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Abstract

This paper extends existing models for collaborative systems. We investigate how
much damage can be done by insiders alone, without collusion with an outside
adversary. In contrast to traditional intruder models, such as in protocol security,
all the players inside our system, including potential adversaries, have similar ca-
pabilities. They have bounded storage capacity, that is, they can only remember at
any moment a bounded number of symbols. This is technically imposed by only
allowing balanced actions, that is, actions that have the same number of facts in
their pre- and post-conditions, and bounding the size of facts, that is, the number
of symbols they contain. On the other hand, the adversaries inside our system
have many capabilities of the standard Dolev-Yao intruder, namely, they are able,
within their bounded storage capacity, to compose, decompose, overhear, and in-
tercept messages as well as create fresh values. We investigate the complexity of

Email addresses: mik@eecs.qmul.ac.uk (Max Kanovich), bank@math.uniri.hr
(Tajana Ban Kirigin), vivek.nigam@gmail.com (Vivek Nigam),
scedrov@math.upenn.edu (Andre Scedrov)

Preprint submitted to Information and Computation January 29, 2013



the decision problem of whether or not an adversary is able to discover secret data.
We show that this problem is PSPACE-complete when the size of messages is an
input bound and when all actions are balanced and can possibly create fresh val-
ues. As an application, we turn to security protocol analysis and demonstrate that
many protocol anomalies, such as the Lowe anomaly in the Needham-Schroeder
public key exchange protocol, can also occur when the intruder is one of the in-
siders with bounded memory.

Keywords: Collaborative Systems, Protocol Security, Complexity Results

1. Introduction

This paper extends existing models for collaborative systems [31, 32] by al-
lowing creation of fresh values, often called nonces in protocol security literature.
Fresh values are essential not only in protocol security but also in other administra-
tive processes that require for example unique identification. For instance, when
a bank customer opens a new bank account, a unique bank number account is as-
signed to it. As each bank account is assigned a fresh number, one can uniquely
identify accounts. Similar uses of fresh values also appear in other collaborative
systems, for example in clinical trials. In particular, each subject participating in a
clinical trial is assigned a unique identification code [9]. Such identification code
is then used to, among other things, keep track and maintain the subject’s trial
record.

In collaborative systems agents collaborate to reach some common goal. Since
they do not trust each other completely, they do not want some sensitive informa-
tion, such as a password, to leak to some other agent. Therefore one is interested
in showing that the system is secure, i.e., such critical states cannot be reached. In
[32], Kanovich et al. proposed a model for collaborative systems based on multi-
set rewriting. Later in [31], Kanovich et al. proposed three compliance problems
for collaborative systems called weak plan compliance, plan compliance, and sys-
tem compliance. This paper extends this model by allowing multiset rewrite rules
or actions to create fresh values and investigates the complexity of these three
problems for our extended model.

Following [32], we assume here that all actions in our system are balanced,
that is, they have the same number of facts in their pre- and post-conditions. If we
additionally bound the size of facts, i.e., the total number of function and constant
symbols a fact can contain, then all participants or agents inside our system have
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a bounded storage capacity. That is, at any moment, they can only remember a
bounded number of symbols.

We show that all three problems mentioned above are PSPACE-complete when
the size of facts is an input bound and when systems contain only balanced actions
that can possibly create fresh values. PSPACE membership is not trivial. As plans
may contain exponentially many actions and each action may create a fresh value,
plans may contain an exponential number of fresh constants, which in principle
precludes PSPACE membership. We cope with this problem by reusing obsolete
constants instead of creating new constant names.

Although our initial efforts were in collaborative systems, we realized that our
results also have important consequences for the domain of protocol security. We
model an intruder that is a malicious agent inside the system and investigate how
much damage can be done by insiders alone, without collusion with an outside ad-
versary. Since all players inside our system have bounded storage capacity, so do
the adversaries. This contrasts with traditional intruder models, which normally
include a powerful Dolev-Yao intruder [18] that has an unbounded memory. On
the other hand, our bounded memory adversaries and the standard Dolev-Yao in-
truder [18] share many capabilities, namely, they are able, within their bounded
storage capacity, to compose, decompose, overhear, and intercept messages as
well as create fresh values.

We show that the secrecy problem of whether or not an adversary can dis-
cover a secret is PSPACE-complete when the size of messages is an input bound
and when actions are balanced and can create fresh values. This contrasts with
previous results in protocol security literature [19], where it has been shown that
the same problem is undecidable even when the size of messages is fixed. How-
ever, there the intruder was allowed to have unbalanced actions, and consequently
intruder’s memory was not necessarily bounded.

We further demonstrate that when our adversary has enough storage capacity,
then many protocol anomalies, such as the Lowe anomaly [35] in the Needham-
Schroeder public key exchange protocol [39], can also occur in the presence of a
bounded memory intruder. We believe that this is one reason for the successful
use of model checkers in protocol verification in the past years. Moreover, we
also provide some quantitative measures for the security of protocols, namely,
the smallest amount of memory needed by the intruder to carry out anomalies
for a number of protocols, such as Needham-Schroeder [39, 35], Yahalom [14],
Otway-Reese [14, 48], Woo-Lam [14], and Kerberos 5 [8, 10].

In the first part of this paper, we introduce the complexity results obtained and
in the second part of the paper, we demonstrate how our theoretical results can be
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applied to protocol security. We now summarize our main contributions. After
introducing the main vocabulary and the decision problems in Section 2:

• We show that plans constructed using balanced actions can be exponentially
long (Section 3), thus precluding PSPACE membership;

• We show that when the size of facts is bounded and systems have only
balanced actions that can create fresh values, it is enough to fix a priori a set
with a few fresh names. The idea is that instead of creating new names, one
reuses names from the fixed set of fresh values (Section 4);

• We prove the complexity results for the decision problems introduced in
Section 2 when bounding the size of facts and using balanced systems that
can create fresh values (Section 5);

After investigating the complexity of the decision problems introduced in Sec-
tion 2, we apply our results in the domain of protocol security.

• We introduce a balanced protocol theory and a balanced intruder theory
(Section 6). Then we demonstrate that many protocol anomalies can also be
carried out by a bounded memory intruder, namely, Needham-Schroeder [39,
35], Yahalom [14], Otway-Reese [14, 48], Woo-Lam [14], and Kerberos
5 [8, 10]. The detailed encoding of the Lowe anomaly for the Needham-
Schroeder protocol is shown in Section 6.3. The remaining anomalies can
be found in the technical report [26].

• We prove the complexity results for the secrecy problem when bounding
the size of messages and when using balanced systems specifying protocol
theories with a bounded memory intruder (Section 7).

Finally, we discuss related work and conclude by pointing out some future
work in Sections 8 and 9.

This paper is an extended and improved version of [27].

2. Preliminaries

In this section we review the main vocabulary and concepts introduced in
[31, 32] and extend their definitions to accommodate actions that can create fresh
values and introduce an adversary.
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2.1. Multiset Rewriting
At the lowest level, we have a first-order alphabet Σ (also called signature in

formal verification papers) that consists of a set of sorts (or types) together with the
predicate symbols P1, P2, . . ., function symbols f1, f2, . . ., and constant symbols
c1, c2, . . . all with specific sorts. The multi-sorted terms over the alphabet are
expressions formed by applying functions to arguments of the correct sort. Since
terms may contain variables, all variables must have associated sorts. A fact is
an atomic predicate over multi-sorted terms. Facts have the form P (t1, . . . , tn)
where P is an n-ary predicate symbol and t1, . . . , tn are terms, each with its own
sort.

Definition 2.1. The size of a fact is the total number of term and predicate sym-
bols it contains. We count one for each predicate and function name, and one for
each constant and variable symbol. We use |F | to denote the size of a fact F .

For example, |P (b, c)| = 3 and |P (f(b, n, b), z)| = 6. In this paper, as in [19], we
will normally assume an upper bound on the size of facts.

A state, or configuration of the system is a finite multiset W of grounded
facts, i.e., facts that do not contain variables. We use both WV and W,V to
denote the multiset resulting from the multiset union of W and V . A multiset
rewriting system (MSR) is a set of multiset rewrite rules, which are used to change
configurations. Rules have the form W → W ′. All free variables appearing
in the rule are assumed to be universally quantified. By applying a rule for a
ground substitution (σ), the multiset W under this substitution (Wσ) is replaced
with the multiset W ′ under the same substitution (W ′σ). Hence, this rule can be
applied to the configuration V,Wσ, called enabling configuration, to obtain the
configuration V,W ′σ.

Definition 2.2. The size of a configuration S is the total number of facts in S.

Intuitively, a configuration specifies a snapshot of the state of the world, while
rules specify operations that change the state of the world. One is often interested
in determining whether in a multiset rewrite system some configuration is reach-
able from another configuration. This problem is called the reachability problem.
Formally, given a set R of multiset rewrite rules, if there is a sequence of (0 or
more) rules from R which transforms W into Z, then we say that Z is reachable
from W usingR.
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Rules that can create fresh values. The rewrite rules of the form above have an im-
portant limitation, namely, one cannot specify the creation of fresh values. These
values are normally called nonces in protocol security literature. Fresh values are
often used in administrative processes. For example, when one opens a new bank
account, the number assigned to the account has to be fresh, that is, it has to be
different from all the other existing bank account numbers. Similarly, whenever a
bank transaction is initiated, a fresh number is assigned to the transaction, so that
it can be uniquely identified. Fresh values are also used in the execution of pro-
tocols. At some moment in a protocol run, an agent might need to create a nonce
that is not known to any other agent in the network. This nonce, when encrypted
in a message, is then usually used to establish a secure communication among
agents.

As in [19], we borrow the same notion of freshness from proof theory to spec-
ify rules that can create fresh values. In particular, the elimination rule in natural
deduction systems [22, 42] for the existential quantifier introduces a fresh value,
also called eigenvariable. This rule is often written in the following way

∃x.φ

φ[c/x]....
ψ

ψ
∃E

with the side condition that the constant c does not appear in any other hypoth-
esis. The rule above states that if we have a proof of the formula ∃x.φ and if we
have a proof of ψ using the hypothesis φ[c/x] then we have a proof of ψ. The
side condition means that the only hypothesis in the proof of ψ that contains c is
φ[c/x]. That is, the constant c is a fresh constant introduced in the premises of the
elimination rule.

