International Conference on Traffic and Transport Engineering, ICTTE Belgrade 2012, will be the first conference organized by Scientific Research Center Ltd. and its International Journal for Traffic and Transport Engineering (IJTTE), in co-operation with "Kirilo Savić" Institute, South-East Europe Transport Observatory (SEETO) and Innovation Center of the Faculty of Mechanical Engineering, University of Belgrade. The conference is supported by the Center for the Promotion of Science and Faculty of Transport and Traffic Engineering, University of Belgrade.

For publisher: Dr Srečko Žeželj
Editor in Chief: Dr Olja Čokorilo
Publisher: Scientific Research Center Ltd. Belgrade
Obilićev venac 4/3,
Belgrade, Serbia
Phone: + 381 11 26 23 895
Fax: + 381 11 32 82 076
e-mail: office@ijtte.com
http://www.ijtte.com

ISBN 978-86-916153-0-7
Ladies and gentlemen, distinguished speakers and guests, dear colleagues,

I am delighted to welcome you to Belgrade and to the International Conference on Traffic and Transport Engineering, 2012. It is a pleasure to be here with you today at the beginning of this two-day conference on traffic and transport engineering.

This conference presents the perfect example of globalization in transportation industry. Nothing illustrates this better than the number of papers from more than 20 countries worldwide. I hope that many conclusions made here will be the key drivers of future development in global transport sector for passengers, cargo and infrastructure.

Naturally, we are ready to share our experience of creating what we think is the world's largest and most successful example of transportation industry in all transport modes.

By providing essential transport links, between ourselves, our companies, universities and countries, we are vital part of global community for integrating and connecting regions all over the world.

International Conference on Traffic and Transport Engineering, ICTTE Belgrade 2012, will be the first conference organized by Scientific Research Center Ltd and its International Journal for Traffic and Transport Engineering (IJTTE). My special thanks and encouragement in their work go to our dear colleagues and friends, key speakers, as well as to our partners: City Net Ltd., South-East Europe Transport Observatory (SEETO), "Kirilo Savić" Institute and Innovation Center - Faculty of mechanical engineering, University of Belgrade. And finally, I would like to mention great support from Center for the promotion of science, and Faculty of transport and traffic engineering, University of Belgrade thanks to which we are jointly hosting this conference.

I wish us all fruitful exchanges during these two days; constructive, testing ideas and identification of the steps we will be taking in the future.

Thank you for your attention.

ICTTE 2012 Director

Dr Olja Cokorilo
Organizing Committee

Olja Čokorilo – Conference Director

Faculty of Transport and Traffic Engineering, University of Belgrade, SRB

Stanko Bajčetić, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Ivana Čavka, Scientific Research Center Ltd. Belgrade, SRB
Ivan Ivković, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Dragana Macura, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Branko Milošević, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Vladimir Momčilović, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Marija Najdić, Faculty of Tourism and Hospitality Management, Singidunum University of Belgrade, SRB
Branimir Stojiljković, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Snježana Tadić, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Maja Trgovčević, Scientific Research Center Ltd. Belgrade, SRB
Predrag Živanović, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB

