
Mario Žagar

Faculty of Electrical Engineering and Computing

University of Zagreb, Zagreb, Croatia

mario.zagar@fer.hr

Ivica Crnković

Mälardalen Real-Time Research Centre

Mälerdalen University, Västerås, Sweden

ivica.crnkovic@mdh.se

Darko Stipaničev

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

University of Split, Split, Croatia

darko.stipanicev@fesb.hr

Maja Štula

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

University of Split, Split, Croatia

maja.stula@fesb.hr

Juraj Feljan

Mälardalen Real-Time Research Centre

Mälerdalen University, Västerås, Sweden

juraj.feljan@mdh.se

Luka Lednicki

Faculty of Electrical Engineering and Computing

University of Zagreb, Zagreb, Croatia

luka.lednicki@fer.hr

Josip Maras

Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

University of Split, Split, Croatia

josip.maras@fesb.hr

Ana Petričić

Faculty of Electrical Engineering and Computing

University of Zagreb, Zagreb, Croatia

ana.petricic@fer.hr

DICES: Distributed Component-based Embedded Software Systems

Abstract

This article gives a short overview of the contribution of DICES project. The goal of the project is

to advance theories and technologies used in development of distributed embedded systems. Three

examples of the contributions are presented: a) reverse engineering of web-based applications,

design extraction and extraction of reusable user-interface controls, b) a fretwork for building

systems that use UPnP devices and treat them as components in the same way as software

components, and c) PRIDE – development environment for designing, modeling and developing

embedded systems, based on ProCom technology.

Keywords: Software components, embedded systems, web-based applications, reverse engineering

1. Introduction

DICES (Distributed Component-based Embedded Software Systems) is a project funded by UKF

(Unity Through Knowledge Fund) with contributions from Faculty of Electrical Engineering and

Computing (FER) - University of Zagreb, Faculty of Electrical Engineering, Mechanical

Engineering and Naval Architecture (FESB), University of Split, School of Innovation, Design and

Engineering - Mälardalen University (MDU) in Sweden, and Ericsson Nikola Tesla. The project

was performed during three years, from 2007 to 2011.

The DICES project goal is to advance development of distributed embedded software systems with

emphasis on software reusability and predictability of software quality. The aim of the project is

increasing the software development efficiency and quality by applying service-oriented and

component-based approaches.

The overall presence of distributed embedded systems in the modern society is a fact. Examples of

such systems are telecommunication systems, grid systems, control and information systems of

vehicular systems (cars, trains), environmental monitoring systems. Embedded systems

development is one of the strategic research areas of EU-FP7 programmes. It is also of significant

importance in Croatia, since many leading companies in Croatia either produce such systems (e.g.

Končar, Ericsson Nikola Tesla) or use such systems (e.g. Pliva, or many small companies).

DICES is addressing efficient reusability of software components and prediction of the important

properties for embedded systems: resource utilization, and performance, by applying the service-

oriented software engineering and component-based software engineering methods and

technologies.

The main contribution of DICES is provided in two directions: a) analysis of legacy web-based

systems, extraction of its design and its automatic modeling, and extraction of user interface

controls and packaging them as reusable units, and development of component-based technology

appropriate for design of embedded systems.

The reverse engineering, architecture recovery and extraction of reusable UI units is applied on

“iForestFire - Intelligent Forest Fire System” system developed at FESB Split, which enables

thorough validation of the approach and provides input for further development of this system and

possible commercialization of the improved product.

Development of component-based technology is done in cooperation with Swedish Strategic

Research Centre, PROGRESS that has developed theories and methods for modeling component-

based embedded systems. DICES contribution was in development of PRIDE, PROGRESS

Integrated Development Environment, a tool modeling component-based embedded systems,

simulation and analysis of resource utilization.

In this article we give a short overview of these contributions as follows. In section 2 we describe

Componentizing Web Information Systems, including phpModeller, a tool for design extraction and

its presentation in UML. Section 3 shows a component model that includes both, software and

hardware components based on UPnP devices and enables a unique treatment for software and

hardware components. Section 4 describes PRIDE.

