traces, while its values
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rise significantly after operation and becomes more alike the ones in the con-

trol group. Notably, 96.77% of the AS patients had an abnormally symmetric

trace (asymm < 0.25) before aortic valve surgery, while only 16.13% of the

AS patients retained such symmetric traces after operation and none of the

control group patients had such abnormal traces. Similarly, tr was the longest

in the PRE group, with a significant shortening in the POST group, while it

was the shortest in the control group. On the contrary, tf was the shortest in

the PRE group, rising significantly in the POST group while it was the longest

within the control group.
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Figure 8.3: ROC curve for asymm (solid line), PGmean (dotted line) and AVA

(dashed line).

Within the PRE group of patients, a correlation between asymm and

∆EF is present (as demonstrated in Figure 8.2 ). To measure the diagnostic

potential of asymm, the ROC curve is used. Figure 8.3 demonstrates the ROC

curves for asymm, AVA and PGmean in relation to ∆EF .

Figure 8.2 shows that the asymmetry index (asymm) has better diag-

nostic accuracy than mean systolic pressure gradient (PGmean) or aortic valve

area (AVA).

8.4 Conclusion

In this Chapter, we have shown some possible use of the aortic outflow segmen-

tation and developed models in clinical practice. From the results it is clear that

the aortic outflow profiles patients with AS vary in the degree of symmetry and

that this can be quantified by several morphological features. Furthermore, it
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was shown that the symmetry of aortic outflow profile relates to postoperative

functional recovery of patients. We have seen that the shape of the instanta-

neous peak velocity in patients with AS is markedly more symmetric than in the

control group and that an increase of symmetry relates to poorer EF recovery 9

months after surgery. When compared to AVA or PGmean, the proposed mor-

phological feature (asymm) is a better predictor of functional recovery than

either AVA or PGmean.

Vorhersagen sind schwierig, besonders wenn sie die Zukunft betreffen.

zugeschrieben Niels Bohr, Albert Einstein, Karl Valentin u.a.
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Chapter 9

Conclusion

In the thesis we have presented a method for registration, segmentation and

model-based analysis of transaortic valvular flow ultrasound images.

In order to analyze transaortic valvular flow ultrasound images a model-

based segmentation utilizing image registration was done. Chapter 5 presented

one possible solution to transaortic valvular flow segmentation via model-based

image registration. The registration was evaluated using an in silico phantom,

and the segmentation was evaluated based on gold standard provided by the

expert cardiologist. It was shown that variability of the automated segmentation

relative to the manual is comparable to the intra-observer variability. The

same holds for the morphological features extracted from the segmentation,

showing that the automated method can be used in clinical practice. Atlas

used in Chapter 5 was manually segmented model constructed from multiple

template images. Alternative methods for atlas formation were discussed in

Chapter 6 and we proposed an atlas constructed from multiple template images

presegmented by expert cardiologist. We demonstrated that such atlas is less

biased and more accurate than simple atlas formation techniques, and faster

than more complex image segmentation techniques utilizing multi-atlas based

segmentation. We also showed that if the registration has the transitivity

property the proposed method for atlas formation produces the same result as

the classical atlas fusion technique. Furthermore the experiments have shown

that for our experimental setup (where the registration is not restricted to

have the transitivity property) the error between atlas fusion and the proposed

approach is not significant. In order to accurately propagate the segmentation

from atlas to images the correspondence between image and atlas has to be

defined. This problem is discussed in Chapter 7 where we have proposed a

novel image similarity measure that we named absolute joint moments (AJM).

There we have shown that AJM relates to both correlation coefficient and

mutual information, and combine their good properties. Finally, we used the

aortic outflow image segmentation to extract morphological features and asses

the use of the developed method in clinical practice. The experimental results

presented in Chapter 8 showed that the aortic outflow profiles patients with

100

Dr
af
t



AS vary in the degree of symmetry and that this can be quantified by several

morphological features. Moreover, it was shown that the symmetry of aortic

outflow profile relates to postoperative functional recovery of patients and that

it is better predictor of functional recovery than some other routinely used

measurements such as AVA or PGmean.

Sed contrahenda iam vela sunt et consistendum.

Josip Ruder Bošković
De continuitatis lege

101

Dr
af
t



Bibliography

[1] Paul Aljabar, R. Heckemann, Alexander Hammers, Joseph Hajnal, and

Daniel Rueckert. Classifier selection strategies for label fusion using large

atlas databases. In Proceedings of the 10th international conference

on Medical image computing and computer-assisted intervention, MIC-

CAI’07, pages 523–531, Berlin, Heidelberg, 2007. Springer-Verlag.

[2] Paul Aljabar, R. A. Heckemann, Alexander Hammers, J. V. Hajnal, and

D. Rueckert. Multi-atlas based segmentation of brain images: atlas

selection and its effect on accuracy. NeuroImage, 46(3):726–738, July

2009.

[3] X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz de Solorzano. Com-

bination strategies in multi-atlas image segmentation: Application to

brain mr data. Medical Imaging, IEEE Transactions on, 28(8):1266–

1277, August 2009.

[4] Xabier Artaechevarria, Arrate Muñoz-Barrutia, and Carlos Ortiz
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istration using evolutionary computation: An experimental survey. IEEE

Comp. Int. Mag., 6(4):26–42, 2011.

[47] Benoit M. Dawant and Alex P. Zijdenbos. Handbook of Medical Imag-

ing, volume 2. Medical Image Processing and Analysis, chapter Image

Registration, pages 71–128. SPIE Press, 2000.