Following the notion of freshness above, we allow rewrite rules to create
fresh values. These rules have the form W → ∃~z.W ′ and specify that the ex-
istentially quantified variables, ~z, are to be replaced with fresh values, that is,
with values that do not appear in the enabling configuration nor in the ground
terms replacing the free variables in the rule. For example, we can apply the
rule P (x) Q(y) → ∃z.R(x, z) Q(y) to the configuration V P (t) Q(s) to get the
configuration V R(t, c) Q(s), where the constant c must be fresh.

As we will illustrate later, rules that can create fresh values play an impor-
tant role in the specification of collaborative systems and security protocols. For
example, whenever a bank transaction is initiated, one can specify that a fresh
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number is to be assigned to the transaction by using a rule of the form:

Transaction(noID, user)→ ∃id.Transaction(id, user)

where noId is a constant denoting that a transaction has no identification number.
When this rule is applied, its semantics ensures that the value replacing variable
id is fresh. Therefore, each transaction can be uniquely identified using the trans-
actions identification number created.

Finally, we would also like to point out that [11, 28] provides a precise connec-
tion between the operational semantics of MSRs containing rules that can possibly
create fresh values and linear logic derivations [23].

Applications of MSRs. Multiset rewriting systems have been used in several do-
mains. For instance, it has been shown that a wide range of algorithms [5], Arti-
ficial Intelligence problems [33, 32], security protocols [19] as well collaborative
systems [32, 28] can be specified by MSRs. In Section 3, we show a MSR speci-
fication of the well-known Towers of Hanoi puzzle and in Section 6 we show how
protocol theories can be specified by using MSRs.

2.2. Local State Transition Systems
In a collaborative system, agents collaborate to achieve a common goal, but

they do not trust each other completely. Therefore, while collaborating, an agent
might be willing to share some of his private information with some agents, but
not willing to share some other information. As an example, a patient would share
his medical history with a doctor, but would not disclose to the doctor some other
information such as his bank account PIN number.

In order to specify private and shared information, [31, 32] introduced Local
State Transition Systems (LSTS). In LSTSes the global configuration is parti-
tioned into different local configurations each of which is accessible only to one
agent. There is also a public configuration, which is accessible to all agents. In-
tuitively, local configurations contain the data that are private to the agents of
the system, while the global configuration contains the data that are public, i.e.
accessible to all agents. This separation of the global configuration is done by
partitioning the set of predicate symbols in the alphabet and it will be usually
clear from the context. Predicate symbols are typically annotated with the name
of the agent that owns it or with pub if it is public. For instance, the fact PA(~t) be-
longs to the agent A, while the fact Ppub(~t) is public. This paper adopts the same
approach to specify private and shared information. However, to formally specify
the secrecy problem later in this Section, we also assume that among the agents
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in the system, there is an adversary M . Moreover, we also assume the existence
of a special constant s in the alphabet Σ denoting the secret that should not be
discovered by the adversary.

As in [31, 32], each agent has a finite set of actions or rules, which transform
the global configuration. Here, as in [19, 28, 11], we allow agents to have more
general actions that can create fresh values. Following the intuition above, an
agent can only have access to his own local configuration, containing his private
data, and the public configuration, containing data that are available to all agents.
This is formalized by restricting the facts that can be mentioned in a rule. In
particular, actions that belong to an agent A have the form:

WAWpub →A ∃~z.W ′
AW

′
pub. (1)

The multisets WA and W ′
A contain only facts belonging to the agent A and the

multisets Wpub and W ′
pub contain only public facts. The multiset WA Wpub is the

pre-condition of the action and the multiset W ′
A W

′
pub is the post-condition of the

action. Actions work as multiset rewrite rules, where all free variables in a rule
are treated as universally quantified.

The main novelty of this paper in comparison with [31, 32] is that we allow
rules to create fresh values, specified by the existentially quantified variables ~z
appearing in the rule. As in MSRs, they denote that the variables ~z appearing in
the post-condition have to be replaced with fresh values.

Rules of the above form impose the restriction that any fresh value created by
an agent A appears only in facts belonging to A and/or in public facts. Since an
agent does not have access to the facts belonging to the other agents, if he wants
to share some fresh value, then he needs to publish it in the public configuration.
This can be done by applying a single instance of an action, such as the one below:

QA(x) Rpub(x)→A ∃z.QA(z) Rpub(z)

where the values in the private and public facts QA and Rpub are updated by a
fresh value. If an agent does not want to share a fresh value, but only store the
fresh value in his local configuration, then this can also be specified by using
existentially quantified variables only in private facts. This is illustrated by the
following action, which does not contain public facts:

QA(x)→A ∃z.QA(z)

Since the variable z does not appear in any public fact, the fresh value created
is not shared to the public. Finally, agents can learn fresh values that have been
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shared by copying them into private facts, e.g.by applying the following action:

Rpub(x)→A QA(x) Rpub(x) .

When this action is applied, the agent A learns x as it is copied to his own local
configuration.

For simplicity, we often omit the name of agents from actions and predicates
when the agent is clear from the context.

Definition 2.3. A local state transition system (LSTS) T is a tuple 〈Σ, I,M,RT , s〉,
where Σ is the alphabet of the language, I is a set of agents, M ∈ I is the adver-
sary, RT is the set of actions owned by the agents in I , and s is the secret.

We use the notation W >T U or W >r U to mean that there is an action r in
the LSTS T which can be applied to the configuration W to transform it into the
configuration U . We let>+

T and>∗T denote the transitive closure and the reflexive,
transitive closure of >T respectively. Usually, however, agents do not care about
the entire configuration of the system. Instead, they are interesed in whether a con-
figuration contains some particular facts. Therefore, we use the notion of partial
goals. We write W  T Z or W  r Z to mean that W >r ZU for some multiset
of facts U . For example with the action r : X →A Y , we find that WX  r Y ,
since WX >r WY . We define  +

T and  ∗T to be the transitive closure and the
reflexive, transitive closure of T respectively. We say that the partial configura-
tion Z is reachable from configuration W using T if W  ∗T Z. We also consider
configurations that are reachable using the actions from all agents except for one.
Thus we write X >∗−Ai

Y to indicate that Y can be reached exactly from X with-
out using the actions of agent Ai. Finally, given an initial configuration W and
a partial configuration Z, we call a plan any sequence of actions that leads from
configuration W to a configuration containing Z.

Example. As an illustrative example, consider the scenario adapted from [32]
where a patient needs a medical test, e.g., a blood test, to be performed in order
for a doctor to correctly diagnose the patient’s health. This process may involve
several agents, such as a patient, a nurse, and a lab technician. Each of these
agents has his own set of tasks. For instance, the patient’s initial task could be to
make an appointment and go to the hospital. Then, the secretary would send the
patient to the nurse who would collect the patient’s blood sample and send it to
the lab technician, who would finally perform the required test. This scenario can
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be specified as an LSTS. The following rules specify some of the actions of the
agents N (nurse) and L (lab technician) from this scenario:

Nurse(blank, blank, blank) Pat(name, test)
→N Nurse(name, blank, test) Pat(name, test)

Nurse(x, blank, blood) →N ∃id.Nurse(x, id, blood)
Nurse(x, id, blood) →N Lab(id, blood) Nurse(x, id, blood)
Lab(id, blood) →L TestResult(id, result)

The predicates Pat, Lab and TestResult are public, while the predicate Nurse
belongs to the nurse. Here “blank” is the constant denoting an unknown value,
“blood” is the constant denoting the type of test that is a blood test, “result” is
one of the constants from the set denoting the possible test outcomes, while test,
name, x and id are all variables. The most interesting action is the second ac-
tion, which generates a fresh value. This fresh value is an identification number
assigned to the test required by the patient. Then in the third action, when the
nurse sends a request the lab technician to perform a blood test, the nurse does not
provide the name of the patient, but instead, in order to anonymize the patient, she
only sends the identification number generated. Finally, in the last action, the lab
technician makes available the test results attached with the corresponding iden-
tification number. In order not to mix up the test result of one patient with test
result of another patient, each patient (sample) should have a different identifica-
tion number assigned. In the specification above, this is enforced by the second
rule since a fresh value is created.

In this particular example, there is no secret involved. However, there are
undesirable situations that have to be avoided. In particular, the test results of a
patient should not be publicly leaked with the patient’s name. These situations
will be specified by using critical configurations introduced later in this section.

Nonces are important in protocol security and in many other administrative
processes that require unique identification and security, such as contract signing
protocols [9]. Recently we have been applying collaborative systems in the do-
main of medical research and drug development, to model clinical investigations
(CIs) that test a new drug on human subjects [41]. CIs are rigorously regulated
by policies elaborated by governmental agencies such as the Food and Drug Ad-
ministration (FDA). Other regulations may be imposed by multiple institutional
policies and protocols. Due to the complexity of both regulations and activities,
there is great potential for violation due to human error, misunderstanding, or even
intent.
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Fresh values play an important role in the specification of clinical trials. Due
to confidentiality and privacy concerns that are clearly involved here, nonces are
essential in modeling for example identification codes assigned to every subject
participating in a CI. For instance, the following paragraph in Section 4.1.2.3 of
the implementation manual of Study Data Tabulation Model [9], a standard on
how data should be collected and stored during a trial, mentions the use of unique
identification codes:

“To identify a subject uniquely across all studies for all applications
or submissions involving the product, a unique identifier (USUBJID)
should be assigned and included in all datasets. [· · · ] This means that
no two (or more) subjects, across all trials in the submission, may
have the same USUBJID.”

In particular, each subject should have a unique identification code USUB-
JID. As illustrated above, the assignment of these codes can be modeled by using
actions that create fresh values.