2. Analysis and Componenitization of Web-based systems

Web-based systems are systems that use the Internet as its core infrastructure and are accessible

from anywhere in the world via the Web. Often these systems extensively communicate with

databases and third-party information sources. In some cases they even communicate with

embedded devices such as cameras or meteo-stations in order to provide real-time information

about the environment. One of these systems is the iForestFire system developed at the University

of Split, Croatia. iForestFire is an intelligent and integrated video based monitoring system for

early detection of forest fire. The main idea is that forest fires are detected in incipient stage using

advanced image processing and image analyses methods. The system is based on field units and

central processing unit. The field units are embedded devices and include day & night,

pan/tilt/zoom controlled IP based video cameras and IP based mini meteorological stations

connected by wired or wireless LAN to the central processing unit where all analysis, calculation,

presentation, image and data archiving is done. In the scope of the DICES project, iForestFire was

chosen as a case study application in order to test the ideas of componentization of Web

Information Systems that extensively communicate with embedded devices.

Since one of the goals of the DICES project was the analysis of legacy web-based systems,

extraction of its design and its automatic modeling, extraction of User Interface controls and

packaging them as reusable units in this section, we will describe two approaches that we have

developed in order to achieve those goals: phpModeler – an approach for reverse engineering of

legacy web applications, and Firecrow, an approach for extracting reusable Web User Interface

controls.

2.1. PhpModeler – Reverse Engineering Legacy Web Applications

In order to componentize web information systems, first a correct assessment of the current state is

necessary. Web information systems, especially ones that are communicating with complex

embedded devices can be hard to understand because a single behavior can be realized by code

executed on a large number of nodes (embedded devices, web servers, clients, etc.). Also, there

usually exist many inter-dependencies between certain parts of the system that are hard to track and

manage manually, and naturally the complexity of these inter-dependencies grows with the size of

the web application. In order to tackle this problem and to improve development and maintenance

efficiency, these applications need to be modeled on a high level of abstraction. One of the ways to

achieve this goal is to use a process called Reverse Engineering (RE).

Reverse Engineering (RE) is used for information extraction from source artifacts (primarily source

code) and their transformation to easily understandable abstract representations (e.g. standard UML

diagrams). Even though there exists a certain number of already available tools for reverse

engineering Web Information Systems (WARE [6], WebUml [3], ReWeb [10], etc.), none of them

have the following functionalities:

 Static analysis of web application source code which as an end result produces UML

diagrams that can be used for architecture recovery

 Generates dependency models that show inter-dependence between web application

elements

 Visualizes Web application evolution.

In order to tackle this problem we have developed a plugin for the Eclipse IDE (Integrated

Development Environment) that facilitates modeling and web application architecture recovery

called phpModeler. It has three main features: page modeling, dependency modeling and model

comparison.

In order to be able to build page UML models, the information important for those models has to

be extracted. phpModeler gathers this information by parsing PHP, HTML, and JavaScript code

responsible for the behavior of the web application. Once this information has been collected

further analysis techniques can be used to establish dependencies between parts of the system. For

every web page entity (JavaScript library, database table, file, PHP library, web page), the analysis

finds all other entities dependent on it. For example, for every database table this means locating all

web pages that access them and for function libraries all web pages that use those functions.

Naturally, all information gathered in the analysis process can be generated to UML diagrams.

Web information systems evolve with the addition of new functionalities. This usually means that

the existing code is modified to support the new user requirements. At different steps of the WIS

evolution the system is represented with different models, so phpModeler provides a way to track

the differences between two existing models. This gives a simpler, and more visual representation

of the evolution of the target system. The whole process is shown in Figure 1.

We used phpModeler in the reverse engineering process of the iForestFire system in order to

recover the architecture and gain better understanding of the system.

2.2. Firecrow – reusing Web User Interface controls

Important part of the web application code is the code that is used to realize the user-interface of the

web application. Web application user-interface (UI) is often composed of distinctive UI elements,

the so called UI controls. Similar controls are often used in different parts of web applications (and

even in different web applications) and facilitating their reuse could lead to faster development.

Unfortunately, preparing code for reuse is a slow process which is often not a priority.

Often, when developers encounter problems that have already been solved in the past, rather than

re-inventing the wheel, or spending time componentizing, they reuse the code that is already

functioning in another context [4]. Reuse tasks are complex and prone to errors, primarily because it

is difficult to establish the minimum amount of code responsible for implementing the desired

behavior [8].