[48] Jörn Diedrichsen, Joshua H. Balsters, Jonathan Flavell, Emma Cussans,

and Narender Ramnani. A probabilistic mr atlas of the human cerebellum.

NeuroImage, 46(1):39 – 46, 2009.

[49] Jason Dowling, J. Fripp, P. Greer, J. Patterson, S. Ourselin, and O. Sal-

vado. Automatic atlas-based segmentation of the prostate: A MICCAI

2009 prostate segmentation challenge entry. In Proceedings of 2009

MICCAI Prostate Segmentation Challenge (London, September 2009),

2009.

[50] Gershon Elber. Geometric deformation-displacement maps. In Proceed-

ings of the 10th Pacific Conference on Computer Graphics and Applica-

tions, PG ’02, pages 156–, Washington, DC, USA, 2002. IEEE Computer

Society.

[51] P. A. van den Elsen, E. J. D. Pol, and M. A. Viergever. Medical image

matching - a review with classification. IEEE Eng. in Medicine and Biol.,

pages 26–38, 1993.

[52] David C. Van Essen and Heather A. Drury. Structural and functional

analyses of human cerebral cortex using a surface-based atlas. Journal

of Neuroscience, 17(18):7079–7102, September 1997.

106

Dr
af
t



[53] A. C. Evans, D. L. Collins, S. R. Millst, E. D. Brown, R. L. Kelly, and

T. M. Peters. 3d statistical neuroanatomical models from 305 mri vol-

umes. In IEEE Nuclear Science Symposium and Medical Imaging Con-

ference, pages 1813–1817, 1993.

[54] W. Feller. An introduction to probability theory and its applications.

Number s. 2 in Wiley series in probability and mathematical statistics.

Wiley, 1971.

[55] P. Fillard, X. Pennec, P. M. Thompson, and N. Ayache. Evaluating brain

anatomical correlations via canonical correlation analysis of sulcal lines. In

Proc. of MICCAI’07 Workshop on Statistical Registration: Pair-wise and

Group-wise Alignment and Atlas Formation, Brisbane, Australia, 2007.

[56] M A Fischler and R A Elschlager. The representation and matching of

pictorial structures. IEEE Transactions on Computers, C-22(1):67–92,

1973.

[57] Martin A. Fischler and Robert C. Bolles. Random sample consensus:

a paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM, 24(6):381–395, June 1981.

[58] A.J. Fitch, A. Kadyrov, W.J. Christmas, and J. Kittler. Fast robust

correlation. IEEE Transactions on Image Processing, 14(8):1063 – 1073,

Aug. 2005.

[59] J. M. Fitzpatrick, D. L. G. Hill, and C. R. Jr. Maurer. Handbook of Med-

ical Imaging, volume 2. Medical Image Processing and Analysis, chapter

Image Registration, pages 447–514. SPIE Press, 2000.

[60] J. Michael Fitzpatrick. Fiducial registration error and target registration

error are uncorrelated. Proceedings of SPIE, 7261(1):726102–726102–

12, 2009.

[61] R. Fletcher, editor. Practical Methods of Optimization. John Wiley and

Sons, second edition, 2001.

[62] Hassan Foroosh, Josiane B. Zerubia, and Marc Berthod. Extension of

phase correlation to subpixel registration. IEEE Transactions on Image

Processing, 11(3):188–200, March 2002.

[63] A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen. Automatic

construction of multiple-object three-dimensional statistical shape mod-

els: application to cardiac modeling. Medical Imaging, IEEE Transactions

on, 21(9):1151–1166, 2002.

107

Dr
af
t



[64] Orazio Gallo, Roberto Manduchi, and Abbas Rafii. Cc-ransac: Fitting

planes in the presence of multiple surfaces in range data. Pattern Recog-

nition Letters, 32(3):403 – 410, 2011.

[65] M. A. Gavrielides, R. Zeng, L. M. Kinnard, K. J. Myers, and N. Petrick.

A template-based approach for the analysis of lung nodules in a volu-

metric ct phantom study. In Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, volume 7260 of Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series, February

2009.

[66] Thomas A. Gaziano. Cardiovascular disease in the developing world

and its cost-effective management. Circulation 2005, pages 3547–3553,

2005.

[67] Davi Geiger, Alok Gupta, Luiz A. Costa, and John Vlontzos. Dynamic

programming for detecting, tracking, and matching deformable contours.

IEEE Trans. Pattern Anal. Mach. Intell., 17(3):294–302, 1995.

[68] Sarah F. F. Gibson and Brian Mirtich. A survey of deformable modeling

in computer graphics. Technical report, 1997.

[69] Ali Gooya, Kilian M. Pohl, Michel Bilello, George Biros, and Christos

Davatzikos. Joint segmentation and deformable registration of brain

scans guided by a tumor growth model. In MICCAI ’11, pages 532–540.

Springer-Verlag, 2011.

[70] Subrahmanyam Gorthi, Meritxell Bach Cuadra, Ulrike Schick, Pierre-

Alain Tercier, Abdelkarim S. Allal, and Jean-Philippe Thiran. Multi-atlas

based segmentation of head and neck ct images using active contour

framework. In 13th International Conference on Medical Image Comput-

ing and Computer Assisted Intervention - MICCAI2010, pages 313–321,

2010.

[71] Subrahmanyam Gorthi, Valérie Duay, Nawal Houhou, Meritxell

Bach Cuadra, Ulrike Schick, Minerva Becker, Abdelkarim S. Allal, and

Jean-Philippe Thiran. Segmentation of head and neck lymph node regions

for radiotherapy planning, using active contour based atlas registration.