International Scientific Committee

Srečko Žeželj – Committee President

Faculty of Transport and Traffic Engineering, University of Belgrade, SRB

Ali Payidar Akgümüş, Transportation Division, Kirikkale University, TUR
Ahmed F. Al-Kaisy, Department of Civil Engineering, Montana State University, USA
Shrinivas Shrikant Arkatkar, Birla Institute of Technology and Science, Vidyarthi Vihar Campus Pilani, IND
Ivana D. Atanasovska, Kirilo Savic Institute, Belgrade, SRB
Libor Beneš, The Jan Perner Transport Faculty, University of Pardubice, CZE
Nebojša Bojović, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Chen Chao, Transportation and Management College, Dalian Maritime University, CHN
Dragan Ćosić, Faculty of Maritime Studies, University of Rijeka, CRO
Olja Čokorilo, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Gianluca Dell’Acqua, Department of Transportation Engineering, University of Naples “Federico II”, ITA
Izabela Dembińska, Faculty of Management and Economics of Services, University of Szczecin, POL
Abdulmuttalip Demirel, Faculty of Transportation, Kocaeli Metropolitan Municipality, TUR
Mornče Dobrodašić, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Čedomir Duboka, Faculty of Mechanical Engineering, University of Belgrade, SRB
Olivera A. Erić, Kirilo Savic Institute, Belgrade, SRB
Kasthurirangan Gopalakrishnan, College of Engineering, Iowa State University Ames, USA
Qi-Zhou Hu, School of Automation, Nanjing University of Science and Technology, CHN
Muhammad Ismaik, Department of Civil Engineering, University of Jordan, JOR
Miloš Jelić, Kirilo Savic Institute, Belgrade, SRB
Ignacy Kitowski, Zoology, Animal Ecology and Wildlife Management, University of Life Science in Lublin, POL
Rob Konings, Delft University of Technology, NED
Viktória Barbara Törökmé Kovács, BUTE-Department of Energy Engineering, HUN
Maria Eugenia López Lambas, Department of Civil Engineering, Polytechnic University of Madrid, ESP
Vladislav Maraš, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Goran Marković, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Francesc Xavier Martínez de Osés, Nautical Science and Engineering Department, UPC Barcelona, ESP
Jaroslav Matuška, Jan Perner Transport Faculty, University of Pardubice, CZE
Bhimaraya Metri, Management Development Institute Gurgaon, IND
Goran Mladenović, Faculty of Civil Engineering, University of Belgrade, SRB
Snježana Mladenović, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Vladimir Papić, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Vesna M. Pavelkić, Kirilo Savic Institute, Belgrade, SRB
Zeng Qingcheng, School of Transportation Management, Dalian Maritime University, CHN
Valentina Radić, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Indranarain Ramdlall, Faculty of Social Studies and Humanities, University of Mauritius, MRI
Kalaga Ramachandra Rao, Indian Institute of Technology Delhi, IND
Stefano Ricci, Department of Civil, Constructional & Environmental Engineering, La Sapienza, ITA
Li Shuguang, School of Electronic and Control Engineering, Chang’an University, CHN
Arvind Kumar Shukla, Civil Engineering Department, Institute of Engineering & Technology U.P, IND
Sanja Steiner, Faculty of Transport and Traffic Sciences, University of Zagreb, CRO
Milica Šelmić, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Milan Šimko, Department of Measurement and Applied Electrical Engineering, University of Žilina, SVK
Serhan Tanyel, Department of Civil Engineering, Dokuz Eylül University, TUR
Slaven Tica, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Adám Török, KTI Institute for Transport Sciences Non Profit Ltd., HUN
Elen Twdry, Dean of Faculty of Maritime Studies and Transport, University of Ljubljana, SLO
Ernestos Tzannatos, Department of Maritime Studies, University of Piraeus, GRE
Ljubiša Vasov, Faculty of Transport and Traffic Engineering, University of Belgrade, SRB
Contents

ICTTE Belgrade 2012 Conference Director's Speech .. III

Organizing Committee .. IV

International Scientific Committee ... IV

Session 1: Transport Optimization Problems

- Assignment of Floating Bulk Handling Cranes in Inland Waterways: A Comparison of Different Metaheuristic Techniques ... 3
- The Renewable Energy on Ship: Simulation and Optimization ... 11
- MIP-Heuristics for Minimum Cost Berth Allocation Problem ... 21
- Application of Different Learning Algorithms for the Prediction of Power of Inland Pushboats 29
- The Container Transportation Problem: Model and Solution Methods 41
- Influence of Container Ship Capacity on Terminal Operations in Smaller Container Ports .. 51
- Evaluation of Motorway Reliability Based on the Identification of Spot Speed Stochastic Processes. The Case of A22 Motorway, Italy ... 57
- An AIS Metaheuristic Approach for Solving Multi-Depot Vehicle Scheduling Problem .. 67