In the web application domain, reuse is especially difficult: there is no trivial mapping between

source code and the page displayed in the browser, responsible code is often scattered between

several files and is found in between code that is not important from the reuse perspective. Next, the

Figure 1: Reverse Engineering Web applications with phpModeler.

developer has to locate and download the necessary resources, source code, and adjust for the

changes so that the component can be easily integrated into an already existing system.

The structure of a web page is defined by HTML code, the presentation by CSS (Cascading Style

Sheets) code, and the behavior by JavaScript code. In addition, a web page usually contains various

resources such as images or fonts. The interplay of these four basic elements produces the end result

displayed in the user’s web browser. Visually and behaviorally a web page can be viewed as a

collection of UI controls, where each control is defined by a combination of HTML, CSS,

JavaScript and resources (images, videos, fonts, etc.) that are intermixed with code and resources

defining other parts of the web page.

In order to reuse a web UI control, we have to extract all that is necessary for the control to be

visually and functionally autonomous. This means extracting all HTML, CSS, JavaScript and

resources that are used in the visual presentation and the desired behavior of the control. The

process can be separated into three phases: 1) Interaction recording, 2) Resource extraction, and 3)

UI control reuse (Figure 2).

The first step of the Interaction recording phase is to select the HTML node that defines the chosen

UI control. Next, the user performs a series of interactions that represent the behavior of the control.

The purpose of this phase is to gather a log of all resources required for replicating visual and

behavioral aspects of the control. This is done by logging all executed code, all CSS styles and all

resources used in the lifecycle of the control.

When the user chooses to end the recording, the process enters the Resource extraction phase,

where code models for all code files (HTML, CSS, and JavaScript) are built. Based on those models

and logs gathered during the recording phase, the code necessary for replicating the visuals and the

demonstrated behavior is extracted.

After the extraction phase is completed, the user can enter the Reuse phase and automatically

integrate the extracted control in an already existing web page, either by replacing, or by embedding

it inside an existing node. With this, a full cycle is completed: from seeing the potential for reuse,

through control extraction, all the way to actual reuse and gaining new functionalities on the target

web application.

Figure 2: Extracting Web User-Interface controls.

The whole process is currently supported by the Firecrow tool, which is an extension for the

Firebug web debugger. Currently, the tool can be used from the Firefox web browser, but it can be

ported to any other web browser that provides communication with a JavaScript debugger, and a

DOM explorer (e.g. IE, Chrome, Opera). The interaction recording phase is the only part of the

process that is browser dependent; building source models, extracting code, downloading resources,

merging code and resources are all functionalities that are all encapsulated in a library that can be

called from any browser on any operating system. The whole source of the program can be

downloaded from [18].

3. Hardware and Software Components

The main purpose of embedded systems is to monitor or control processes in their environment.

This interaction of software with the real world requires integration of software components with

hardware components such as sensors and actuators. However, coping with these two different parts

of embedded systems simultaneously is still a challenge. Current component models for embedded

systems mostly focus on software components and rarely try to provide extensive support hardware

component [7]. In DICES project we have also addressed this aspect of component-based software

development. One of the results of our research is UComp component model and supporting

technology [9].

3.1. UComp – component-based development for hardware and software
components

The focus of UComp is on distributed systems whose functionality is implemented using various

devices connected to a computer network. These devices may either be physical, i.e. realized using

hardware, or virtual, i.e. realized using software applications. Main goal of UComp is to utilise the

component-based approach and manage the hardware and software components in a uniform way.

Further, our goal is to apply the component-based approach during whole life-cycle of a system,

including run-time phase. By having the components available at run-time, systems can be

extremely flexible because any modifications can be done while the system is running and the

embedded devices are deployed. In addition, this would allow easier late deployment of new

devices (i.e. components) or replacement of existing ones during run-time.

3.1.1. The UComp component model

UComp distinguishes between two types of components: Device components and software

components. Device components are used to communicate with hardware or virtual network devices

and provide their functionalities in a component-based manner. Functionality of software

components is fully implemented in program code, and these components are not associated with

any devices. They are used for additional computations in order to avoid the need for “glue code”.

Component interfaces consist of input and output ports. Ports can be considered as component

access points, used for a component to exchange data and control (triggering) signals. System

execution follows the pipes and filter pattern. Data and triggering signals from output port of one

component can be directed to input ports of one or more components.