IEEE Journal of selected topics in signal processing, 3(1):135–147, 2009.

[72] Sylvain Gouttard, Martin Styner, Sarang Joshi, Rachel G. Smith,

Heather C. Hazlett, Guido Gerig, Josien P. W. Pluim, and Joseph M.

Reinhardt. Subcortical structure segmentation using probabilistic atlas

priors. volume 6512, pages 65122J1–65122J11, 2007.

108

Dr
af
t



[73] Alexandre Guimond, Jean Meunier, and Jean-Philippe Thirion. Average

brain models: a convergence study. Computer Vision and Image Under-

standing, 77(9):192–210, February 2000.

[74] Piotr A. Habas, Kio Kim, James M. Corbett-Detig, Francois Rousseau,

Orit A. Glenn, A. James Barkovich, and Colin Studholme. A spatiotem-

poral atlas of mr intensity, tissue probability and shape of the fetal brain

with application to segmentation. NeuroImage, 53(2):460 – 470, 2010.

[75] J. V. Hajnal, L. G. Hill, and D. J. Hawkes, editors. Medical Image

Registration. CRC Press, Cambridge, first edition, 2001.

[76] Xiao Han, Lyndon S. Hibbard, Nicolette P. O’Connell, and Virgil Willcut.

Automatic segmentation of parotids in head and neck ct images using

multi-atlas fusion. In 13th International Conference on Medical Image

Computing and Computer Assisted Intervention - MICCAI2010, pages

297–304, 2010.

[77] T. Hartkens, D. Rueckert, J. A. Schnabel, D. J. Hawkes, and D. L. G.

Hill. Vtk cisg registration toolkit - an open source software package for

affine and non-rigid registration of single- and multimodal 3d images. In

Bildverarbeitung für die Medizin, 2002.

[78] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, second edition, 2004.

[79] L. Hatle and B. Angelsen, editors. Doppler ultrasound in cardiology -

Physical principles and clinical applications. Lea & Febiger, Philadelphia,

second edition, 1982.

[80] Rolf A. Heckemann, Joseph V. Hajnal, Paul Aljabar, Daniel Rueckert, and

Alexander Hammers. Automatic anatomical brain mri segmentation com-

bining label propagation and decision fusion. Neuroimage, 33(1):115–26,

2006.

[81] A. J. H. Hii, C. E. Hann, J. G. Chase, and E. E. W. Van Houten. Fast nor-

malized cross correlation for motion tracking using basis functions. Com-

puter Methods and Programs in Biomedicine, 82:144–156, May 2006.

[82] Derek L. Hill, Colin Studholme, and David J. Hawkes. Voxel similarity

measures for automated image registration. Visualization in Biomedical

Computing 1994, 2359(1):205–216, 1994.

[83] Derek L. G. Hill, Philipp G. Batchelor, Mark Holden, and David J.

Hawkes. Medical image registration. Physics in Medicine and Biology,

46(3):R1–R45, March 2001.

109

Dr
af
t



[84] Mark Holden. A review of geometric transformations for nonrigid body

registration. IEEE Trans. Med. Imaging, 27(1):111–128, 2008.

[85] Hyvärinen and E Oja. Independent component analysis: algorithms and

applications. Neural Networks: The Official Journal of the International

Neural Network Society, 13(4-5):411–430, Jun 2000.

[86] Aapo Hyvärinen. Independent component analysis. Neural Computing

Surveys, 2, 2001.

[87] Ivana Isgum, Marius Staring, Annemarieke Rutten, Mathias Prokop,

Max A. Viergever, and Bram van Ginneken. Multi-atlas-based segmenta-

tion with local decision fusion–application to cardiac and aortic segmen-

tation in ct scans. IEEE Transactions on Medical Imaging, 28(7):1000–

1010, 2009.

[88] A. K. Jain. Fundamentals of digital image processing. Prentice-Hall

information and system sciences series. Prentice Hall, 1989.

[89] Anil Jain and Douglas Zongker. Feature selection: Evaluation, appli-

cation, and small sample performance. IEEE Transaction on Pattern

Analisys Machine Intelligence, 19(2):153–158, February 1997.

[90] Anil K. Jain, Robert P. W. Duin, and Jianchang Mao. Statistical pat-

tern recognition: A review. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(1):4–37, January 2000.
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images. In Bernd Fischer, Benôıt M. Dawant, and Cristian Lorenz, edi-

tors, Biomedical Image Registration, Lecture Notes in Computer Science,

pages 222–233. Springer, 2010. 4th International Workshop, WBIR 2010
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Nay, we have not lived in vain. Have they not built towers of our bones?

Khalil Gibran
Sand and Foam

Prah po našim koracima,

prah slavnih nam predah to je,

prah Zrinjskoga i Hrvoje

i mnogijeh sličnih njima!

Bud’mo vredni čestitosti

U njem shranit svoje kosti!!