Moreover, some CIs may have blind trials, where subjects do not know whether
they are taking the actual drug being tested or a placebo. In such trials, the drug
and the placebo themselves have to be delivered to locations properly boxed and
labelled, e.g., lot number LNR1305, box no. 11 together with expiry date. These
labels can also be modeled by nonces, so that the boxes can be appropriately as-
signed to specific subjects. Additionally, if some problems are detected such as
temperature excursion of the drug in transport, sun exposure, etc, the drug can be
uniquely identified and retrieved from all locations as per lot number.

Balanced Actions. A central assumption in this paper is that of balanced actions.
We classify an action as balanced if the number of facts in its pre-condition is
the same as the number of facts in its post-condition. As discussed in [32], bal-
anced actions have the special property that when applied they preserve the size of
configurations, i.e., the number of facts in configurations. This is because when
applying a balanced action the same number of facts deleted from an enabling
configuration is then inserted into the resulting configuration. Hence, if an LSTS
has only balanced actions, then all configurations in a plan have the same number
of facts. In particular, the size of all configurations in a plan is the same as the
size of the initial configuration.

On the one hand, when using unbalanced actions it is possible to create a
fact without consuming a fact in the process. For example, the following action
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creates a fact: →A QA(x). By using this action, one could for instance expand
a configuration by creating new facts an unbounded number of times. Hence, the
size of configurations appearing in a plan obtained using unbalanced actions may
be unbounded. This seems to be a cause for the undecidability of many problems
that we consider in this paper, such as the secrecy problem. On the other hand,
creating a new fact using a balanced action amounts to inserting that fact into the
resulting configuration by replacing a fact appearing in the enabling configuration.
In order to support the creation of new facts in balanced systems, we use empty
facts, P (∗). An empty fact intuitively denotes a slot available that could be filled
by a new fact. For instance, the following balanced action creates a non-empty
fact by consuming an empty fact:

P (∗)→A QA(x).

This action specifies that a free slot can be filled by the factQA(x). Symmetrically,
an agent can replace a non-empty with an empty fact, as specified by the following
rule:

QA(x)→A P (∗).

Intuitively, this rule specifies that the fact QA(x) is forgotten freeing up memory.
The empty fact created by this rule could then be reused by another rule that
requires an empty fact.

By using empty facts, P (∗), one can also transform unbalanced systems into
balanced systems. For instance, in the medical example shown above, all actions
are balanced, except the action:

Nurse(x, id, blood)→N Lab(id, blood) Nurse(x, id, blood).

In particular, its pre-condition has less facts than its post-condition. We can mod-
ify this action so that it is transformed into a balanced action by adding an empty
fact to its pre-condition, thereby obtaining the following balanced action:

P (∗) Nurse(x, id, blood)→N Lab(id, blood) Nurse(x, id, blood).

In order for the Nurse to ask the lab for more tests, she needs to check whether
there is an empty fact available. One could interpret this as the nurse checking
whether the lab has enough capacity to perform another test. Otherwise, the nurse
will have to wait until a P (∗) is made available. This could happen, for instance,
when some patient receives his test results and therefore no longer requires the

12



test to be carried out, which can be specified by the following rule:

Nurse(name, id, blood),TestResult(id, result),Pat(name, blood)
→N Nurse(name, id, blood) Rec(name, result) P (∗)

Once the test result of a patient is available and delivered to the patient, the Nurse
can use the P (∗) fact created to request a new test for another patient to be carried
by the lab technician. Notice that the test results are still stored in the patient’s
medical records, specified by the private fact Rec belonging to the Nurse.

As illustrated above, the use of balanced actions bounds the number of facts
agents can remember, but this condition alone does not bound the memory of
an agent, that is, the number of symbols he can remember. To bound the mem-
ory of the agents of a system, one needs to additionally assume that facts have a
bounded size. That is, there is a maximum number of symbols a fact can con-
tain. Otherwise, if we do not impose a bound to the size of facts, agents could for
instance use a pairing function, 〈·, ·〉, and facts with unbounded depth to remem-
ber as many constants (or data) they need. For example, instead of using n facts,
Q(c1), . . . , Q(cn), to store n constants, c1, . . . , cn for some n, an agent could store
all of these constants by using the single fact Q(〈c1, 〈c2, 〈· · · , 〈cn−1, cn〉〉 · · · 〉〉).

Intuitively, by using balanced systems and assuming such a bound on the size
of facts, we obtain a bound on the number of slots available for predicate, function,
and constant symbols in any configuration of a run. As we will discuss in Sec-
tion 4, this bound will be key to obtain the decidability of the decision problems
that we investigate in this paper, such as the secrecy problem.

Notice as well that such an upper bound on the size of facts was also assumed
in previous work [19], while [32, 31] assumed a fixed bound on the size of facts.

Critical Configurations. In order to achieve a final goal, it is often necessary for
an agent to share some private knowledge with another agent. However, although
an agent might be willing to share some private information with some agents,
he might not be willing to do the same with other agents. For example, a patient
might be willing to share his test results with the nurse, but not with the lab techni-
cian. In such scenarios, one is interested in determining if a system complies with
some confidentiality policies, such as a patient’s test result should not be publicly
available together with his name.

Formally, a confidentiality policy of an agent is a set of partial configurations
that this agent considers undesirable or bad. A configuration is called critical for
an agent if it contains one of the partial configurations from his policy, and it is
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simply called critical if it is critical for some agent of the system. We classify any
plan that does not reach any critical configuration as compliant.

In this paper, we make an additional assumption that critical configurations
are closed under renaming of nonce names, that is, if W is a critical configuration
and Wσ = W ′ where σ is substitution renaming the nonces in W , then W ′ is also
critical. This is a reasonable assumption since critical configurations are normally
defined without taking into account the names of nonces used in a particular plan,
but only how they relate in a configuration to the initial set of symbols in Σ and
amongst themselves. For instance, in the medical example above consider the
following configuration {TestResult(n1, result),Tec(n1, paul)}, where Tec is a
predicate belonging to the lab technician. This configuration is critical because
the lab technician knows Paul’s test results, result, since she knows his identity
number, denoted by the nonce n1, and the name that is associated to this identifier.
Using the same reasoning, one can easily check that the configuration resulting
from renaming the nonce n1 is also critical. In [34] it is pointed out that in the
scenarios involving the privacy of medical data what matters are the categories of
participants (e.g., physicians, nurses, or patients) other then the actual individuals
in these categories.

Definition of Problems. We review the three policy compliances introduced in
[31, 32] and the secrecy problem related to protocol security. This paper makes
the additional assumption that initial, goal and critical configurations are closed
under renaming of nonces.

• (System compliance) Given a local state transition system T , an initial con-
figuration W , a (partial) goal configuration Z, and a set of critical config-
urations, is no critical state reachable from W , and does there exist a plan
leading from W to Z?

• (Weak plan compliance) Given a local state transition system T , an initial
configuration W , a (partial) goal configuration Z, and a set of critical con-
figurations, is there a compliant plan that leads from W to Z?

• (Plan compliance) Given a local state transition system T , an initial config-
uration W , a (partial) goal configuration Z, and a set of critical configura-
tions, is there a compliant plan that leads from W to Z such that for each
agent Ai and for each configuration Y along the plan, whenever Y >∗−Ai

V ,
then V is not critical for Ai?
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• (Secrecy problem) Given a local state transition system T , is there a plan
from the given initial configuration to a configuration in which the adversary
M owns the fact M(s),1 where s is a secret originally owned by another
participant?

Intuitively, a system is system compliant if whatever actions the agents per-
form, no undesired state for any agent is reached and if there is a compliant plan,
where the agents reach a common goal. On the other hand, a weak plan compliant
system is a system that has a compliant plan. However, if some agent of the sys-
tem does not follow the compliant plan, then it can happen that an undesired state
for some agent is reached. Finally, a plan compliant system is such that there is a
compliant plan and moreover if an agent Ai wants to stop collaborating, then it is
guaranteed that the remaining agents are not able to reach any of Ai’s undesired
states.

The type of compliance, i.e., weak plan, system, or plan compliance, that is
considered appropriate will depend on the type of collaborative system in ques-
tion. In some cases, such as in the medical scenario above, one might require
system compliance: according to hospital policies, it should never be possible
that, for example, the lab technician gets to know the test results of the patient.
In other cases, however, such as when researchers are collaborating to write a
paper before a deadline, weak plan compliance might be more appropriate. The
collaborating researchers are only interested to know whether there is a compliant
plan where the goal of writing the paper before the deadline is achieved. They
trust each other to be well intentioned in contributing to the paper being written
on time. Further examples illustrating and motivating the definitions above can be
found in [32, 31].

The secrecy problem is basically an instantiation of the weak plan compliance
problem with no critical configurations. It is interesting to note that this problem
can also be seen as a kind of a dual to the weak plan compliance problem; is
there is a plan from the initial configuration to a critical configuration where the
adversary M owns the secret s, originally owned by another participant? What
we mean by owning a secret s, or any constant c in general, is that the agent has a
private fact Q(c′) such that c is a subterm of c′.

1M is a predicate name belonging to the intruder.
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3. Examples of exponentially long plans

In this section, we illustrate that plans can, in principle, be exponentially long.
In particular, we discuss an encoding of the well-known puzzle of the Towers
of Hanoi. Such plans seem to preclude PSPACE membership, especially when
nonces are involved, since there can be a priori an exponential number of nonces
in such plans. We will later show, in Section 4, how to circumvent this problem
by reusing obsolete constants instead of creating new names for fresh values.

3.1. Towers of Hanoi
Towers of Hanoi is a well-known mathematical puzzle. It consists of three

pegs b1, b2, b3 and a number of disks a1, a2, a3, . . . of different sizes, which can
slide onto any peg. The puzzle starts with the disks neatly stacked in ascending
order of size on one peg, the smallest disk at the top. The objective is to move the
entire stack stacked on one peg to another peg, obeying the following rules:

(a) Only one disk may be moved at a time.

