Approaches in Development
of Multi-platform Mobile Applications:
State of the Art

Zlatko Stapi¢!, Luis de Marcos Ortega’, José Maria Gutiérrez Martinez’

! University of Zagreb, Faculty of Organization and Informatics
Pavlinska 2, 42000 Varazdin, Croatia
zlatko.stpaic@foi.hr
2 University of Alcald, Computer Science Department
Ctra. Barcelona km 33.6, 28871, Alcala de Henares (Madrid), Spain
{luis.demarcos, josem.gutierrez} @uah.es

Abstract. Software development teams are faced with the lack of portability
and reusability during the development of mobile applications for two or more
target platforms. The development of mobile application for second and every
subsequent platform usually means a new project with a need to repeat almost
all phases defined by a chosen methodology but without the possibility to reuse
already defined artifacts. The results and efforts of scientific and professional
community have important drawbacks which, along with stated fragmentation
problem make the paradigm “code ones — run anywhere” useless for mobile
application development. This article aims to summarize these approaches and
efforts and to critically observe their advantages and disadvantages. The results
show that new approach is needed in solving this reusability, interoperability
and development efficiency problem.

Keywords: mobile development, multi-platform, fragmentation problem

1 Introduction

The development of mobile applications differs from development of traditional
desktop or web applications in several important aspects [1], [2]. According to
Rahimian and Ramsin [1] among other challenges, the designer of a software system
for mobile environments has to cope with portability issues, various standards,
protocols and network technologies, limited capabilities of devices and strict time-to-
market requirements. Additionally, development of mobile systems is a challenging
task with a high level of uncertainty, and according to Hosbond [3], it is the result of
two main set of challenges that should be addressed in the domain of mobile systems
development. These are business related challenges (e.g. tough competition,
conflicting customer interests, establishment of revenue-share models etc.) and
development specific challenges (e.g. rapidly changing technology, lack of
standardization, integration with existing systems etc.).

In respect to multi-platform mobile applications development which is in focus of
this paper, further research made clear the existence of specific issues that must be
addressed in order to overcome these challenges while developing multi-platform
mobile applications. First issue that should be addressed is the usage of methodology
[11, [2], [4]. Classic or agile software development methodologies should be adapted
for development of mobile applications as the existing ones do not cover the specific
mobile targeted requirements [4]. Another issue is the use of platform specific and
dependent development environments. These environments are not interoperable in a
single way [5]. Additionally, an important issue is a number of different (specific)
devices which are based on the same platform [5], [6], [7]. This includes various
hardware implementations and operating systems capabilities with support on
different API levels [5] and which are based on different programming languages [6].
This problem is also known as fragmentation problem [5], [6], [7], which says that a
fragmentation of APIs exists even within a single platform. According to Manjunatha
et al. the fragmentation problem forces the developers of mobile applications to focus
on only specific platforms and versions [6]. As the development of mobile
applications primarily aims the wide range of users, development for only specific
platforms and versions is not an option and the development teams reach for different
solutions to this problem. The ideal (i.e. still nonexistent) solution would be to code
once and to deploy (run) the same code to all target platforms. The fragmentation
problem is a result of mobile industry being continuously highly technology-driven,
which means that the focus is on innovation instead of standardization. This problem
was recognized several years ago by Hosbond [3]. Subsequently, testing becomes a
greater problem as simulated or emulated devices usually do not provide full
functionality or are incapable of creating a real life test scenarios [7]. The testing on
physical devices is usually too expensive if used to cover up all important devices and
their capabilities. Finally, the deployment and maintenance phases should not be
forgotten too, while both of them bring a fresh set of specific requirements that are
mainly defined by mobile device producers and their application stores.

This paper will deal with the approaches to solve stated fragmentation problem. As
there are a number of different projects and solutions offering a quick deployment to
different target platforms, this paper will summarize these approaches and discuss
their advantages and disadvantages. In order to do that, chapter two will introduce the
problem of multi-platform mobile applications development, chapter three will
present existing solutions and chapter four and five will give discussion and
conclusion from the authors’ point of view.

2 The Problem of Multi-platform Development

Let us presume the real business scenario in which a development company wants to
produce a classic business or non-business application that should be runable on a
several different mobile platforms and devices. The standard approach would be to
create several different teams, each team targeting one specific platform, to adopt
several development methodologies or at least different methods, each of them
applicable for a specific platform and to produce characteristic outputs which will

satisfy the requirements specified by the mediatory application stores or markets (see
Fig. 1). More experienced teams will probably try to perform as many as possible
unique activities that should be similar or same across all platforms, or will even try
to perform whole Model Driven Development approach through all phases except in
creation of Platform Dependent Model and its implementation.