Petar Preradović
Naša zemlja
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Appendix A

A1

A.1 Relationship between AJM and MI

By definition, MI is:

MI(X, Y ) = −H(X, Y ) +H(X) +H(Y ) (A.1)

Negentropy [85] or (non-) Gaussianity [22] is defined as an entropy

difference:

J(X) = H(XG)−H(X) (A.2)

where XG stands for the Gaussian (multivariate) random variable of the same

covariance matrix as X. In case of two-dimensional random variable (our case),

we can write:

J(X, Y ) = H(XG, Y G)−H(X, Y ) (A.3)

Using the definition of entropy we can express this as:

J(X, Y ) = −
∫
pGXY ln p

G
XY +

∫
pXY ln pXY (A.4)

The MI can be expressed via negentropy in the form:

MI(X, Y ) = J(X, Y )− J(X)− J(Y )−
1

2
ln
E[XX]E[Y Y ]∣∣∣∣E[XX] E[XY ]E[Y X] E[Y Y ]

∣∣∣∣ (A.5)

This is just a simplification of the equations given in [36] and [86] (e.q. 2.4 and

23, respectively). If X and Y are uncorrelated [86] or statistically independent

centralized variables [36] the last term vanishes, therefore, we write:

MI(X, Y ) = J(X, Y )− J(X)− J(Y ) (A.6)

If pGXY ≈ pXY (assumption similar to one done in [22] eq.42) we can
write:

J(X, Y ) = −
∫
pGXY ln

pGXY
pXY
dxdy (A.7)

J(X) = −
∫
pGX ln

pGX
pX
dx (A.8)
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If we denote Gaussian distribution pGXY (or p
G
X) with n and pXY (or pX) with p,

we can notice that the negentropy is expressed in the form of relative entropy

(KLD):

DKL(n||p) = −
∫
n · ln

n

p
dx (A.9)

If we expand the the natural logarithm in Taylor series KLD can be written as:

DKL(n||p) = −
∫
n[
p

n
− 1−

(p
n
− 1)2

2
+ . . . ]dx (A.10)

≈
����������:0
−
∫
n(
p

n
− 1)dx +

1

2

∫
n(
p

n
− 1)2dx (A.11)

=
1

2

∫
n(
p

n
− 1)2dx = D̂KL(n||p) (A.12)

The step from Equation A.10 to A.11 simply truncates the series and step from

Equation A.11 to A.12 is valid since the first summand in the Equation A.11

vanishes by the definition of the PDF.

A (multivariate) Gram-Charlier expansion of p(x) around a reference

distribution n(x) is an expansion of p(x) in the form:

p

n
− 1 =

2∑
i

ηih
i(x) +

1

2!

2∑
i j

ηi jh
i j(x) +

1

3!

2∑
i jk

ηi jkh
i jk(x) + . . . (A.13)

where
∑2
i j...k =

∑2
i

∑2
j · · ·

∑2
k and the η’s are coefficients and the h’s are fixed

functions of x which depend on n(x) (see [22], eq. 43). Since n is Gaussian

distribution, h’s are Hermite polynomials, and η’s are cumulants, which gives

us cumulant approximation of the KLD [22]:

D̂KL(n||p) =
1

2

(∑
i

(κpi − κ
n
i )
2 +
1

2!

∑
i j

(κpij − κ
n
ij)
2

+
1

3!

∑
i jk

(κpijk − κ
n
ijk)
2 +
1

4!

∑
i jkl

(κpijkl − κ
n
ijkl)

2 . . .

)
(A.14)

where κn and κp denote cumulants of the distribution n and p. If n is Gaussian

distribution centralized around mean, we have κni = 0, κ
n
ij = δi j and all higher-

order cumulants vanish.

Each summation in the Gram-Charlier expansion (Equation A.13) sums

across all dimensions of X which will be only one (X) or only two dimensions

(X and Y ).

In the case of two-dimensional random vector X each summation from
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the Equation A.13 expands to:

2∑
i

κ2i = κ1 + κ2 (A.15)

2∑
i j

κ2i j = κ
2
11 + κ

2
12 + κ

2
21 + κ

2
22 (A.16)

2∑
i jk

κ2i jk = κ
2
111 + κ

2
112 + κ

2
121 + κ

2
211 + κ

2
122 + κ

2
212 + κ

2
221 + κ

2
222 (A.17)

2∑
i jkl

κ2i jkl = κ
2
1111 + κ

2
1112 + κ

2
1121 + κ

2
1211 + κ

2
1122 + κ

2
1212 + κ

2
1221 + κ

2
1222

+ κ22111 + κ
2
2112 + κ

2
2121 + κ

2
2211 + κ

2
2122 + κ

2
2212 + κ

2
2221 + κ

2
2222

(A.18)

Now, we write negentropy via cumulant approximation of the relative

entropy:

J(X) ≈ D̂KL(n||pX) =

=
1

2

(
κ2X +

1

2!
(κXX − δXX)2 +

1

3!
κ2XXX +

1

4!
κ2XXXX + . . .

)
(A.19)

J(X, Y ) ≈ D̂KL(n||pXY ) =
1

2

(
κ2X + κ

2
Y+

+
1

2!
[(κXX − δXX)2 + (κXY − δXY )2 + (κY X − δY X)2 + (κY Y − δY Y )2]+

+
1

3!
[κ2XXX + κ

2
XXY + κ

2
XY X + κ

2
Y XX + κ

2
XY Y + κ

2
Y XY + κ

2
Y Y X + κ

2
Y Y Y ]+

1

4!
[κ2XXXX + κ

2
XXXY + κ

2
XXY X + κ

2
XY XX + κ

2
Y XXX+

+κ2XXY Y + κ
2
XY XY + κ

2
Y XXY + κ

2
XY Y X + κ

2
Y XY X + κ

2
Y Y XX+

+κ2XY Y Y + κ
2
Y XY Y + κ

2
Y Y XY + κ

2
Y Y Y X + κ

2
Y Y Y Y ] + . . .

)
(A.20)