When an input port receives a signal from the output port it is connected to, it becomes active. A

component can be configured to start it's execution when either all or just selected ports are

activated. This is done by selecting activation types for ports. There are three activation types for

input ports:

 Trigger. A component is activated if all input ports with activation type set to trigger are

active.

 Priority trigger. A component is activated if any of its input port with activation type set to

priority trigger is active.

 Data. If port's activation type is set to data, it is only used to receive data, and does not affect

the triggering of the component.

The graphical representation of output ports and all input port types can be seen in Figure 3. The

figure shows an instance of Component A having input ports a (data port), b (trigger port) and c

(priority trigger port), and an output port out.

3.1.2. Device Components

Device components are the base for accomplishing the uniform treatment of components of a

system, which is not dependant on component realization (hardware or software). They represent

hardware (physical) and virtual (realized using software applications) network devices.

Device components, together with their input and output ports, are automatically generated by the

UComp framework using device descriptions. Automatic generation of devices and their ports

eliminates need for specialized drivers or manual configuration of such components by the

developer of the system.

Every device component signals if the actual device is available on the network. This information

can be very useful in distributed systems where connection between components is not reliable and

some of them can be temporarily unavailable.

Device components can represent actions (synchronous request-response communication) or events

(asynchronous publish-subscribe messaging) of network devices. Therefore, we have defined two

types of device components: action components and event components.

Action Components. Action components are designed to wrap around synchronous action

invocations or data queries of a device connected to the network.

When an action component is triggered, action invocation is performed, using values of its input

ports as arguments. When the invocation finishes, results of the invocation are propagated to output

ports of the components.

Event Components. Event components allow receiving asynchronous messages from devices.

These messages may signal data changes or other events that device may provide.

Figure 3: Graphical representation of an UComp component and

its input and output ports.

Interfaces of event components have only output ports, which obtain their values from event

notifications provided by the network device.

3.1.3. Software Components

Functionality of software components is fully implemented by program code, and they are not

bound to any hardware elements. They are used to process the data received from, or sent to, device

components or manipulate the execution of components. Their function can vary from very simple

(for example addition of two numbers) to complex data processing.

3.2. Execution Semantics

Initially, all components in the system are in an idle state waiting to be activated for execution.

Activation can be caused either by the triggering signals received at the input ports of the

component, or by its internal events. Action components and most software components are passive,

meaning that they execute only when they are triggered by signals received from other components,

while event components and some software components are active and thus may start their

execution by an internal event.

4. Realisation of UComp Component Model

The UComp architecture, shown in Figure 4, is realised as Java application that implements the

Universal Plug and Play (UpnP) [16] technology to control devices available on the network,

process their data, and relay data between them. The application communicates with devices

through a single UPnP control point implemented using CyberLink UPnP stack [11]. Centralized

architecture allows us to process data received from a device by UComp application before it is

forwarded to other devices, making the system much more flexible and eliminating the need to

change the code of devices to adapt them to the needs of the developed system. Also, run-time

modification of systems is much easier. System's behaviour can be modified by simple changes in

the interconnection of components (or by changing the components themselves) in the central

application.

4.1.1. Development environment

To facilitate the development we have created a tool for visual development of UComp systems -

UComp Developer. The UComp Developer enables browsing available device and software

components using a tree structure, visual representation of components on a development panel,

modifying connections between them, setting their properties and the properties of their ports, and

starting and stopping the execution of the developed system. Systems developed with this tool are

saved or restored from XML files.

A screen-shot of UComp Developer is shown in Figure 5.

Figure 4: The UComp architecture.

Figure 5: Screenshot of UComp Developer tool.

5. An overview of the PRIDE tool

PROGRESS-IDE (PRIDE) is an integrated development environment used for software development

of distributed embedded systems (ES), primarily in the automotive, automation and telecom

domains. The grand vision of Progress-IDE is to cover the whole software development cycle of

distributed embedded systems, from early system design to deployment and synthesis. The

development process of ES requires a strong emphasis on analysis, verification and validation in

order to ensure the necessary quality of the delivered product, therefore PRIDE integrates various

analysis tools. Compared to the majority of existing IDEs that focus mainly on the programming

aspect, PRIDE uses the notion of component as a first-class concept allowing the manipulation and

modelling of components, with reusability as one of the key concerns and supporting:

 Component and system design using the ProCom component model [13],

 System analysis (worst-case execution time, model checking of behavioural models and

fault propagation and transformation calculus),

 Deployment modelling

 Code synthesis.