(b) Each move consists of taking the upper disk from one of the pegs and sliding
it onto another peg, possibly on top of the other disks that may already be
present on that peg.

(c) No disk may be placed on top of a smaller disk.

The puzzle can be played with any number of disks and it is known that the mini-
mal number of moves required to solve a Tower of Hanoi puzzle is 2n − 1, where
n is the number of disks.

The problem can be represented by an LSTS. We introduce the type disk for
the disks, type diskp for either disks or pegs, with disk being a subtype of diskp.
The constants a1, a2, a3, ..., an are of type disk and b1, b2, b3 of type diskp. We
use facts of the form On(x, y), where x is of type disk and y is of type diskp, to
denote that the disk x is either on top of the disk or on the peg y. Facts of the form
Clear(x), where x is of type diskp, denote that the top of the disk x is clear, i.e.,
no disk is on the top of or on x, or that no disk is on the peg x. Since disks need
to be placed according to their size, we also use facts of the form S(x, y), where
x is of type disk and y is of type diskp, to denote that the disk x can be put on
top of y. In our encoding, we make sure that one is only allowed to put a disk on
top of a larger disk or on an empty peg, i.e., that x is smaller than y in the case of

16



y being a disk. This is encoded by the following facts in the initial configuration:

S(a1, a2) S(a1, a3) S(a1, a4) . . . S(a1, an) S(a1, b1) S(a1, b2) S(a1, b3)
S(a2, a3) S(a2, a4) . . . S(a2, an) S(a2, b1) S(a2, b2) S(a2, b3)

...
S(an−1, an) S(an−1, an) S(an−1, b1) S(an−1, b2) S(an−1, b3)

The initial configuration also contains the facts that describe the initial placing of
the disks:

On(a1, a2) On(a2, a3) . . . On(an−1, an) On(an, b1)
Clear(a1) Clear(b2) Clear(b3) ,

The goal configuration consists of the following facts and encodes the state where
all the disks are stacked on the peg b3:

On(a1, a2) On(a2, a3) . . . On(an−1, an) On(an, b3)
Clear(a1) Clear(b1) Clear(b2)

Finally, the only action in our system is:

Clear(x) On(x, y) Clear(z) S(x, z)→ Clear(x) Clear(y) On(x, z) S(x, z)

where x has type disk, while y and z have type diskp. Notice that the action
above is balanced. This action specifies that if there is a disk, x, that has no disk
on top, it can be either moved to the top of another disk, z, that also has no disk
on top, provided that x is smaller than z, specified by predicate S(x, z), or onto a
clear peg.

The above Towers of Hanoi puzzle representation with LSTSes can be suitably
modified so that each move in this game is identified/accompanied by replacing a
previous “ticket” with a fresh ticket.2 This is accomplished, for example, by the
following two rules.

T (t) Clear(x) On(x, y) Clear(z) S(x, z)→
P (∗) Clear(x) Clear(y) On(x, z) S(x, z)

P (∗)→ ∃z.T (z)

2Although the use of tickets is not necessary for solving the Towers of Hanoi problem, it is an
illustrative example that in principle one may require an exponential number of fresh values.
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The first rule replaces the old ticket T (t) with the empty fact P (∗). Then the
second rule specifies that a new ticket can be created in exchange of a P (∗) fact.
If we include a single P (∗) fact in the initial configuration above, then it is easy
to check that for every move performed in the game, a new fresh value could in
principle be created. As before, given n disks, all plans must be of the exponential
length 2n− 1, at least. Consequently, within the modified version, a plan that cre-
ates a different fresh value for every move would contain an exponential number
of different fresh values.

However, one does not necessarily need to use an exponential number of dif-
ferent tickets. In fact, since the ticket used in a move is forgotten in the first rule,
the same ticket name can be reused as the fresh value in the second rule to enable
the next move. Therefore, one can show that there is a plan where the problem is
solved with only one ticket.

Although in this particular problem one just needs a single fresh value, for
LSTSes in general, more fresh values may be required. We show in the next
section that only a few fresh values are needed when we assume a bound on the
size of facts and when all actions are balanced.

4. Polynomial Bound for the Number of Fresh Values

As illustrated by the example given in the previous section, plans can be expo-
nentially long and involve an exponential number of fresh values. The use of an
exponential number of fresh values seems to preclude PSPACE membership of all
the compliance problems given at the end of Section 2, e.g., the secrecy and the
weak plan compliance problems. We circumvent this problem by showing how to
reuse obsolete constants instead of creating new values.

Consider as an intuitive example the scenario where customers are waiting at
a counter. Whenever a new customer arrives, he picks a number and waits until
his number is called. Since only one person is called at a time, usually in a first
come first serve fashion, a number that is picked has to be a fresh value, that is, it
should not belong to any other customer in the waiting room. Furthermore, since
only a bounded number of customers wait at the counter in a period of time, one
only needs a bounded number of tickets: once a customer is finished, his number
can be in fact reused and assigned to another customer.

We generalize the idea illustrated by the example above to systems with bal-
anced actions. Since in such systems all configurations have the same number of
facts and the size of facts is bounded, in practice we do not need an unbounded
number of new constants in order to reach a goal, but just a small number of them.
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Whenever a nonce needs to be created, we will pick a nonce name from the fixed
set of nonce names in such a way that it differs from all the nonce names in the
given configuration. Although nonce names have been fixed in advance, they can
be considered fresh. We call actions that pick fresh values from a small set of
nonces guarded nonce generation.

Consequently, in a given planning problem we only need to consider a small
number of nonces names. This is formalized by the following theorem.

Theorem 4.1. Given an LSTS with balanced actions that can create nonces, any
plan leading from an initial configuration W to a partial goal Z can be trans-
formed into another plan also leading from W to Z that uses only a polynomial
number of nonces, 2mk, with respect to the number of facts, m, in W and an
upper bound on the size of facts, k.

The proof of Theorem 4.1 relies on the observation that from the perspective of
an insider of the system two configurations can be considered the same whenever
they only differ on the names of the nonces used.

Consider for example the following two configurations, where the nis are
nonces and tis are constants in the initial alphabet:

{FA(t1, n1), GB(n2, n1), Hpub(n3, t2)} and {FA(t1, n4), GB(n5, n4), Hpub(n6, t2)}

Since these configurations only differ in the nonce’s names used, they can be
regarded as equivalent: the same fresh value, n1 in the former configuration and
n4 in the latter, is shared by the agents A and B, and similarly, for the new values
n2 and n5, and n3 and n6. Inspired by a similar notion in λ-calculus [13], we say
that these configurations above are α-equivalent.

Definition 4.2. Two configurations S1 and S2 are α-equivalent, denoted by
S1 =α S2, if there is a bijection σ that maps the set of all nonce names appearing
in one configuration to the set of all nonce names appearing in the other configu-
ration, such that the set S1σ = S2.

The two configurations given above are α-equivalent because of the following
bijection {(n1, n4), (n2, n5), (n3, n6)}. It is easy to show that the relation =α is
indeed an equivalence, that is, it is symmetric, transitive, and reflexive.

The following lemma formalizes the intuition described above that from the
point of view of an insider two α-equivalent configurations are the same, that is,
one can apply the same action to one or the other and the resulting configura-
tions are also equivalent. This is similar to the notion of bisimulation in process
calculi [37].
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Lemma 4.3. Letm be the number of facts in a configuration S1 and k be an upper
bound on the size of facts. Let Nm,k be a fixed set of 2mk nonce names. Suppose
that the configuration S1 is α-equivalent to a configuration S ′1 and, in addition,
each of the nonce names occurring in S ′1 belongs to Nm,k. Let an instance of the
action r transform the configuration S1 into the configuration S2. Then there is a
configuration S ′2 such that: (1) an instance of action r transforms S ′1 into S ′2; (2)
S ′2 is α-equivalent to S2; and (3) each of the nonce names occurring in S ′2 belongs
to Nm,k.

Proof We alter the given transformation S1 →r S2, which can in principle
include nonce creation, into S ′1 →r′ S

′
2 so that the action r′ is an action of guarded

nonce generation. It does not create new values, instead it chooses nonce names
from the set Nm,k, in such a way that the chosen nonce names differ from any
values in the enabling configuration S ′1. Although these names have been fixed in
advance, they can be considered fresh.

Let r be a balanced action that does not create nonces. Assume an instance of
r is used to transform S1 to S2 and assume that the nonces in S1 are ~n. Let σ be a
bijection between the nonces of S1 and S ′1. Then an instance of r where the nonces
~n are replaced with ~nσ transforms the configuration S ′1 into S ′2. Configurations S ′2
and S2 are α-equivalent since these configurations differ only in nonce names, as
per bijection σ.

It is more interesting when a rule r creates nonces ~n2 resulting in S2. Since the
number of all places (slots for values) in a configuration is bounded by mk, we
can find enough elements ~n2

′ (at most mk in the extreme case where all nonces
are supposed to be created simultaneously) in the set of 2mk nonce names, Nm,k,
that do not occur in S ′1. Values ~n2

′ can therefore be considered fresh and used
instead of ~n2. Let δ be the bijection between nonce names ~n2 and ~n2

′ and let σ be
a bijection between the nonces of S1 and S ′1. Then the action r′ = rδσ of guarded
nonce creation is an instance of action r which is enabled in configuration S ′1
resulting in configuration S ′2. Configurations S2 and S ′2 are α-equivalent because
of the bijection δσ.

Moreover, from the assumption that goal and critical configurations are closed
under renaming of nonces, it follows that if the configuration S2 is a goal con-
figuration, then S ′2 is also a goal configuration. Similarly, if S2 is not a critical
configuration, then the configuration S ′2 is also not critical. 2

We are now ready to prove Theorem 4.1:
Proof (of Theorem 4.1). The proof is by induction on the length of a plan and
it is based on Lemma 4.3. Let T be an LSTS with balanced actions that can create
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nonces, m the number of facts in the initial configuration, and k the bound on size
of each fact. LetNm,k be a fixed set of 2mk nonce names. Given a plan P leading
from the initial configuration W to a partial goal Z, we adjust it so that all nonces
along the plan P ′ are taken from Nm,k. Notice that since all actions are balanced,
the size of all configurations in P are the same as the size of W , namely m.