Fig. 1. The big picture of the problem

But, the big question still remains. Is it possible to make this process easier in the
sense of development, interoperability and reusability? Is it possible to code once and
run on different target platforms?

Unfortunately, it is not possible to code once and to run on any mobile device. This
slogan, according to Ridene et al., is not true even for Java [7]. The trends in mobile
industry show us that this will not be possible in the short-term future, as mobile
platforms are still closed, locked-in [6], and devices are dependent on them.

3 Existing Solutions

As in the past year or two the problem of mobile applications development for
multiple target platforms became important in the scientific and in the professional
community, different results are visible in the form of several existing systems and
projects that fairly enough enable the development teams to develop for several target
platforms. These approaches are enumerated in this chapter.

3.1 Using Mediatory Transform Engine

First approach defines a use of a mediatory language or just mediatory transform
engine to code for several target platforms. This approach is also called a cross-
compilation and can be defined as process of generating native code to run on
multiple platforms [8]. The most influential projects implementing this approach are
MobiCloud [6], [9] from Kno.e.sis Research Group [10], Rhodes [11], Amanquah &
Eporwei code generator [12] et cetera. As Fig. 2 shows, reaching for this solution will
bring some improvements to development teams. First of all, project team or project
teams will use a single proprietary or open-source programming language and will try

to implement desired functionality. The mediatory transform engine will then produce
a platform specific code which can be tested and deployed through specific
application store or market.

Fig. 2. Architecture of some existing solutions

There are several examples of systems with described functionality. Some of them
(e.g. MobiCloud) use their own domain specific language (DSL) to transform into
platform specific source (or even executable) code. The other systems [12] transform
code written in well-known languages to specific source (or executable) code.

3.2 The Use of Native Application Adapters

Another possible solution to the given problem could be the introduction of adapter
applications (adapters) as native applications for every target platform [5]. According
to Agarwal et al. this is one of two main techniques for handling fragmentation. As
standardization of APIs in mobile world is still not possible, the usage of
programming techniques whereby the interface calls are wrapped, i.e. abstracted, in
distinct modules which are then ported across the platforms, is left as the other
solution. For example, the same authors are proposing a MobiVine as a solution to
handle fragmentation of platform interfaces. Specifically, the authors have identified
that the fragmentation of mobile platform interfaces results in (1) different syntax and
semantics, (2) usage of platform specific data structures and properties, (3) throwing
platform specific exceptions and (4) it is also characterized by inconsistencies in
implementation by different vendors. This has bearing on the portability of mobile
applications across multiple platforms.

The authors of MobiVine evaluate the usage of MobiVine as middleware layer and
they discuss the achieved improvements in terms of improving platform and language
portability, reducing code complexity, making maintenance easier and making
performance by a negligible fraction slower. But they also conclude that MobiVine
framework should be extended to cover other platform interfaces (like working with
contact list information), to include other platforms, and to make the concept of proxy
model broader by studying its applicability to other forms of mobile fragmentation,
e.g. screen size and resolution.

Another well-known wrapper is PhoneGap [13]. The applications written in
HTML/HTMLS, CSS/CSS3 and JavaScript are wrapped with PhoneGap and then

deployed to multiple platforms. The developers could use free, open-source
framework to access some of the native APIs.

After the Adobe Corporation acquired the original PhoneGap’s creator Nitobi
Company, they also announced that they will offer developers the choice of using two
powerful solutions for cross-platform development of native mobile apps, one using
HTMLS and JavaScript with PhoneGap and the other using Adobe Flash® with
Adobe AIR®. On the other side, original PhoneGap approach is not changed and as
the application takes on extra complexity, more involved logic will require spending
more time on application behavior with specific devices. Even when the same code
base is used when developing for multiple platforms, the separate prepare & build and
sometimes porting steps should be performed to produce the version targeting
multiple platforms. According to [14] more complicated applications are keen on
“surprising” developers during the porting process. Finally, there are many different
guides and recommendations that should be followed while developing this way [14],
and we generally can conclude that taking all of them into consideration means
learning a new programming and development style which is as difficult as learning a
new programming language from the scratch.