In the following list we give some overall reflections that apply to Progress-IDE.

 Progress-IDE covers the whole system development process,

 Progress-IDE is developed as a stand-alone application on top of Eclipse RCP,

 Progress-IDE consists of a number of editors: architectural editors, attribute editor, node

description (virtual/physical), allocation editor, code generation, various analysis editors,

 Progress-IDE is user-friendly by providing a user interface respecting the usability features,

partial auto-completion features, default values etc.

5.1. The PRIDE approach

In the recent years ES development has changed significantly due to the rapid increase of software

in these systems and software becoming as complex as in conventional systems. In non-embedded

domains, new approaches such as model-based, component-based, and service-oriented

development have been proposed to manage software complexity and there is a trend to apply these

approaches also in ES development. ES correctness is strongly correlated to specific extra-

functional properties (EFPs) such as timing (e.g. execution and response time) or dependability (e.g.

reliability and safety) under constrained resources such as memory, energy, or computation speed.

This calls for additional domain-specific technologies that provide support not only for functional

development but also for analysis and verification of EFPs.

As a possible solution, we have been developing a new component-based approach [5] built around

a two-layer component model - ProCom, which addresses the particularity of ES development from

big complex functionalities, to small, close to control loop functionalities. This approach requires

specific tool support that enables:

 Efficient system design by using existing components,

 Seamless integration of different tools to provide the analysis and verification required for

system correctness, and

 Efficient EFP management of components and systems.

PRIDE uses reusable software components as the central development units, and as a means to

support and aggregate various analysis and verification techniques. In difference to similar

approaches [1, 2, 17], PRIDE puts emphasis on EFPs during the entire lifecycle - from early

specification to deployment and synthesis.

PRIDE has been designed to support four design strategies that are especially important to consider

for having an efficient component-based development of ES.

Levels of abstraction

Using components throughout the whole development process implies that the component concept

spans a wide range of abstractions, from a vague and incomplete early specification, to very

"concrete" with a fixed specification, a corresponding implementation and information about their

EFPs. This means that components at different levels of abstraction must be able to co-exist within

the same model.

Component granularity

In distributed ES, components span a large variety in size and complexity; the larger components

are typically active (i.e. with their own thread of execution) with an asynchronous message passing

communication style, whereas the smaller components are responsible for a part of control

functionality with a strong synchronization. For an efficient development, a support for handling

different types of components must be provided.

Component vs. system development

The common distinction between component development and system development brings issues in

ES development, where the coupling between the hardware platform and the software is particularly

tight. As a consequence, component development needs some knowledge of where the components

are to be deployed. This requires support to handle the coupling between components, system and

target platform, while still allowing separate development of components and systems.

Extra-functional properties

The correctness of ES is ascertained based on both the functional and extra-functional aspects.

However, many EFPs typically encountered in ES are assessed through different methods during the

development lifecycle (from early estimation to precise measurements) and different values may be

obtained according to the characteristics of the resources of the platform on which the components

are to be deployed. For this reason, an efficient ES development should provide a means for

specifying, managing and verifying these properties with respect to the context in which their

values are provided.

To comply with the design strategies, the following requirements have been identified as principles

that guided the design and development of PRIDE:

 Allowing to move freely between any development stages,

 Displaying the consequences of a change in the system or within a component,

 Supporting the coupling with the hardware platform, and

 Enabling and enforcing the analysis, validation and verification steps.

In addition, a central requirement relates to the notion of component. Components are the main

units of development and seen as rich-design artifacts that exist throughout the whole development

lifecycle, from early design stage, in which little information about them exists, to deployment and

synthesis stages, in which they are fully implemented. PRIDE views a component as a collection of

all the development artefacts (requirements, models, EFPs, documentation, tests, source code, etc.),

and enables their manipulation in a uniform way.

Driven by the aforementioned principles, several tools have been developed and tightly integrated

into PRIDE. Since the PRIDE is built as an Eclipse RCP application, it can be easily extended with

addition of new plugins.