For the base case, assume that the plan is of the length 0, that is, the configu-
ration W already contains Z. Since we assume that goal and initial configurations
are closed under renaming of nonces, we can rename the nonces in W by nonces
from Nm,k.

Assume that any plan of length n can be transformed into a plan that uses the
fixed set of nonce names. Let a plan P of the length n+ 1 be such that W>∗T ZU .
Let r be the last action in P and Z1 >r ZU . By induction hypothesis we can
transform the plan W >∗T Z1 into a plan W ′ >∗T Z

′
1, with all configurations

α-equivalent to corresponding configurations in the original plan, such that it only
contains nonces from the set Nm,k.

We can then apply Lemma 4.3 to configurations Z1, Z ′1 and the action r to
conclude that there is a configuration Z ′U ′ that is α-equivalent to configuration
ZU such that all the nonces in the configuration Z ′U ′ belong toNm,k. Therefore,
all the nonces contained in the transformed plan P ′, i.e. in the plan W ′ >∗T Z

′U ′

are taken from Nm,k.
Notice that since ZU is the goal configuration, so is the configuration Z ′U ′,

because of the assumption that goal configurations are closed under nonce renam-
ing and ZU =α Z

′U ′. Also notice that no critical configuration is reached in the
new plan because corresponding configurations from these plans are α-equivalent,
and we assume that critical configurations are closed under renaming of nonce
names. 2

Corollary 4.4. For LSTSes with balanced actions that can create nonces, we only
need to consider the reachability problem with a polynomial number of fresh
values, which can be fixed in advance, with respect to the number of facts in the
initial configuration and the upper bound on the size of facts.

Notice that, since plans can be of exponential length, a nonce name fromNm,k
can, in principal, be used in guarded nonce creation an exponential number of
times. However, each time a nonce name is used, it appears fresh with respect to
the enabling configuration.
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Table 1: Summary of the complexity results for the secrecy, weak plan, system, and plan com-
pliance problems. We mark the new results appearing here with a ?. We also show here that
the complexity for the system compliance problem when actions are possibly unbalanced and can
create fresh values is undecidable.

Compliance Balanced Actions Possibly unbalanced
Problems No fresh values Possible nonces actions and no nonces

Secrecy PSPACE- PSPACE- Undecidable [19]
complete [32] complete?

Weak Plan PSPACE- PSPACE- Undecidable [31]
complete [32] complete?

System PSPACE- PSPACE- EXPSPACE-complete [31];
complete [32] complete? Undecidable with nonces [19]

Plan PSPACE-complete PSPACE- Undecidable [31]
[32, 45] complete?

5. Complexity Results

In this Section we discuss complexity results for the planning problems intro-
duced in Section 2, namely, the weak plan compliance problem, the plan compli-
ance problem, the system compliance problem and the secrecy problem. Table 1
summarizes the complexity results for these compliance problems.

We start, mainly for completeness, with the simplest form of systems, namely,
those that contain only actions of the form a → a′, called context-free monadic
actions, which only change a single fact from a configuration. The following
result can be inferred from [19, Proposition 5.4].

Theorem 5.1. Given an LSTS with only actions of the form a→ a′, the weak plan
compliance, the plan compliance problem, and the secrecy problems are in P.

Our next result improves the result in [32, Theorem 6.1] since any type of
balanced actions was allowed in that encoding. Here, on the other hand, we allow
only monadic actions, which are actions of the form ab → a′b, i.e., balanced
actions that can modify at most a single fact and in the process check whether a
fact is present in the configuration. We tighten the lower bound by showing that
all the decision problems described in Section 2 for LSTSes with monadic actions
are also PSPACE-hard. The main challenge here is to simulate operations over a
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non-commutative structure by using a commutative one, namely, to simulate the
behavior of a Turing machine that uses a sequential, non-commutative tape in our
formalism that uses commutative multisets.

Theorem 5.2. Given an LSTS T with only actions of the form ab→ a′b, then the
problems of weak plan compliance, plan compliance, system compliance and the
secrecy problem are PSPACE-hard in the size of T .

The PSPACE upper bound for this problem can be inferred directly from [32].
Proof We start the proof with the weak plan compliance problem. In order to
prove the lower bound, we encode a non-deterministic Turing machine M that
accepts in space n within actions of the form ab→ a′b, whenever each of these
actions is allowed any number of times. In our proof, we do not use critical
configurations and need just one agent A. Without loss of generality, we assume
the following:

(a) M has only one tape, which is one-way infinite to the right. The leftmost cell
(numbered by 0) contains the marker $ unerased.

(b) Initially, an input string, say x1x2 . . . xn, is written in cells 1, 2,. . . , n on the
tape. In addition, a special marker # is written in the (n+1)-th cell.

$ x1 x2 · · · xn # . . .

(c) The program of M contains no instruction that could erase either $ or #.
There is no instruction that could move the head of M either to the right
whenM scans symbol #, or to the left whenM scans symbol $. As a result,
M acts in the space between the two unerased markers.

(d) Finally,M has only one accepting state qf , and, moreover, all accepting con-
figurations in space n are of one and the same form.

For each n, we design a local state transition system Tn as follows:
First, we introduce the following propositions: Ri,ξ which denotes that “the i-th
cell contains symbol ξ”, where i=0, 1, . . . , n+1, ξ is a symbol of the tape alphabet
of M, and Sj,q which denotes that “the j-th cell is scanned by M in state q”,
where j=0, 1, . . . , n+1, q is a state ofM.
Given a machine configuration ofM in space n - that M scans j-th cell in state q,
when a string ξ0ξ1ξ2 . . . ξi . . . ξnξn+1 is written left-justified on the otherwise blank
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tape, we will represent it by a configuration of Tn of the form (here ξ0 and ξn+1 are
the end markers):

Sj,qR0,ξ0R1,ξ1R2,ξ2 · · ·Rn,ξnRn+1,ξn+1 . (2)

Second, each instruction γ in M of the form qξ→q′ηD, denoting “if in state q
looking at symbol ξ, replace it by η, move the tape head one cell in direction D
along the tape, and go into state q′”, is specified by the set of 5(n+2) actions of
the form:

Si,qRi,ξ →A Fi,γRi,ξ, Fi,γRi,ξ →A Fi,γHi,γ, Fi,γHi,γ →A Gi,γHi,γ,
Gi,γHi,γ →A Gi,γRi,η, Gi,γRi,η →A SiD,q′Ri,η,

(3)
where i=0, 1, . . . , n+1, Fi,γ ,Gi,γ ,Hi,γ are auxiliary atomic propositions, iD := i+1
if D is right, iD := i−1 if D is left, and iD := i, otherwise.

The idea behind this encoding is that by means of such five monadic rules,
applied in succession, we can simulate any successful non-deterministic compu-
tation in space n that leads from the initial configuration, Wn, with a given input
string x1x2 . . . xn, to the accepting configuration, Zn.

The faithfulness of our encoding heavily relies on the fact that any machine
configuration includes exactly one machine state q. Because of the specific form
of our actions in (3), any configuration reached along a plan P , leading from Wn

to Zn, has exactly one occurrence of either Si,q or Fi,γ or Gi,γ . Therefore the
actions in (3) are necessarily used one after another as below:

Si,qRi,ξ →A Fi,γRi,ξ →A Fi,γHi,γ →A Gi,γHi,γ →A Gi,γRi,η →A SiD,q′Ri,η.

Moreover, any configuration reached by using the plan P is of the form similar
to (2), and, hence, represents a configuration ofM in space n.
Passing through this plan P from its last action to its first v0, we prove that what-
ever intermediate action v we take, there is a successful non-deterministic compu-
tation performed byM leading from the configuration reached to the accepting
configuration represented byZn. In particular, since the first configuration reached
by P is Wn, we can conclude that the given input string x1x2 . . . xn is accepted
byM.

By the above encoding we reduce the problem of a Turing machine acceptance
in n- space to a weak plan compliance problem with no critical configurations and
conclude that the weak plan compliance problem is PSPACE-hard.

The secrecy problem is a special case of the weak plan compliance problem
with no critical configurations and with the goal configuration having a negative
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connotation of intruder learning the secret. To the above encoding we add the
action Si,qf →Ms(s), for the accepting state qf and the constant s denoting the
secret. This action reveals the secret to the intruder. Consequently, the secrecy
problem is also PSPACE-hard.

Finally, since the encoding involves no critical configurations both the plan
compliance and the system compliance problem are also PSPACE-hard. 2

In order to obtain a faithful encoding, one must be careful, especially, with
commutativity. If we attempt to encode these actions by using, for example, the
following four monadic actions

Si,qRi,ξ →A Fi,γRi,ξ, Fi,γRi,ξ →A Fi,γHi,γ,
Fi,γHi,γ →A Fi,γRi,η, Fi,γRi,η →A SiD,q′Ri,η,

then such encoding would not be faithful because of the following conflict:

(Fi,γRi,ξ →A Fi,γHi,γ) and (Fi,γRi,η →A SiD,q′Ri,η).

Also notice that one cannot always use a set of five monadic actions similar to
those in (3) to faithfully simulate non-monadic actions of the form ab → cd.
Specifically, one cannot always guarantee that a goal is reached after all five
monadic actions are used, and not before. For example, if our goal is to reach
a configuration containing the fact c and we consider a configuration containing
both c and d as critical, then with the monadic rules it would be possible to reach
a goal without reaching a critical state, whereas, when using the non-monadic ac-
tion, one would not be able to do so. This is because, when applying the action
ab→ cd, one necessarily reaches a critical state. However, in the encoding of Tur-
ing machines used in the proof above, this is not a problem since all propositions
of the form Si,q do not appear in the intermediate steps, as illustrated above.