Here, the dimension is notated with either X or Y rather than 1 or 2 and for

simplification superscript denoting distribution is dropped. From here, we can
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express MI as:

MI(X, Y ) = J(X, Y )− J(X)− J(Y ) ≈
1

2

(
κ2X + κ

2
Y+

+
1

2!
[(κXX − δXX)2 + (κXY − δXY )2 + (κY X − δY X)2 + (κY Y − δY Y )2]+

+
1

3!
[κ2XXX + κ

2
XXY + κ

2
XY X + κ

2
Y XX + κ

2
XY Y + κ

2
Y XY + κ

2
Y Y X + κ

2
Y Y Y ]+

1

4!
[κ2XXXX + κ

2
XXXY + κ

2
XXY X + κ

2
XY XX + κ

2
Y XXX+

+κ2XXY Y + κ
2
XY XY + κ

2
Y XXY + κ

2
XY Y X + κ

2
Y XY X + κ

2
Y Y XX+

+κ2XY Y Y + κ
2
Y XY Y + κ

2
Y Y XY + κ

2
Y Y Y X + κ

2
Y Y Y Y ] + . . .

−(κ2X +
1

2!
(κXX − δXX)2 +

1

3!
κ2XXX +

1

4!
κ2XXXX + . . . )

−(κ2Y +
1

2!
(κY Y − δY Y )2 +

1

3!
κ2Y Y Y +

1

4!
κ2Y Y Y Y + . . . )

)
(A.21)

where δi j is Kronecker delta function, i.e. δi j = 0∀i 6= j .
Now, the question is can we simplify this further, by canceling the fac-

tors of the negentropies J(X) and J(Y ) with autocumulant factors from the

negentropy J(X, Y ). The actual question is whether the following identity

holds:

κpXi j ...k = κ
pXY
i j ...k ∀i = j = · · · = k (A.22)

Since cumulants can be expressed in terms of moments (see Equation A.28),

the Identity A.22 holds, due to the fact that:∫ ∫
pXYXdxdy =

∫
pXXdx (A.23)

Therefore, we cancel the factors in Equation A.21 to get the expression:

MI(X, Y ) = J(X, Y )− J(X)− J(Y ) ≈
1

2
(

+
1

2!
[(κXY − δXY )2 + (κY X − δY X)2]+

+
1

3!
[κ2XXY + κ

2
XY X + κ

2
Y XX + κ

2
XY Y + κ

2
Y XY + κ

2
Y Y X]+

+
1

4!
[κ2XXXY + κ

2
XXY X + κ

2
XY XX + κ

2
Y XXX + κ

2
XXY Y + κ

2
XY XY + κ

2
Y XXY+

+κ2XY Y X + κ
2
Y XY X + κ

2
Y Y XX + κ

2
XY Y Y + κ

2
Y XY Y + κ

2
Y Y XY + κ

2
Y Y Y X] + . . .

)
(A.24)

Each cumulant can be expressed in terms of centralized moments (which

can be derived from their generating functions, see e.g. [105] p.62 for univariate
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case, or [142] p.60 for multivariate case):

κ2i = µ
′2
i = 0 (A.25)

κ2i j = (µ
′
i j − µ′iµ′j)2

= µ′2i j (A.26)

κ2i jk = (µ
′
i jk − µ′i jµ′k [3] + 2µ′iµ′jµ′k)2

= µ′2i jk (A.27)

κ2i jkl = (µ
′
i jkl − µ′i jkµ′l [4]− µ′i jµ′kl [3] + 2µ′iµ′jµ′kl [6]− 6µ′iµ′jµ′kµ′l)2

= (µ′i jkl − µ′i jµ′kl [3])2

= (µ′i jkl − µ′i jµ′kl − µ′ikµ′j l − µ′i lµ′jk)2 (A.28)

Here, bracket notation (see [142]) is used to denote all indices permutation

(e.g. µ′i jµ
′
kl [3] = µ

′
i jµ
′
kl + µ

′
ikµ
′
j l + µ

′
i lµ
′
jk).

µi jk is invariant to index perimutation, due to the product associativity

property, i.e. µ′XXY = E[X
′X ′Y ′] = E[X ′Y ′Y ′] = E[Y ′X ′X ′] = µ′Y XX (here

prime denotes centralized variable X or Y ). This leads to following simplifica-

tions:

κXY = µ
′
XY = κXY (A.29)

κXXY = µ
′
XXY = κXY X = κY XX (A.30)

κY Y X = µ
′
Y Y X = κY XY = κXY Y (A.31)

κXXXY = µ
′
XXXY − 3µ′XXµ′XY = κXXY X = κXY XX = κY XXX (A.32)

κXXY Y = µ
′
Y Y XX − µ′XXµ′Y Y − 2µ′XY µ′XY =

= κY Y XX = κY XY X = κXY XY = κY XXY = κXY Y X (A.33)

κY Y Y X = µ
′
Y Y Y X − 3µ′XY µ′Y Y = κY Y XY = κY XY Y = κXY Y Y (A.34)

Combining Equations A.29 to A.34 and A.24 and truncating series after

forth order cumulant, gives following MI approximation:

M̂I(X, Y ) ≈
1

2

(
1

2!
2µ′2XY +

1

3!
[3µ′2XXY + 3µ

′2
Y Y X]+

+
1

4!
[(µ′XXXY − 3µ′XXµ′XY )2 + (µ′Y Y XX − µ′XXµ′Y Y − 2µ′2XY )2

+(µ′Y Y Y X − 3µ′XY µ′Y Y )2]
)