5.2. Implementation of PRIDE

The Eclipse platform is chosen as the supporting architecture for PRIDE. In order to reduce the

overhead which exists when using Eclipse directly as the main integration environment, it has been

decided that the PRIDE will be developed as a stand-alone application built on top of the Eclipse

Rich Client Platform (Eclipse RCP). This decision is driven by the will to keep the control over the

features present in the environment such as, for example, avoiding the presence of menus not

directly related to the particular use of the PRIDE. When using Eclipse RCP, only the features

explicitly added to the environment are present. In other words, the layout and function of the

environment are fully controlled by the plugin developers.

The component architecture design part of the environment was implemented using EMF [14] and

GMF [15]. EMF is a modelling framework and code generation facility for building tools based on

a structured data model. It offers a graphical editor for describing metamodels. With the aid of this,

the ProCom metamodel (model of the ProCom model) was defined. From this graphical description

of the metamodel, EMF automatically generates Java classes representing the model, classes used

for modifying the model and textual tree editors for the model. GEF then takes this existing

application model (i.e. the model generated using EMF) and quickly creates a rich graphical editor.

However, this automatically generated editor has rudimentary functionality and needs to be further

manually modified and tweaked in order to achieve the desired functionality.

5.3. Software architecture modelling and analysis

As already mentioned, PRIDE uses component-based approach which allows components to be

developed independently and reused in different contexts. Reusability is one of the main concepts in

PRIDE aiming to significantly shorten development time. The tool makes a distinction between a

component type and a component instance. Each reusage of a component creates a component

instance of the given component type. By editing the component all of its instances are affected.

In PRIDE components are rich design entities encapsulating a collection of development artefacts;

requirements, various models (e.g. architectural, behavioural, resource usage etc.), EFPs,

documentation, tests and source code.

Figure 6 shows a screenshot from PRIDE with main parts highlighted. PRIDE's modelling part

consists of a component explorer and component editors.

Component Explorer

Enables browsing the list of the components available in the current development project. In it a

component owns a predefined and extensible information structure corresponding to a rich

component concept. It also provides a support for component versioning and importing and

exporting from a project to a component repository making them available to other projects thus

facilitating the component reusability.

Component Editors

Although the ProCom component model distinguishes between two different types of components

(ProSave and ProSys), in the component editors all components are treated in a uniform way.

Component editors provide two independent views on a component, external and internal view. The

external view manages the component specification and interface such as the information about the

component name, its interface (services and ports) and EFPs. The internal view focus on

component's internal structure i.e. its realization and implementation and it depends in the

component realization type. For primitive components, the internal view is linked to the component

implementation and the source code is displayed. For composite components, the internal view

corresponds to an interconnection of subcomponent instances and a graphical form is made

available allowing to make modifications in this inner structure (addition/deletion of component

instances, connectors, change in the connections, etc.).

The analysis support in PRIDE is based on two main parts, an attribute framework and an analysis

framework.

Attribute Framework

The purpose of the attribute framework [12] is to provide a uniform and user-friendly structure to

seamlessly manage EFPs in a systematic way. The attribute framework enables attaching extra-

Figure 6: A screenshot from PRIDE showing a) the component explorer; b) the component editor;

c) the code editor; d) the repository browser; and e) the attribute framework.

functional properties to any architectural element such as a specific port, service or the component

as a whole. Attributes are defined by attribute types, and include attribute values with metadata and

the specification of the conditions under which the attribute value is valid. One key feature is that

the attribute framework allows an attribute to be given additional values during the development

without replacing old values. This allows defining of early estimates for EFPs even before the

component has been implemented and use it for analysis in early stages of system development.

New, user-defined attribute types can also be added to the model.

Analysis framework

The analysis framework provides a common platform for integrating in a consistent way various

analysis techniques, ranging from simple constraint checking and attribute derivation (e.g.,

propagating port type information over connections), to complex external analysis tools. Analysis

results can either be presented to the user directly, or stored as component attributes. They are also

added to a common analysis result log, allowing the user easy access to earlier analysis results.

PRIDE also allows to easily integrate new analysis techniques together with their associated EFPs.

6. Conclusion

In this paper we gave an overview of some of the results of DICES project. The project focus was

on distributed embedded systems and the overview shows that a large variety of technologies and

approaches are needed for an efficient development and maintenance of embedded systems. The

project is focused on several phases in the lifecycle: a) reverse engineering and analysis of the

existing legacy code that helps in reusability in development of new systems from existing

components; b) modelling and designing embedded systems that include both software and

hardware components, and ability to perform different types of analysis important for embedded

systems (e.g. resources utilization, performance, timing characteristics). The work done shows that

the embedded systems of today are complex system, in the first hand with complex software that is

approaching in size and complexity software from other domains.