LSTSes that can create nonces. We turn our attention to the case when actions can
create nonces. We show that the problems of the weak plan compliance, plan com-
pliance and system compliance as well as the secrecy problem for LSTSes with
balanced actions that can create nonces are in PSPACE. Combining this upper
bound with the lower bound given in Theorem 5.2, we can infer that this problem
is indeed PSPACE-complete.

Recall that, in Section 4 we introduce a formalization of freshness in balanced
systems. Instead of (proper) nonce creation, in balanced systems we consider
guarded nonce creation, see Lemma 4.3. We are therefore able to simulate plans
that include actions of nonce creation with plans containing α-equivalent config-
urations such that the whole plan includes only a small number of nonce names,
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polynomial in the size of the configurations and in the bound on size of facts. This
is an important assumption in all of our results related to balanced systems.

To determine the existence of a plan we only need to consider plans that never
reach α-equivalent configurations more than once. If a plan loops back to a con-
figuration α-equivalent to a previously reached configuration, there is a cycle of
actions which could have been avoided. The following lemma provides an upper
bound on the number of different configurations given an initial finite alphabet.

Lemma 5.3. Given an LSTS T under a finite alphabet Σ, then the number of
configurations, LT (m, k), that are pairwise not α-equivalent and whose number
of facts (counting repetitions) is exactly m is such that

LT (m, k) ≤ Jm(D + 2mk)mk,

where J andD are, respectively, the number of predicate symbols and the number
of constant and function symbols in the initial alphabet Σ, and k is an upper bound
on the size of facts.

Proof Since a configuration containsm facts and each fact can contain only one
predicate symbol, there are m slots for predicate names. Moreover, since the size
of facts is bounded by k, there are at mostmk slots in a configuration for constants
and function symbols. Constants can be either constants in the initial alphabet Σ
or nonce names. However, following Theorem 4.1, we need to consider only 2mk
nonces. Hence, there at most Jm(D + 2mk)mk configurations that are not α-
equivalent, where J and D are, respectively, the number of predicate symbols and
the number of constant and function symbols in the initial alphabet Σ. 2

Clearly, the above upper bound on the number of configurations is an overesti-
mate. It does not take into account, for example, the equivalence of configurations
that only differ on the order of the facts. For our purposes, however, it will be
enough to assume such a bound.

Although the secrecy problem as well as the weak plan compliance, plan com-
pliance and system compliance problems are stated as decision problems, we
prove more than just PSPACE decidability. Ideally we would also be able to
generate a plan in PSPACE when there is a solution. Unfortunately, as we have
illustrated in Section 3, the number of actions in the plan may already be exponen-
tial in the size of the inputs precluding PSPACE membership of plan generation.
These plans could, in principle, also involve an exponential number of nonces, as
discussed at the end of Section 4. For the reason above we follow [32] and use the
notion of “scheduling” a plan, in which an algorithm will also take an input i and
output the i-th step of the plan.
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Definition 5.4. An algorithm is said to schedule a plan for the given planning
problem if it (1) finds a plan if one exists, and (2) on input i, if the plan contains
at least i actions, then it outputs the ith action of the plan, otherwise it outputs no.

Following [32], we assume that for a given LSTS, there are three programs,
C,G, and T , such that they return the value 1 in polynomial space when given
as input, respectively, a configuration that is critical, a configuration that contains
the goal configuration, and a transition that is valid, that is, an instance of an
action in the LSTS, and return 0 otherwise. For the secrecy problem, we need
to additionally assume a programM that returns the value 1 in polynomial space
when given as input a rule from the intruder’s theory, and return 0 otherwise. Later
in Section 6 we give an example of an intruder theory.

The following theorem establishes the PSPACE upper bound for the weak plan
compliance and secrecy problems.

Theorem 5.5. Given an LSTS T with balanced actions that can create nonces and
an intruder theory M , then the weak plan compliance problem and the secrecy
problem are in PSPACE in the following parameters:

- the size, m, of the initial configuration W ,

- bound on the size of facts, k,

- the size of the programs G, C, T , andM, described above, and

- a natural number 0 ≤ i ≤ LT (m, k).

Proof For both decision problems, we rely on the fact that NPSPACE, PSPACE,
and co-PSPACE are the same complexity class [47]. We first prove that the weak
plan compliance problem is in PSPACE. We modify the algorithm proposed in
[32] in order to accommodate the creation of nonces. The algorithm returns “yes”
whenever there is compliant plan from the initial configuration W to a goal con-
figuration. Our algorithm non-deterministically searches whether a goal configu-
ration is reachable, that is, a configuration S such that G(S) = 1, without passing
through a critical configuration. Then we apply Savitch’s Theorem [47] to deter-
minize this algorithm.

The algorithm begins with W0 := W . For any t ≥ 0, we first check if
C(Wt) = 1. If this is the case, then the algorithm outputs “no.” We also check
whether the configuration Wt is a goal configuration, that is, if G(Wt) = 1. If so,
we end the algorithm by returning “yes.” Otherwise, we guess an action r such
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that T (r) = 1 and that is applicable using the configuration Wt. If no such action
exists, then the algorithm outputs “no.” Otherwise, we replace Wt by the configu-
ration Wt+1 resulting from applying the action r to Wt. Following Lemma 5.3 we
know that a goal configuration is reached if and only if it is reached in LT (m, k)
steps. We use a global counter, called step-counter, to keep track of the number of
actions used in a potential plan constructed by this algorithm.

As pointed out in Section 3, plans can, in principle, use an exponential number
of fresh values. However, as we have shown before in Section 4, it is enough to use
a set with only 2mk nonce names. This set of nonce names is not related to any
particular plan, but is fixed in advance. Then whenever an action creates a fresh
value, we can search for names in this set that are different from any constants
in the enabling configuration, that is, a fresh value. This process is shown in the
proof of Theorem 4.1.

We now show that this algorithm runs in polynomial space. We start with the
step-counter: The greatest number reached by this counter is LT (m, k). When
stored in binary encoding, this number takes only space polynomial to the given
inputs:

log2(LT (m, k)) ≤ log2(J
m(D + 2mk)mk) = log2(J

m) + log2((D + 2mk)mk)
= m log2(J) +mk log2(D + 2mk).

Therefore, one only needs polynomial space to store the values in the step-counter.
Following Theorem 4.1 there are at most polynomially many nonces used in a run,
namely at most 2mk. Hence nonces can also be stored in polynomial space.

We must also be careful to check that any configuration, Wt, can be stored in
polynomial space with respect to the given inputs. Since our system is balanced
and we assume that the size of facts is bounded, the size of a configuration re-
mains the same throughout the run. Finally, the algorithm needs to keep track of
the action r guessed when moving from one configuration to another and for the
scheduling of a plan. It has to store the action that has been used at the ith step.
Since any action can be stored by remembering two configurations, one can also
store these actions in space polynomial to the inputs.

A similar algorithm can be used for the secrecy problem. The only modifi-
cation to the previous algorithm is that one does not need to check for critical
configurations as in the secrecy problem there are no such configurations. 2

Theorem 5.6. Given an LSTS with balanced actions that can create nonces, then
the system compliance problem is in PSPACE in the following parameters:
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- the size, m, of the initial configuration W ,

- bound on the size of facts, k,

- the size of the programs G, C, and T and

- a natural number 0 ≤ i ≤ LT (m, k).

Proof In order to show that the system compliance problem is in PSPACE we
modify the algorithm proposed in [32] to accommodate the nonce creation. Again
we rely on the fact that NPSPACE, PSPACE, and co-PSPACE are the same com-
plexity class [47]. We use the same notation from the proof of Theorem 5.5 and
make the same assumptions.

Following Theorem 4.1 we can accommodate nonce creation by replacing the
relevant nonce occurrence(s) with nonces from a fixed set, so that they are dif-
ferent from any of the nonces in the enabling configuration. As before, this set
of 2mk nonce names is not related to a particular plan, but fixed in advance for
a given LSTS, where m is the number of facts in the configuration of the system
and k is the bound on the size of the facts.

We first need to check that none of the critical configurations are reachable
fromW . To do this we provide a non-deterministic algorithm which returns “yes”
exactly when a critical configuration is reachable. The algorithm starts withW0 :=
W . For any t ≥ 0, we first check if C(Wt) = 1. If this is the case, then the
algorithm outputs “yes”. Otherwise, we guess an action r such that T (r) = 1
and that it is applicable in the configuration Wt. If no such action exists, then
the algorithm outputs “no”. Otherwise, we replace Wt by the configuration Wt+1

resulting from applying the action r to Wt. Following Lemma 5.3 we know that
at most LT (m, k) guesses are required, and therefore we use a global step-counter
to keep track of the number of actions. As shown in the proof of Theorem 5.5, the
value of this counter can be stored in PSPACE.

Next we apply Savitch’s Theorem to determinize the algorithm. Then we swap
the accept and fail conditions to get a deterministic algorithm that accepts exactly
when all critical configurations are unreachable.

Finally, we have to check for the existence of a compliant plan. For that we
apply the same algorithm as for the weak plan compliance problem from Theorem
5.5, skipping the checking of critical states since we have already checked that
none of the critical configurations are reachable from W . From what has been
shown above we conclude that the algorithm runs in polynomial space. Therefore
the system compliance problem is in PSPACE. 2
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Next we turn to the plan compliance problem for systems with balanced ac-
tions that can create nonces. In addition to avoiding critical configurations, a
compliant plan also guarantees to every agent that, as long as he follows the plan,
the other agents cannot collude to reach a configuration critical for him. Agents
are therefore assured that in case they drop from the collaboration for any reason,
others cannot violate their confidentiality policies. As soon as one agent deviates
from the plan, the other agents may choose to stop their participation. They can
do so with the assurance that the remaining agents will never be able to reach a
configuration critical for those agents that quit the collaboration.