(A.35)

=
1

2

(
µ′2XY +

1

2
[µ′2XXY + µ

′2
Y Y X]+

+
1

6
(µ′2XXXY − 6µ′XXXY µ′XXµ′XY + 9µ′2XXµ′2XY )+

+
1

4
(µ′2Y Y XX + µ

′2
XXµ

′2
Y Y + 4µ

′4
XY − 2µ′Y Y XXµ′XXµ′Y Y−

−4µ′Y Y XXµ′2XY + 4µ′XXµ′Y Y µ′2XY )+

+
1

6
(µ′2Y Y Y X − 6µ′Y Y Y Xµ′Y Y µ′Y X + 9µ′2Y Y µ′2Y X)

)
(A.36)
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This MI approximation is to some extent different then the one given

in [22]. The main difference is that MI approximation given in Equation A.36

does not contain autocumulants. This has an intuitive explanation. Only joint

cumulants measure mutual dependence between two variables, while autocu-

mulants are simply an offset (or even noise) added to that measure.

AJM proposed in our paper is defined as:

AJM(X, Y ) = |
∞∑
n=1

∞∑
m=1

1

n!

1

m!
E[(X ′)n(Y ′)m]| = (A.37)

= |µ′XY +
1

2!
µ′XXY +

1

2!
µ′XY Y +

1

3!
µ′XXXY +

1

2!2!
µ′XXY Y +

1

3!
µ′XY Y Y + . . . |

(A.38)

We could also propose a modified AJM in the following way:

AJM∗(X, Y ) =

∞∑
n=1

∞∑
m=1

1

n!

1

m!
|E[(X ′)n(Y ′)m]| = (A.39)

= |µ′XY |+ |
1

2!
µ′XXY |+ |

1

2!
µ′XY Y |+ |

1

3!
µ′XXXY |+

+ |
1

2!2!
µ′XXY Y |+ |

1

3!
µ′XY Y Y |+ . . . (A.40)

Due to the triangle property of the Euclidean norm, the following iden-

tity holds:

AJM ≤ AJM∗ (A.41)

A modification of the M̂I can be given in the form:

M̂I
∗
(X, Y ) ≈

1

2

(
µ′2XY +

1

2
µ′2XXY +

1

2
µ′2Y Y X+

+
1

6
(µ′XXXY )

2 +
1

4
(µ′Y Y XX)

2 +
1

6
(µ′Y Y Y X)

2

)
(A.42)

Notice that M̂I
∗
≥ M̂I iff the following conditions are met:

6µ′XXXY µ
′
XXµ

′
XY ≥ 9µ′2XXµ′2XY (A.43)

6µ′Y Y Y Xµ
′
Y Y µ

′
Y X ≥ 9µ′2Y Y µ′2Y X (A.44)

2µ′Y Y XX(µ
′
XXµ

′
Y Y + 2µ

′2
XY ) ≥ (µ′XXµ′Y Y + 2µ′2XY )2 (A.45)

We can cancel some terms in condition A.43 (and similarly in A.44).

Since µXX > 0 we can cancel this term without change in the inequality.

Regarding µXY there are two cases:

(a) X, Y > 0⇒ µXY > 0 (and µXXXY > 0)

(b) X, Y < 0⇒ µXY < 0 (and µXXXY < 0)
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Leading to two inequities:

(a) 6µ′XXXY > 9µ
′
XXµ

′
XY

(b) 6µ′XXXY < 9µ
′
XXµ

′
XY

Since in the first case both µXXXY and µXY are positive numbers, and in the

second case both of them are negative numbers, this reduces to only one

condition:

|6µ′XXXY | > |9µ′XXµ′XY | (A.46)

Similarly we get:

|6µ′Y Y Y X | > |9µ′Y Y µ′Y X | (A.47)

Since µ′XXµ
′
Y Y + 2µ

′2
XY > 0, the condition A.45 reduces down to:

2µ′Y Y XX > (µ
′
XXµ

′
Y Y + 2µ

′2
XY ) (A.48)

Inequalities A.46, A.47, and A.48 are satisfied if X and Y are non-

Gaussian random variables. If this is the case M̂I
∗
will be the upper bound of the

M̂I and will have the same quantitative behavior as AJM∗ (one utilizes squared

function, while other utilizes absolute value), which can also be interpreted as

the upper bound of the proposed AJM.

This throws some lights on the behavior of the AJM since to some

extent AJM could be interpreted as a rough approximation of the MI. The

overall performance of AJM situated between CC and various instances of MI

algorithm is expected according to our previous discussion.

Interestingly, when the results of M̂I are compared to the results of

other ISMs, we can see that M̂I behaves similar to MI256 for translation and

scaling, but significantly worse for rotation. Or in other words AJM shows

better results than M̂I (see Table A.1).

Table A.1: The average absolute error for translation, rotation and scaling.

εT εR εS

CC 51.27 72.17 0.49

AJM 19.57 31.04 0.24

MI8 15.48 23.70 0.15

MI256 33.01 37.73 0.45

M̂I 46.99 89.23 0.46
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A.2 AJM Properties

In this section we show some examples which give insights into some AJM

properties. Some properties are well known to be relevant for any similarity

measure, and were already presented in the literature. For example, Studholme

et al. ([205], Fig. 6.) designed a test to show that a similarity measure is over-

lap invariant. Additionally, a similarity measure is more reliable if it is invariant

to image interpolation. This was pointed out as one of the disadvantages of

MI, by Roche et al. [171], while Pluim et al. [162] investigated optimal inter-

polation techniques to cope with this problem. Finally, approximation of PDF

through histogram may cause that the performance of the MI-based image

SM be deteriorated, depending on the selected number of histogram bins or

the amount of noise. Therefore, in the rest of the Section we will investigate

whether AJM is:

• Overlap invariant

• Sensitive to number of bins

• Sensitive to interpolation

and compare the results to the results of the CC and MI.