Acknowledgment

This work was supported by the Swedish Foundation for Strategic Research via the strategic

research centre Progress, Croatian Ministry of science, education and sports via the research project

Software engineering in ubiquitous computing, and the Unity Through Knowledge Fund via the

Dices project.

References

1. Akerholm M., Carlson J., Fredriksson J., Hansson H., Hakansson J., Möller A., Pettersson P.,

Tivoli M. (2007) The SAVE Approach to Component-Based Development of Vehicular

Systems, In: Journal of Systems and Software, Elsevier Science, pp. 655-667

2. Articus Systems, Rubus Software Components, http://www.arcticus-systems.com , Accessed 7

March 2011

3. Bellettini C., Marchetto A., Trentini A. (2004) WebUml: reverse engineering of web

applications, In: Symposium on Applied computing, ACM New York, NY, USA, 1662-1669

4. Brandt J., Guo J.P., Lewenstein J., Klemmer S.R. (2008) Opportunistic programming: How

rapid ideation and prototyping occur in practice, In: Workshop on End-user software

engineering, ACM New York, NY, USA, pp. 1-5

5. Bureš T., Carlson J., Sentilles S., Vulgarakis A. (2008) A Component Model Family for

Vehicular Embedded Systems, In: The Third International Conference on Software

Engineering Advances, IEEE Computer Society Washington, DC, USA, pp. 437-444

6. Di Lucca G., Fasolino A.r., Tramontana P. (2004) Reverse engineering Web applications: the

WARE approach, In: Journal of Software Maintenance and Evolution: Research and Practice -

Special issue: Web site evolution Volume 16 Issue 1-2, John Wiley & Sons, Inc. New York, NY,

USA, pp. 71-101

7. Feljan J., Lednicki L., Maras J., Petricic A., Crnković I. (2009) Classification and survey of

component models, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-242/2009-1-SE,

Mälardalen Real-Time Research Centre, Mälardalen University

8. Holmes R.(2008) Pragmatic Software Reuse, Ph.D. Dissertation, University of Calgary

9. Lednicki, L. and Petricic, A. and Zagar, M. (2009) A Component-Based Technology for

Hardware and Software Components, In: Software Engineering and Advanced Applications,

2009. SEAA '09. 35th Euromicro Conference on, IEEE Computer Society Washington, DC,

USA, pp. 450 -453

10. Ricca F., Tonella P. (2001) Understanding and Restructuring Web Sites with ReWeb, IEEE

Multimedia, Vol 8, Issue 2, pp. 40-51

11. Satoshi Konno, CyberLink for Java,

http://www.cybergarage.org/twiki/bin/view/Main/CyberLinkForJava , Accessed 7 March 2011

12. Sentilles S., Štěpán P., Carlson J., Crnković I. (2009) Integration of Extra-Functional Properties

in Component Models, In: Proceedings of the 12th International Symposium on Component-

Based Software Engineering (CBSE '09), Springer-Verlag Berlin, Heidelberg, pp. 173-190

13. Sentilles S., Vulgarakis A., Bureš T., Carlson J., Crnković I. (2008) A Component Model for

Control-Intensive Distributed Embedded Systems, In: Proceedings of the 11th International

Symposium on Component-Based Software Engineering (CBSE '08), Springer-Verlag Berlin,

Heidelberg, pp. 310-317

14. The Eclipse Foundation, Eclipse Modeling Framework Project, http://www.eclipse.org/emf/ ,

Accessed 7 March 2011

15. The Eclipse Fundation, Graphical Modeling Framework, http://http://www.eclipse.org/gmf ,

Accessed 7 March 2011

16. UPnP forum, Universal Plug and Play, http://www.upnp.org , Accessed 7 March 2011

17. van Ommering R., van der Linden F., Kramer J., Magee J. (2000) The Koala component model

for consumer electronics software, In: IEEE Computer, , IEEE Computer Society Washington,

DC, USA, pp. 78-85

18. Maras J., Štula M., Carlson J, Crnković I. (2011). Firecrow web page,

http://www.fesb.hr/~jomaras/?id=Firecrow, Accessed 7 March 2011