The plan compliance problem can be re-stated as a weak plan compliance
problem with a larger set of configurations that should be avoided, called semi-
critical configurations. Intuitively, a semi-critical configuration for an agent A
is a configuration from which a critical configuration for A could be reached by
the other participants of the system without the participation of A. Therefore in
the plan compliance problem, a compliant plan not only avoids critical config-
urations, but also avoids configurations that are semi-critical. Hence, the plan
compliance problem is the same as the weak plan compliance problem when con-
sidering critical both the original critical configurations of the problem as well as
the semi-critical configurations of any agent.

Definition 5.7. A configuration X is semi-critical for an agent A in the given
planning problem if a configuration Y that is critical for A is reachable from X
using the actions belonging to all agents except to A, i.e., if X >∗−A Y . A con-
figuration is simply called semi-critical if it is semi-critical for some agent of the
system.

We will follow this intuition and construct an algorithm for the plan compli-
ance problem similar to the one used for the weak plan compliance problem, that
will include a sub-procedure that checks if a configuration is semi-critical for an
agent.

Theorem 5.8. Given an LSTS with balanced actions that can create nonces, then
the plan compliance problem is in PSPACE in the following parameters:

- the size, m, of the initial configuration W ,

- bound on the size of facts, k,

- the size of the programs G, C, and T and
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- a natural number 0 ≤ i ≤ LT (m, k).

Proof The proof is similar to the proof of Theorem 5.5 and the proof of the
PSPACE result of the plan compliance for balanced systems in [45]. Again we
rely on the fact that NPSPACE, PSPACE, and co-PSPACE are one and the same
complexity class.

Assume as inputs an initial configuration W containing m facts, an upper
bound on the size of facts k, a natural number 0 ≤ i ≤ LT (m, k), and programs
G, C, and T that run in polynomial space and that are slightly different to those
in Theorem 5.5. This is because for plan compliance it is important to know as
well to whom an action belongs to and similarly for which agent a configuration
is critical. Program T recognizes actions of the system so that T (j, r) = 1 when
r is an instance of an action belonging to agent Aj and T (j, r) = 0 otherwise.
Similarly, program C recognizes critical configurations so that C(j, Z) = 1 when
configuration Z is critical for agent Aj and C(j, Z) = 0 otherwise. Program G is
the same as described earlier, i.e., G(Z) = 1 if Z contains a goal and G(Z) = 0
otherwise.

First we construct the algorithm φ that checks if a configuration is semi-critical
for an agent. While guessing the actions of a compliant plan at each configuration
Z reached along the plan we need to check whether for any agent Aj other agents
could reach a configuration critical for Aj . More precisely, at configuration Z,
for an agent Aj and Z0 = Z, the following nondeterministic algorithm looks for
configurations that are semi-critical for the agent Aj:

1. Check if C(j, Zt) = 1, then ACCEPT; otherwise continue;
2. Guess an action r and an agent Al 6= Aj such that T (l, r) = 1 and that r is

enabled in configuration Zt; if no such action exists then FAIL;
3. Apply r to Zt to get configuration Zt+1.

After guessing LT (m, k) actions, if the algorithm has not yet returned anything, it
returns FAIL. We can then reverse the accept and reject conditions and use Sav-
itch’s Theorem to get a deterministic algorithm φ(j, Z) which accepts if every
configuration V satisfying Z>∗−Aj

V also satisfies C(j, V ) = 0, and rejects other-
wise. In other words, φ(j, Z) accepts only in the case when Z is not semi-critical
for agent Aj . Next we construct the deterministic algorithm C ′(Z) that accepts
only in the case when Z is not semi-critical simply by checking if φ(j, Z) accepts
for every j; if that is the case C ′(Z) = 1, otherwise C ′(Z) = 0.

Now we basically approach the weak plan compliance problem considering
all semi-critical configurations as critical by using the algorithm from the proof of
Theorem 5.5 with the C ′ as the program that recognizes the critical configurations.
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We now show that algorithm C ′ runs in polynomial space.
Following Theorem 4.1 we can accommodate nonce creation in polynomial

space by replacing the relevant nonce occurrence(s) with nonces from a fixed set
of 2mk nonce names, so that they are different from any of the nonces in the
enabling configuration.

The algorithm φ stores at most two configurations at a time which are of the
constant size, same size the initial configuration W . Also, the action r can be
stored with two configurations. At most two agent names are stored at a time.
Since the number of agents n is much smaller than the size of the configuration
m, simply by the nature of our system, we can store each agent in space log n.
As in the proof of Theorem 5.5 only a polynomial space is needed to store the
values in the step-counter, even though the greatest number reached by the step
counter is LT (m, k), which is exponential in the given inputs. Since checking
whether C(j, Zt) = 1 and T (l, r) = 1 can be done in space polynomial to |W |, |C|
and |T |, algorithm φ, and consequently C ′, work in space polynomial to the given
inputs.

We combine this with Theorem 5.5 to conclude that the plan compliance prob-
lem is in PSPACE. 2

Given the PSPACE lower bound for the secrecy, weak plan compliance, sys-
tem compliance, and the plan compliance problem in Theorem 5.2 and the PSPACE
upper bound given in the theorems above, we can conclude that all these problems
are PSPACE-complete.

Discussion on related work. This PSPACE-complete result contrasts with results
in [19], where the secrecy problem is shown to be undecidable. Although in [19]
an upper bound on the size of facts was imposed, the actions were not restricted
to be balanced. Therefore, in [19] it was possible for the intruder to remember
an unbounded number of facts, while here the memory of all agents is bounded.
Moreover, for the DEXP result in [19], a constant bound on the number of nonces
that can be created was imposed, whereas such a bound is not imposed here.

We also point out that our PSPACE upper bounds improve the PSPACE upper
bounds in [32, 30] by not only allowing actions that can create fresh values, but
also in that we consider the size of facts as an input bound, whereas [32, 30]
consider the size of facts a fixed bound.

Complexity of possibly unbalanced LSTSes. For LSTSes with possibly unbal-
anced actions that cannot create fresh values, it was shown in [31] that the com-
plexity of both the weak plan and the plan compliance problems is undecidable,
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while the complexity of the system compliance problem is EXPSPACE-complete.
Given these results we can immediately infer that the complexity of the weak plan
and plan compliance are also undecidable when we allow actions to create fresh
values. Next, we show that when actions are possibly unbalanced and can create
fresh values, then the system compliance problem is also undecidable.

Theorem 5.9. The system compliance problem for general LSTSes with actions
that can create fresh values is undecidable.

Proof The proof relies on undecidability of acceptance of Turing machines
with unbounded tape. The proof is similar to the undecidability proof of mul-
tiset rewrite rules with existential quantifiers in [19].

Without loss of generality, we assume the following:

(a) M has only one tape, which is one-way infinite to the right. The leftmost cell
contains the marker $.

(b) Initially, an input string, say x1x2 . . . xn, is written in cells 1, 2,. . . , n on the
tape. In addition, a special marker # is written in the (n+1)-th cell.

$ x1 x2 · · · xn # . . .

(c) The program of M contains no instruction that could erase $. There is no
instruction that could move the head ofM to the left whenM scans symbol $
and in case when M scans symbol #, tape is adjusted, i.e. another cell is
inserted so that M scans symbol a0 and the cell immediately to the right
contains the symbol #.

(d) Finally,M has only one accepting state qf .

Given a Turing machineMwe construct an LSTS TM with actions that can create
fresh values. The alphabet of TM has four sorts: state for the Turing machine
states, cell and nonce < cell for the cell names, and symbol for the cell contents.
We introduce constants a0, a1, . . . , am : symbol to represent symbols of the
tape alphabet with a0 denoting blank; constants q0, q1, . . . , qf : state for the
machine states, where q0 is the initial state and qf is the accepting state; and finally
constants $, c1, . . . , cn,# : cell for the names of the cells including the leftmost
cell $ denoting the beginning of the tape and the rightmost cell # denoting end of
tape.
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Predicates Curr : state × cell, Cont : cell × symbol and Adj : cell × cell
denote, respectively, the current state and tape position, the contents of the cells,
and the adjacency between the cells.
The tape maintenance is formalized by the following action:

Adj(c,#)→ ∃c′.Adj(c, c′) Adj(c′,#) Cont(c′,#) . (4)

By using this actions one is able to extend the tape by labeling the new cell with a
fresh value, c′. Notice that due to the rule above, one needs an unbounded number
of fresh values since an unbounded number of cells can be used. To each machine
instruction qias → qjatL denoting “if in state qi looking at symbol as, replace
it by at, move the tape head one cell to the left and go into state qj” we associate
action:

Curr(qi, c) Cont(c, as) Adj(c
′, c)→ Curr(qj, c

′) Cont(c, at) Adj(c
′, c). (5)

Notice that we move to the left by using the fact Adj(c′, c) denoting that the cell
c′ is to the cell immediately to the left of the cell c. Similarly, to each machine
instruction qiaj → qsatR denoting “if in state qi looking at symbol as, replace it
by at, move the tape head one cell to the right and go into state qj” we associate
action:

Curr(qi, c) Cont(c, as) Adj(c, c
′)→ Curr(qj, c

′) Cont(c, at) Adj(c, c
′) . (6)

This action assumes that there is an available tape cell to the right of the tape head.
If this is not the case, one has to first use the action (4) that creates a new cell in
the tape and only then apply the action (6).

Given a machine configuration ofM, whereM scans cell c in state q, when
a string $x1x2 . . . xk# is written left-justified on the otherwise blank tape, we
represent it by the following initial configuration of TM

Cont(c0, $) Cont(c1, x1) . . . Cont(ck, xk) Cont(ck+1,#)
Curr(q, c) Adj(c0, c1) . . . , Adj(ck, ck+1) .

(7)

The goal configuration is the one containing the fact Curr(qf , c).
The faithfulness of our encoding relies on the fact that any machine configu-

ration includes exactly one machine state q. This is because of the specific form
of actions (4), (5) and (6), which enforce that any reachable configuration has ex-
actly one occurrence of Curr(q, c). Moreover, any reachable configuration is of
the form similar to (7), and, hence, represents a configuration ofM.
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Passing through the plan P from the initial configuration W to the goal configu-
ration Z, from its last action to its first r0, we prove that whatever intermediate
action r we take, there is a successful non-deterministic computation performed
byM leading from the configuration reached to the accepting configuration rep-
resented by Z. In particular, since the first configuration reached by P is W , we
can conclude that the given input string x1x2 . . . xn is accepted byM.