So, generally, the adapter-based approach requests that the adapters should be pre-
developed and published to the specific application store, or as in the case of
PhoneGap, deployed along with the application [13]. The general idea of creating
adapter is to create a platform specific application that will bi-directionally convert
the specific interfaces of the target platforms (left-side) into one unique interface that
could be used to communicate with different applications (single, right-side). Every
single adapter converts a different target interface to unique (same) interface, which
means that one application really could be imported into one or more different
adapters and run under one or more different platforms. The mentioned application
could be stored on any web server or even on a cloud as it is shown in Fig. 3.

Fig. 3. Architecture of some possible solutions

3.3 Other Approaches

Finally, there are other attempts and efforts that are undertaken to over-come mobile
platform and interface diversity and fragmentation. These efforts include for example:

creation of extensions to Java platform, through Java Specification Requests (JSRs)
(like JSR 248: Mobile Service Architecture [15] or JSR 256: Mobile Sensor API
[16]), or the development of Wholesale Applications Community (WAC) APIs and
applications (Apps).

JSRs are designed to provide the set of APIs for specifically targeted use (e.g. for
mobile service architectures or mobile sensors). But, according to Agarwal et al. [5],
along with standard Java Micro Edition (Java ME), mobile platform developers in
practice choose to include different set of JSRs and that results in diversity even
among these devices. On the other side, WAC is an open, global alliance of leading
companies in the mobile telecommunication industry with a goal of providing a
different operator network APIs through single cross-operator API platform.
Specifically, this platform currently offers WAC Apps framework and WAC Payment
API. WAC Apps aims to help create the mobile apps quicker by using existing,
familiar web technologies and tools through direct access to mobile device
functionality. WAC Payment API aims to enable developers, through the set of
developed Software Development Kits (SDKs) for multiple platforms, to be able to
access the operator billing capabilities through single API. Although this API is useful
in some cases, currently it covers only payment options and could be used for
Android, PhoneGap, PHP and JavaScript/HTMLS5 platforms [17]. WAC announced
that they plan to launch additional network APIs over time to provide the developers
with further opportunities to create richer applications [18].

Another well known approach to solve platform fragmentation is to use only web
technologies and web standards. The applications developed in this way are executed
by the Internet browser on the device [8]. This approach became really popular, and it
is good for a specific set of mobile applications that do not require any specific device
capabilities which are used only by executing the native applications.

4 Discussion

All stated approaches and projects that implement them have their advantages and
disadvantages. The idea of having mediatory transform engine that transforms source
code to specific platforms depends on the efforts that were put into the development
of the transform engine. The engine depends on specific platforms and available
APIs, and by definition, DSL caters only to a specific domain [6]. Even if there is
possibility to enrich the engine with transformation procedures to all existing APIs,
there is an important problem of platform incompatibilities. For example, it is not
possible to use multithreading in Windows Phone 7 but in the other platforms it is
possible and even desirable, or Android does not provide thread sync mechanisms as
Symbian does. The other drawbacks of this approach could be the necessity to learn a
specific DSL, the boundaries defined by the use of any specific languages, the lack of
control of generated source code, the lack of control of user interface design [6], the
problems with testing and so on and so forth.

On the other side, there are two possible scenarios that could be implemented by
adapters’ developers. (1) The adapters could be 100% aligned by the mean of
common interface and this scenario will reduce the number of teams (presented in

Fig. 3) to one. This would be a great achievement, but on the other side there is one
big drawback too. The functionality of the future applications will be reduced to the
common features that all target platforms support and to the common features that are
implemented into the adapters for all target platforms. This brings us to the problems
presented in previous paragraph and this also makes this scenario rather unlikely to be
feasible. (2) The other scenario will introduce some differences in the adapters by the
mean of common (right-side) interface. If the mentioned interface will not be the
same for all platforms, the use of such adapters will provide a more specific
functionality on mobile applications, a more feasible scenario, but also will bring the
need to develop more or less different applications for each target platform.

Almost all drawbacks stated for existing solutions that introduce transform engine
are also present in this possible solution. The mentioned PhoneGap [13] platform
allows the development of native applications with web technologies
(HTML/HTMLS, CSS/CSS3 & JavaScript) enriched with the given set of APIs.
According to PhoneGap Documentation (from 15™ Oct 2012) this platform supports
back button event only on Android platform despite the fact that such event exist in
several other platforms as well. Although there is some space for research in this area,
especially in the field of interface transformation, the improvements that will bring
the process of development of demanding applications for multiple target platforms
through this approach are also hardly achievable and even feasible.