Session 2: Sustainable Transport

- Mobility Management – Promotion of Sustainable Transportation and Management The Demand for Car Usage ... 77
- Vehicle Conversions to Alternative Fuels on an Unprepared Market of a Developing Country: A Certain Way to Failure ... 85
- How to Transform Car-Dependent City into Pedestrian City? ... 93
- Benefits and First Effects of Novi Sad Bike-Sharing System ... 103
- Ecological Orientation in Measurement of Transport Intensity in Economy . 113
- System Components and Operation Characteristics of Istanbul BRT 123
- Vehicle Depreciation Caused by Stop-and-Go Situation in Dhaka City 131

Session 3: Transport Safety and Security

- Common Standards for Training of Experts on Road Safety - Relevance for Secondary Roads .. 143
- Results in Increasing Safety of Nautical Tourism and Touristic Capacites of the Cross Border Area Republic of Croatia and Montenegro Within IPA Project EU149
- Integrating GIS and Spatial Analytical Techniques in Analysis of Road Traffic Accidents in Serbia .. 155
- Ways of Countering Manipulations of Digital Recorders Compulsorily Taken in Light and Heavy Vehicles ... 167
- Road Safety Analysis Using Italian Guidelines ... 177
- Analysis of Road Safety: Three Levels of Investigation ... 185
Session 8: Transport and Environment