The Studholme test [205] has been used to evaluate the overall invari-

ance property. In the test, an image from the medical image set is registered

onto itself rather than onto a model (as done by Studholme et al.). The re-

sults of the Studholme test for one of the images from the medical data set is

given in Figure A.1. From there it can be noticed that, at some point, AJM is

sensitive towards the change of the field of view (FOV).

0.5

1

1.5

2

2.5

3 −40

−20

0

20

40

0.01

0.02

0.03

0.04

0.05

XY

N

Figure A.1: Studholme test for AJM. Notice the declination of maximum with

the increase of FOV (as defined in [205]). x-axis shows rotation from -30 to

+30 degrees, and y-axis shows the change of FOV from 0.5 to 3.

Interpolation artifacts may greatly affect the performance of MI, as

already shown in [162] and [171], but this is not the case with CC. In order
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to demonstrate this a following experiment was constructed. The test im-

age shown in Figure A.2 (left) is rotated around center and interpolated with

three different techniques (nearest neighbor, bilinear, and bicubic), followed by

registration onto its original version.

Figure A.2: The left image is used to produce results depicted in Fig-

ures A.3, A.4, while both images were used to produce the result in Figure A.5.

The results shown in Figure A.3 demonstrate that MI8 (index is ex-

plained later) is affected by the type of interpolation used, while AJM is not.

So in this case we can say that AJM inherited property of the CC, rather than

MI.
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(a) MI8 graphs almost overlap for bilinear

and bicubic interpolation, and significant

difference is visible when nearest neighbor

interpolation is used.
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(b) AJM graphs show the same perfor-

mance for all types of interpolation.

Figure A.3: The graph shows interpolation artifact for MI8 (a) and AJM (b).

y-axis represents MI and AJM, while x-axis represents angle α in range [1, 90]

degrees. Notice how MI is affected by the type of interpolation used, while

AJM is not.

Sensitivity to the number of bins (and bin width) is expected, when-

ever a histogram is used for PDF approximation. To demonstrate this sensitivity

of the MI we repeated the previous experiment with different numbers of bin

used for MI calculation. The number of bins is used as index to differentiate

one implementation from another, therefore we have: MI8, MI100, and MI256.

How the number of bins affects the MI is demonstrated in Figure A.4. The
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results are again given for a rotation of the image A.2 (left) by angle α in range

1 to 90 degrees.
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(a) All three interpolation techniques gave

different MI100 graph. Bicubic interpola-

tion gives rather noisy MI graph.
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(b) MI256 also behaves differently for dif-

ferent interpolation selected. Bicubic and

bilinear interpolation are relatively close to

one another.

Figure A.4: Performance of MI with respect to variable number of histogram

bins and interpolation used. (a) MI100 - 100 bins, (b) MI256 - 256 bins. Com-

pare results with Figure A.3a, which is given for 8 bins. It can be observed that

MI behaves differently, both qualitative and quantitative, for different number

of bins.

The results from this experiments demonstrate how MI is affected by

the number of bins selection. In the same time they fortify the conclusion from

the previous experiment, since the type of interpolation used leads to different

MI graph. Both of this conclusions can be observed as an advantage of AJM

over MI.
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0.8

0.9

1

0

Figure A.5: Performance of AJM (solid line), MI8 (dot-dashed line), and MI256
(dashed line) for translation from -150 to 150 by 1 pixel.

Alignment between two images may be heavily affected by this type of

problem, as we will demonstrate in the following example. A similarity between

images from the Figure A.2 is calculated for a shift of one pixel in the interval
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[-150, 150]. The similarity was defined as AJM, MI8, or MI256. All three

measures are scaled to codomain [0,1] and plotted on the same graph (see

Figure A.5) for easier comparison.

As an additional motivation for the use of the AJM as an image

SM the following examples are given. First synthetic example is motivated by

the example from [171]. For the two images from the Figure A.6 we try to

determine the correct alignment between them by scaling one of the images

and calculating the similarity. Notice that both of the images differ only by

the amount and type of noise added to them, therefore, the correct alignment

should be for scaling factor of one. To ease the comparison between similarity

measures the graphs for all three similarity measures are scaled to the interval

[0, 1]. Notice how the MI and CC image SM are unable to find the location

of the correct image alignment, while AJM is. This example is also a good

illustration of the problems reported in the earlier paragraph.

0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure A.6: Two synthetic images are aligned using scaling only on interval

[0.5, 2] with step 0.05. The graphs below show the CC, MI8, and MI256 as

dashed lines and AJM as solid line. All image SMs are scaled to codomain

[0,1] for easier comparison. The x-axes show the scaling factor. The correct

alignment of images unity scaling.

To demonstrate that AJM is capable to find the correct alignment for a

complex relationship between images, another simulation is done. The similarity

between images in Figure A.7 is calculated for a shift of one pixel in the interval

[-150, 150]. As the images differ only by different color mapping the correct

alignment should be for zero translation. Since this example may be observed as

a simulation of multimodality registration problem it is clear that MI performs

well in this case. For this reason, and for clarity of presentation, MI graph is
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Figure A.7: Two synthetic images are registered using translation only. For

clarity, only CC and AJM graphs are shown. The x-axes show the amount of

translation in pixels. The correct alignment of images is for zero translation.

omitted in Figure A.7.
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Figure A.8: Figure shows object detection using three different image similarity

measures (CC, MI8, MI256 and AJM), for the first (first row), fifth (second

row) and final image from the sequence (third row).