5 Conclusion

As it can be seen, there are several rather different approaches that scientists and
experts are taking to solve the problem of developing for multiple platforms. Each
one of them has its own advantages and disadvantages. But still, one issue remains
and is common to almost all of these approaches. It is impossible to create a transform
engine, or adapter application that will use all advantages of all target platforms and
that will provide the range of possibilities as native development environments do.
Also, if we want to preserve the capability of teams working on the open-source
projects, it is necessary to give them the possibility to work in a native development
environment and to develop by using a programming language they prefer most.

In order to provide such possibilities, we encourage the development of new
approaches that will enhance interoperability among teams working on the same
application but on different (and native) development environments. The work on the
native development environments will provide the teams with the full advantages of
using the native APIs, the native test environments and the native generators of the
executable code.

Acknowledgments

The research presented in this paper was conducted as a part of a PhD research and is
partially founded by the scholarship granted to the first author from Croatian Science
Foundation.

References

1. V. Rahimian and R. Ramsin, “Designing an agile methodology for mobile software
development: A hybrid method engineering approach” in Proceedings of Second
International Conference on Research Challenges in Information Science, RCIS (2008),
Marrakech, pp. 337-342 (2008)

2. A. C. Spataru, “Agile Development Methods for Mobile Applications” PhD Thesis,
University of Edinburgh, The University of Edinburgh, Edinburgh (2010)

3. J. H. Hosbond, “Mobile Systems Development: Challenges, Implications and Issues” in
Mobile Information Systems II, vol. 191, J. Krogstie, K. Kautz, and D. Allen, Eds. Springer
Boston, pp. 279-286 (2005)

4. H.J. La and S. D. Kim, “A service-based approach to developing Android Mobile Internet
Device (MID) applications” 2009 IEEE International Conference on Service-Oriented
Computing and Applications (SOCA), vol. 00, no. MID, pp. 1-7 (2009)

5. V. Agarwal, S. Goyal, S. Mittal, and S. Mukherjea, “MobiVine: a middleware layer to
handle fragmentation of platform interfaces for mobile applications” in Proceedings of the
10th ACM/IFIP/USENIX International Conference on Middleware, New York, NY, USA,
pp- 24:1-24:10 (2009)

6. A. Manjunatha, A. Ranabahu, A. Sheth, and K. Thirunarayan, “Power of Clouds in Your
Pocket: An Efficient Approach for Cloud Mobile Hybrid Application Development” 2010
IEEE Second International Conference on Cloud Computing Technology and Science, no. 2,
pp. 496503 (2010)

7. Y. Ridene, N. Belloir, F. Barbier, and N. Couture, “A DSML For Mobile Phone
Applications Testing” in Proceedings of 10th Workshop on Domain-Specific Modeling in
SPLASH, France (2010)

8. L. Maalge and M. Wiboe, “A Platform-Independent Framework for Application
Development for Smart Phones” (2011)

9. Services Research Lab and Metadata and Languages Lab, “Cloud-Mobile Hybrid
Application Generator” MobiCloud (2011), http://mobicloud-classic.knoesis.org/.

10. Kno.e.sis Research Group, “Welcome to Kno.e.sis” (2011), http://knoesis.wright.edu/.

11. Rhomobile, Inc., “Smartphone Enterprise Application Integration, White paper” (2011),
http://tiny.cc/rThomobile.

12. N. Amangquah and O. T. Eporwei, “Rapid application development for mobile terminals” in
2nd International Conference on Adaptive Science & Technology (ICAST), Accra, Ghana,
pp. 410417 (2009)

13. PhoneGap, “Take the pain out of compiling mobile apps for multiple platforms” PhoneGap
Build (2011), https://build.phonegap.com/

14. A. Lunny, Phonegap beginner’s guide: build cross-platform mobile applications with the
PhoneGap open source development framework. Birmingham, UK: Packt Publishing
Limited (2011)

15. E. Bektesevic and E. Rysa, “JSR 248: Mobile Service Architecture” The Java Community
Process(SM) Program - JSRs: Java Specification ~ Requests (2008),
http://jcp.org/en/jsr/detail?id=248.

16. P. Niemela, “JSR 256: Mobile Sensor API” The Java Community Process(SM) Program -
JSRs: Java Specification Requests (2009), http:/jcp.org/en/jsr/detail?id=248.

17. WAC Application Services Ltd, “WAC Payment API SDKs” WAC Payment API
Resources - Developer Website (2012), http://www.wacapps.net/sdks.

18. WAC Application Services Ltd, “WAC APIs” WAC APIs - Developer Website (2012),
http://www.wacapps.net/wac-apis.