THE INFLUENCE OF THE FLOATING ICE ON SHIP PASSAGE ON THE RIVER DANUBE AND THE STRUGGLE WITH ICE DURING THE WINTER

METEOROLOGICAL AND OCEANOGRAPHIC DATA ON SELECTED ROUTES ON THE ADRIATIC

SUSTAINABILITY WHEN DEVELOPING RETURN CENTERS

IMPACT OF WEATHER CONDITIONS ON THE CONSTRUCTION OF THE TERMINAL - MONTE CARLO SIMULATION

USAGE OF BAYBURT STONE IN ROAD INFRASTRUCTURES AS A IMPROVEMENT MATERIAL

TRANSPORTATION AND ENVIRONMENTAL PROTECTION - CHALLENGE FOR THE FUTURE

ADRIATIC TRANSPORT CORRIDOR AS A FUNCTION OF SUSTAINABLE ECONOMIC DEVELOPMENT OF THE REGION

Session 9: Air Traffic Performance

A NEW APPROACH TO AN AUTOMATED AIR TRAFFIC CONTROL

MODEL FOR EVALUATING THE IMPACT OF AUTOMATION ON THE CAPACITY OF THE AIR TRAFFIC CONTROL SYSTEM

THE IMPACT OF AIRCRAFT OPERATIONAL FACTORS ON TURBOFAN ENGINE DIRECT MAINTENANCE COSTS

SAFETY MANAGEMENT SYSTEM AS THE TOOL FOR AIRPORT BENCHMARKING PROCESS

PERFORMANCE BASED NAVIGATION IMPLEMENTATION IN CROATIAN AIRSPACE

Session 10: Transport Technology

ONE APPROACH TO EXPERIMENTAL AND NUMERICAL INVESTIGATION OF LONGITUDINALLY VENTILATED ROAD TUNNELS

EVALUATION MODEL OF POSTAL SERVICES

SHIP-BERTH LINK PERFORMANCE MEASURES IN SEA PORT TERMINALS – GENERAL ANALYTICAL APPROACH

THE FUTURE OF SHIP’S PROPULSION IN MARITIME TRANSPORT

PORT OF DURRES THE DOOR OF THE PAN–EUROPEAN CORRIDOR VIII

ANALYSIS OF THE METHODS FOR TESTING THE QUALITY OF ROAD MARKINGS

Session 11: Transport Modeling and Decision Making

EVALUATION OF TRANSPORT PROJECTS USING MULTI-CRITERIA DECISION MAKING METHOD

A MODEL FOR THE MICROSIMULATION OF PORT ACTIVITIES

FUZZY LOGIC SYSTEM FOR DETERMINING THE NUMBER OF WORKERS ON TOLL GATES ON HIGHWAYS

A COMPARATIVE ANALYSIS OF NEURO-FUZZY AND ARIMA MODELS FOR URBAN RAIL PASSENGER DEMAND FORECASTING

A CASE STUDY TO REDUCE ACCIDENT RATES AND WAITING TIMES AT A SELECTED ROUNDABOUT

PASSING MANEUVER: SURVEY, SOME MODELS AND SIMULATIONS
Session 12: Human Factors

NATURALISTIC OBSERVATIONS OF DRIVERS’ HAND POSITIONS WHILE DRIVING WITH AND WITHOUT ADAPTIVE CRUISE CONTROL

METRO SUL DO TEJO: IMPROVING MOBILITY IN ALMADA

PROBLEMS OF CREW FATIGUE MANAGEMENT IN AIRLINE OPERATIONS

WORK RELATED STRESS OF POSTAL CLERKS

EFFECT OF SHOCK VIBRATIONS DUE TO SPEED CONTROL HUMPS TO THE HEALTH OF CITY BUS PASSENGERS USING OSCILLATORY MODEL WITH SIX DOF

IDENTIFICATION OF BEHAVIORAL PATTERNS OF TAXI DRIVERS IN THE CITY OF BOGOTA
ANALYSIS OF THE METHODS FOR TESTING THE QUALITY OF ROAD MARKINGS

Mario Fiolić¹, Dario Babić², Marko Ščukanec³
¹,² Faculty of Traffic and Transport Science, Vukelićeva 4, 10000 Zagreb, Croatia
³ Chemosignal d.o.o., Karlovačka cesta 169, 10000 Zagreb, Croatia

Abstract: Modern traffic demands the safe movement of vehicles under normal conditions and especially at night and in reduced visibility (fog, rain, sleet, etc.). Quality and quantity of participants visual guidance in traffic directly depends on the visibility and the reflective properties of road markings are of crucial importance. Using the latest methods and procedures of testing road markings a high and constant quality level can be achieved, and thus the security level of individual roads can be raised. Road markings are made in accordance with the Regulations on traffic signs and equipment on roads and Croatian and EU standards. One of the most important elements for testing the quality of road markings is testing day and night visibility of road markings. These tests can be done in two ways: method for static test of road markings reflection (daytime and night-time visibility) and dynamic method for testing retroreflection of road markings (night-time visibility).

Keywords: safe, road markings, retroreflection, static method, dynamic method

1. Introduction

Road traffic safety aims to reduce the harms (deaths, injuries, and property damage) resulting from crashes of road vehicles traveling on public roads. Main goal of road traffic safety is protection and security of all those who travel on roads. The reflective properties of road markings are of crucial significance, and represent one of the main factors increasing the safety of participants in road traffic.

Major factors that contribute to the road traffic safety can be grouped in three categories (Dawson, 2007):
- roads
- vehicles
- drivers’ behaviour.

In this paper focus will be on the analysis of the methods for testing the quality of road markings. These methods can be done in two ways: method for static test of road markings reflection (daytime and night-time visibility) and dynamic method for testing retroreflection of road markings (night-time visibility).

Tests are carried to ensure the prescribed quality of road markings are:
- Preliminary examination or testing facilities,
- Your own or running tests,
- Control tests,
- Additional control tests,
- Arbitration tests,
- Tests before the warranty (if the same contract).

In night and in wet conditions, road markings play important role in road traffic safety and because of that different types on road marking have been developed to insure safety.

2. Static method for testing the quality of road markings

Static testing of road markings can be done by using the static retroreflectometer (Fig. 1). Weighing of device is 52x218 mm. The device simulates the visual distance markings on the pavement 30 meters from the eyes of drivers, with an eye height of 1.2 m and 0.65 m height of the lights from the road surface. Daily visibility module Qd is expressed and measured in mcd•m⁻²•lx⁻¹ observed at an angle of 2.29 ° at a distance of 30 m and represents the value of the diffuse scattered light received by the observer. Night-time visibility or value expressed by the coefficient of retroreflection RL and measured in mcd•m⁻²•lx⁻¹. For measurement night visibility device measures retroreflection luminous rays from the study area at an angle of 2.29 °, the input light angle of 1.24 ° and at a distance of 30 m with a low beam. Measurements are performed according to European standards EN 1436, Materials for Road markings- Characteristics required for road users.

² Corresponding author: dario.babic@fpz.hr
Static testing of day and night visibility can be done by two methods: According to "Kentucky" method (old one), and according to new guidelines and technical requirements of the test procedure, i.e. measurement and valuation of derivative road markings shall be carried out in accordance with the German regulation ZTV M 02.