As a final example, a well-known and publicly available sequence1 is

used. The performance of the image similarity measures (CC, MI, AJM) for

1Toy Car sequence from http://sipi.usc.edu/database
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the purpose of object tracking within a sequence of images is demonstrated in

Figure A.8. From the sixth image in the sequence, the image of an object is

taken and used as a model for object detection in the image sequence. The

AJM performs well in all image frames. For the sake of brevity only the first,

fifth and the final image from the sequence are depicted in Figure A.8. The

results demonstrate that AJM finds the correct object in all ten images of

the image sequence, while CC finds the object correctly in five out of ten

images, and MI8 finds the object in just four images. The reason for such

poor performance of MI should be attributed to the large homogeneous region

which misguides the search for optimal alignment due to low joint entropy.

However, MI performance can be significantly improved (9 out of 10 correct

detections) if 256 bins are used instead of 8. However, this may deteriorate the

MI performance in some other cases, since it increases sensitivity to noise and

computation time (both of which will also be demonstrated in further sections).

A.3 AJM existence conditions

There are two conditions for existence of the proposed AJM similarity measure:

i) the existence of the expectation, and ii) the convergence of the sum in

Equation 7.3. We first demonstrate that the first condition holds.

In practical digital image processing applications, we deal with images

whose intensities are finite values and have a finite region of support over the

set S ⊂ R2. Therefore, for any digital image y , the following holds:∫
R2
y · fydy =

∫
S

y · fydy (A.49)

If we denote the supremum of the set S as ys then we may write:
∫
S
y · fydx ≤

ys ·
∫
S
fydy and since, by definition:

∫
S
fydy = 1, we see that all functions have

a bounded integral given by Equation A.49, i.e. their expectation is defined.

Now, we show that the second condition (convergence of the sum)

holds. Since the expectation in the Equation 7.3 exists for all m and n, the

following statement holds:

∞∑
n=1

∞∑
m=1

1

ωn

1

ωm
· E[(T − µT )n(O − µO)m] ≤ Emax ·

∞∑
n=1

∞∑
m=1

1

ωn

1

ωm
(A.50)

with Emax = max(E[(T − µT )n(O− µO)m],∀m, n). Since we may easily select
ωn and ωm so that the right side of the Equation A.50 converges, by a com-

parison test we conclude that the left side converges as well. In other words,

when all the moments exist (expectation is defined) the convergence of the

sum (and therefore the existence of AJM) depends only on the selection of ωn
and ωm. The selection used for the proposed AJM (ωn = n! and ωm = m!)

is just one of many possibilities satisfying the condition for convergence of the

sum.
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Since E is a linear operator, the equation may be rearranged in the form

given by Equation 7.5. With the proper selection of ωn and ωm, the sums from

the Equation 7.3 will converge. With the particular selection of ωn and ωm
proposed, the sums will converge to the result given by the Equation 7.5.

A.4 Numerical computations consideration

Due to the exponential nature of the Equation 7.3 the range of the output value

can be very wide. If we use 64-bit double precision floating point arithmetic we

will avoid the overflow and underflow as long as AJM value is within the range

[2−1022, 21023]. This will be the case whenever the pixel values are approximately

within the range [-354, 354], which will be true for all 8-bit images. However,

when working with floating point arithmetic, the gap between two successive

numbers (ε) is not fixed. For example the machine epsilon (εm) defined as the

half of the distance between 1 and the next larger floating point number has the

property: 1⊕ε0 = 1,∀ε0 < εm where symbol ⊕ denotes the machine adding. As
the numbers increase, the gap between numbers gets larger and larger. During

the expansion of the sum from the Equation 7.3 the machine may get the

following result: en ⊕ 1 	 en = 0,∀n > m where m depends on the machine
architecture (precision used) and 	 denotes the machine subtraction. These
effects happen in all machine calculation concerning floating point numbers

but they are more apparent as the range of the values (and also gaps between

numbers) get larger, and due to the exponential property of the AJM measure,

the measure will be more sensitive to this effects.

Figure A.9: Figure shows the behavior of AJM with respect to change of the

input values range. The intervals on which the images pixel values are scaled

are given in square brackets. For comparison correlation and MI255 graphs are

also shown.

The latter discussion is related to the input image pixel values, which

ought to be roughly within the interval [-354, 354]. This can be easily achieved

by mapping the image values to a subinterval of [-354, 354]. In our work we
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used images whose pixel values are scaled to the interval [0,1], however, we

will briefly discuss how the range of the pixel values affect the behavior of the

AJM. In the Figure A.9, an illustrative example of how the AJM behaves if the

range of input values are increased, is given.

For the construction of the Figure A.9 an image is registered onto itself

using translation. Registration is done on the same image, changing only the

range of pixel values. For easier comparison all graphs are scaled to the interval

[0,1] and correlation and MI255 graphs are also plotted. Notice how the local

maxima of the AJM get sharper and sharper as the range of input (and therefore

output) values increase. For the smaller input values of the AJM gets really

close to the correlation, which is due to the fact that for small values we may

use the approximation ex ≈ 1 + x . As the range of the input values increases
this approximation does not hold anymore since the higher order moments play

a more important role.
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