![Device for measuring retroreflection of road markings](source: Prepared by the authors)

2.1. Kentucky method

In Kentucky method (Fig. 2), measurements are performed on a single zone of 500 m on each section, where the section is part of the label performed from one team in one day. Start measuring zone is in the first third of the length of the section. In each zone shall be 10 measurements at distances of 50 m. For all 10 microlocation is carried out by three measurements and obtained an average value of these measurements is taken as authoritative. The main disadvantage of this method is that the test is performed only in the first third of the test section, where you cannot get the value of retroreflection of complete testing section.

![Measurement principle according to Kentucky method](source: Prepared and adapted by the authors)

2.2. Method in accordance with the German regulation ZTV M 02

ZTV M 02 (FGSV, 2002) includes measuring the thickness of dry paint film, the assessment day and night visibility derived labels in dry conditions, night-time visibility in wet conditions and the slip resistance expressed in units of the SRT and the measurements are carried not earlier than 30 and no later than 60 days after execution road markings.

The scope of measurements of longitudinal labels is determined by the daily execution of the working group that performed on pavement according. In the diary, for section of road that is necessary to assess, must be specified data when the works are executed and with what daily effect (especially for the central and especially for the edge line), and the number of measurement sequences is determined by the following Table 1.
3. Dynamic method for testing retroreflection of road markings (night-time visibility)

Dynamic method for testing retroreflection of road markings involves the measurement of night visibility with dynamic measuring device throughout its length. It can be performed with dynamic retroreflectometer which is installed on a vehicle measuring and thus allows continuous measurement of the night visibility (RI) road markings while driving vehicles.

Principle of measuring visibility at night with dynamic retroreflectometer is the same as in static measuring device, i.e. at measuring the night visibility of the device measures retroreflection of light rays from the study area at an angle of 2.29°, the angle of input light of 1.24° and at a distance of 30 m at short lights. (Fig. 4)

Table 1

Number of measurement sequences

<table>
<thead>
<tr>
<th>The length of longitudinal markings done in one day (km)</th>
<th>The length of the other markings done in one day (m²)</th>
<th>Number of measuring sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>< 120</td>
<td>1</td>
</tr>
<tr>
<td>1 - 5</td>
<td>120 - 600</td>
<td>2</td>
</tr>
<tr>
<td>> 5 - 10</td>
<td>> 600 - 1200</td>
<td>3</td>
</tr>
<tr>
<td>> 10</td>
<td>> 1200</td>
<td>4</td>
</tr>
</tbody>
</table>

Source: Prepared and adapted by the authors

Measurement sequences are selected according to the principle of randomness. Within each segment measuring selects five (5) measuring points (Fig. 3). For full labels longitudinal measurement points are distributed at 100 m in length at equal intervals (beginning, 25 m, 50 m, 75 m in the end). For discontinuous measurement of longitudinal labels are allocated to the middle point of each other full lines. In relation to the Kentucky method, it is possible to take sequence in the end of testing section, and can get a more realistic view of retroreflection on the entire section.

Fig. 3.

Measurement principle according to ZTV M 02

Source: Prepared and adapted by the authors

Fig. 4.

Principle of measuring night visibility with dynamic retroreflectometer

Source: Prepared and by the authors
The dynamic retroreflectometer (Fig. 5) has following features (ZTI, 2009):

- Measurement of road markings night visibility \(R_L \) in the day and night conditions
- It is suitable for measuring all kinds of night visibility of road markings, and profiled benchmark to 9 mm
- It is suitable for measuring night visibility in dry and wet conditions
- Has an integrated surveillance cameras, takes pictures automatically every 25 m, and also has the ability of shooting photos manually
- It has a built-in GPS system that captures the movement of vehicles and has sensors for measuring temperature and humidity
- Has the possibility of sending and processing data in a RetroGrabber software package and the ability to switch data into .xls format that allows statistical analysis of measured values.

The Dynamic Retroreflectometer \(R_L \) System consists of several elements that are necessary for operation:

- Measuring head
- Cockpit installation
- Laptop
- Carbox
- Wiring of the car

The laptop is used to operate the measuring system. With its installed Retro-Grabber software it is able to communicate with the measuring head and record measured data to its hard drive. For measuring, the laptop needs to be in the docking station in the car.

Measurements are done in a way that the measuring vehicle moves along the road surface and reads the coefficient of road markings retroreflection along which it moves. Before the measurements it is necessary to select the length of the measurement interval at which the device will measure the average value of each measurement section (i.e. the length of the measurement interval of 100 is set, this means that the device while measuring the shares for every 100 m will give an average value of visibility in this night measurement interval). Our experience shows that the optimal length of measurement interval is 50 or 100 m.
On the Faculty of Transport and Traffic Sciences, specifically in the Department for traffic signalization we have developed the new software (Fig. 6) that will significantly enhance and accelerate the course of preparing reports and interactive viewing the results of measurements.

Main advantages of the newly developed software:
- On-line review of the results on an interactive map, complete with a report made (Fig. 7)
- data entry and data delivery to end user
- eliminating the use of CDs or DVDs that have been used as a medium for the delivery of results
- ability to analyse data from previous years with more recent data
- enter the amount of reconstructed line on a particular road in a given county by the contractor marks on the road
- currently easier business end users with better insight into the current state
- Automatic itinerary (software itinerary creation) in a given county, according to the amount of reconstructed line on a particular road

Fig. 7.
The appearance of the interface after the selected region (county of Zagreb)
Source: Prepared by the authors

4. Comparison of methods for testing the quality of road markings

As already stated, the reflective properties of road markings are of crucial significance, and represent one of the main factors increasing the safety of participants in road traffic. In order to achieve a better quality of road markings, measurements should be done in compliance with internationally recognized methods. Also, methods for testing the quality of road markings must be recognized by the road authorities and in accordance with the technical requirements in each country.

Each of these methods has its advantages and disadvantages and it is on the employer to conduct the measurements by a particular method in accordance with their own needs. However, for the detailed control of road markings quality the best method is of dynamic method. Table 2 shows the main advantages and disadvantages of each method.

Table 2
Advantages and disadvantages of each method for measuring the quality of road markings

<table>
<thead>
<tr>
<th>METHOD</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>KENTUCKY</td>
<td>- enough measurements in the first third of length the section (10 out of every 50 m), which gives a better insight into the quality of the road marking</td>
<td>- only the first third of length of the section is being measured</td>
</tr>
<tr>
<td>ZTV M02</td>
<td>- gives a more realistic picture of the quality of road markings on the entire length of the section in relation to the Kentucky method</td>
<td>- measurement sequences are selected according to the principle of randomness</td>
</tr>
<tr>
<td>DYNAMIC</td>
<td>- measures of night visibility throughout the whole length of the section or road - provides an overview of results in computer application displaying GPS coordinates and pictures from the field</td>
<td>- does not measure day visibility</td>
</tr>
</tbody>
</table>
5. Conclusion

Testing road markings with a measurement vehicle (dynamic method) equipped with dynamic retroreflectometer offers the possibility of obtaining a continuous measurement results for the whole section intended to be measured, in a short time. At the static method Measurement sequences are selected according to the principle of randomness. In the dynamic method selected road section is examined in its entirety while static method tested only selected sequences of selected road.

At the same time, the process of testing, measuring vehicle with dynamic retroreflectometer performs accurately, and disruption of traffic is reduced to a minimum (the operating speed of testing the quality of road markings is 60 km/h). All the above suggests the possibility of systematic testing the quality of road markings on the Croatian roads and getting quality results for individual sections which represents a solid basis for the optimal maintenance plan, and savings in the maintenance of road markings.

The results obtained in tests enable you to:
- efficient maintenance of certain roads,
- review of critical places,
- prioritization of maintenance,
- optimize the order of applying the markings on the roadway.

Using this measurement method it is possible to organize a system of road maintenance, which provides a constant high level of visibility markings on the roadway, which affects the safety of drivers, especially when driving in adverse weather conditions.

From the above it can be concluded that the static methods for measuring the quality of road markings are appropriate for certain quality checks, but for a systematic and detailed analysis and monitoring of the quality of road markings dynamic method should be performed.

References