Notice that the above encoding involves no critical configurations so we achieve
undecidability already for that simplified case. Consequently we get undecidabil-
ity of LSTSes with actions that can create nonces for all three types of compli-
ances. 2

6. Application: Protocol theories with bounded memory intruder

This section enters into the details of whether malicious agents, or intruders,
with the same capabilities as the other agents are able to discover some secret
information. In particular, we modify the intruder theory in [19] to our setting
where all agents, including the intruder, have a bounded storage capacity, that is,
they can only remember, at any moment, a bounded number of symbols. As before
this is technically imposed by considering LSTSes with only balanced actions
and by bounding the size of facts. If we restrict actions to be balanced, they
neither increase nor decrease the number of facts in the system configuration and
therefore the size of the configurations in a run remains the same as in the initial
configuration. Since we assume facts to have a bounded size, the use of balanced
actions imposes a bound on the storage capacity of the agents in the system.

As shown in [19], protocols and relevant security problems can be modeled by
using rewrite rules. In that scenario a set of rewrite rules, or a theory, was proposed
for modeling the standard Dolev-Yao intruder [18]. Here, we adapt that theory to
model instead an intruder that has a bounded memory, but that still shares many
capabilities of the Dolev-Yao intruder, such as the ability to compose, decompose,
intercept messages as well as to create fresh values. We will be interested in the
same secrecy problem as in [19], namely, in determining whether or not there is
a plan which the intruder can use to discover a secret. We also assume that in
the initial configuration some agent, A, owns a fact Q(s′) with the secret s as the
subterm of s′.

Empty facts. For our specifications it will be useful to distinguish the memory
storage capacity of the intruder from the memory used in protocol sessions. As
in [19], we distinguish some predicate symbols in the alphabet to belong only to
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the intruder, among them the predicate symbols M,C, and D. These are used,
respectively, when the intruder learns some data, e.g., an encryption key M(ke),
or when he is composing a new message or decomposing a message.

We introduce two types of facts, called empty facts, R(∗) and P (∗) which in-
tuitively denote free memory slots: Empty factsR(∗) belong to the intruder, while
the empty facts P (∗) are used by protocol sessions. As we discuss in more de-
tail later, empty facts R(∗) are used by the intruder whenever he learns new data,
while empty facts P (∗) are used by the participants of the system to create new
protocol sessions. As the memory of the intruder is bounded, there is a bound on
the number of R(∗) facts available. Therefore the intruder might have to manage
his memory capacity in order to discover a secret. For instance, whenever the in-
truder needs to create a nonce or learn some data, he will have to check whether
there are empty facts available. Similarly, the number of P (∗) facts available in
a configuration bounds the number of protocol sessions that can be executed con-
currently. So a new protocol session can only be created if there are enough P (∗)
facts available. The use of P (∗) facts implicitly bounds the number of protocol
sessions that can be executed concurrently.

6.1. Balanced protocol theories
We modify the rules from [19] that specify the intruder and protocol theories

so that only balanced actions are used. In particular, we relax the protocol form
imposed in [19], called well-founded theories. In such theories, protocol execu-
tion runs are partitioned into three phases: The first phase, called the initialization
phase, distributes the shared information among agents, such as the agents’ public
keys. Only after this phase ends, the second phase called role generation phase
starts, where all protocol roles used in the run are assigned to the participants of
the system. Finally, after these roles are distributed, the protocol instances run to
their completion. Hence, in [19], once protocol sessions start running no new pro-
tocol session is created. Here on the other hand, we will relax this assumption and
allow protocol sessions to be created and to be “forgotten” while other protocols
are running.

Modeling Perfect Encryption. Before we enter into the details of the balanced
protocol theories, we introduce some more notation involving encryption taken
from [19]. We introduce the alphabet that allows modeling of perfect encryption.
The encrypted message represents a “black box” or an opaque message which
does not show its contents until it is decrypted with the right key. We consider
the following sorts: cipher for ciphertext, i.e., encrypted text, ekey for symmetric
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encryption keys, dkey for decryption keys, nonce for nonces, and a sort msg
for any type of message. Here we use order-sorted alphabet and have msg as a
super-sort and it is the type of the messages exchanged by the participants of the
protocol. The following order relations hold among these sorts:

nonce < msg, cipher < msg, dkey < msg, ekey < msg.

We also use two functions symbols, the pairing function and the encryption
function:

〈·, ·〉 : msg ×msg → msg and enc : ekey ×msg → cipher.

As their names suggest, the pairing function is used to pair two messages and the
encryption function is used to encrypt a message using an encryption key. Notice
that there is no need for a decryption function, since we use pattern-matching
(encryption on the left-hand-side of a rule) to express decryption as in [19]. For
example, the following rule specifies that if an agent has the correct key then he
can decrypt an encrypted message and learn its contents:

KP (ke, kd) A(kd) A(enc(ke, t))→ KP (ke, kd) A(kd) A(t).

The fact KP (ke, kd) specifies that ke and kd are a pair of encryption and decryp-
tion keys. Notice that the rule above is only applicable if the agent A has the right
decomposition key, kd. Otherwise, the rule is not applicable.

Besides the predicate KP , we will use the following predicates to model per-
fect encryption:

Predicates:
GoodGuy(ekey, dkey) : keys belonging to an honest participant
BadKey(ekey, dkey) : compromised keys known to the intruder
KP (ekey, dkey) : encryption key pair
AnnK(ekey) : published public key

These predicates are basically the same as used in [19]. Keys that belong to an
honest participant are contained in GoodGuy facts, while compromised keys are
contained in BadKey facts. The AnnK predicate is used to specify public keys
that have been published.

For simplicity we will sometimes use 〈t1, . . . , tn−1, tn〉 for multiple pairing
to denote 〈t1, 〈. . . , 〈tn−1, tn〉〉 . . . 〉. Also, notice that, as in [19], with the use of
the pairing function and the encryption function a protocol message is always
represented by a single term of the sort msg.
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Balanced Role Theories. We now introduce some auxiliary definitions that are
going to be used to specify the restrictions on the balanced role theories. These
definitions are basically the same as in [19], but adapted to our setting, where all
rules are balanced.

Definition 6.1. Let T be a theory, Q be a predicate and r be a rule, where L is the
multiset of facts F1, . . . , Fk on the left hand side of r excluding empty facts R(∗)
and P (∗), and R is the multiset of facts G1, . . . , Gn, possibly with one or more
existential quantifiers, on the right hand side of r excluding empty facts R(∗) and
P (∗). A rule in a theory T creates Q facts if some Q(~t) occurs more times in R
than in L. A rule in a theory T preserves Q facts if every Q(~t) occurs the same
number of times in R and L. A rule in a theory T consumes Q facts if some fact
Q(~t) occurs more times in L than in R. A predicate Q in a theory T is persistent
if every rule in T which contains Q either creates or preserves Q facts.

For example, the following rule consumes the fact with predicate A, preserves the
B fact, and creates the D fact:

A(x) B(y)→ ∃z.B(z) D(x).

The above definition of the preservation, creation and consumption of facts ex-
cludes empty facts, P (∗) and R(∗), since they do not carry any information.
Empty facts only specify an empty slot that can be filled with some non-empty
fact.

Definition 6.2. A rule r = L → R enables a rule r′ = L′ → R′ if there exist
substitutions σ, σ′ such that some fact P (~t) ∈ σR created by rule r, is also in
σ′L′. A theory T precedes a theory S if no rule in S enables a rule in T .

Intuitively, if a theory T precedes a theory S, then no facts that appear in the left
hand side of rules in T are created by rules that are in S.

As is usual in protocol security literature, the intruder acts as the network,
intercepting and sending messages between the honest participants. We use the
public predicate NS to denote a message that is sent by a participant and that is to
be intercepted by the intruder and the public predicateNR to denote a message that
is sent by the intruder to an honest participant. We will explain how the intruder
acts as the network later when we introduce the balanced intruder theory.

As in [19] protocols are specified by using role theories containing role states,
formally defined below. However, differently from [19], we only allow role theo-
ries to contain balanced actions.
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Definition 6.3. A theory A is a balanced role theory if there is a finite list of
predicates called the role states S0, S1, . . . , Sk for some k, and such that all rules
in A are balanced and have one of the following forms:

S0(. . .) P (∗) W →S ∃~z.Sl(. . .) NS(. . .) W ′

Si(. . .) NR(. . .) W →S ∃~z.Sj(. . .) NS(. . .) W ′

Sh(. . .) NR(. . .) W →S ∃~z.Sk(. . .) P (∗) W ′

where l > 0, j > i, k > h, W and W ′ are multisets of facts not containing any
role states nor NS nor NR facts. We call the first role state, S0, initial role state,
and the last role state Sk final role state.

Defining roles in this way, ensures that each application of a rule in a balanced
role theory A advances the state forward. The first rule specifies the first step of
a protocol session when an initial message is sent in the network, specified by the
fact with predicate name NS . Notice that in order to send this message a P (∗) is
consumed. If there are no such facts available, then the protocol cannot start. The
second rule specifies actions where a participant of the protocol receives a fact
from the network, NR, and sends his response, NS . In the process, his internal
state advances from Si to Sj , where j > i. The third rule specifies the end of
the protocol session when the last message is received by a participant and no
response is returned. At this point, the participant moves to the last state of the
protocol Sk and since no message is sent in the network, a new empty fact P (∗)
fact is created.

In order to allow the existence of an unbounded number of protocol sessions
in a trace, we allow protocol roles to be created at any time with the cost of con-
suming empty facts P (∗). On the other hand, we also allow protocol sessions that
have been completed to be forgotten. That is, once a final role state of a session
has been reached, it can be deleted, creating new empty facts P (∗) in the process.
These empty facts can then be used to create new protocol roles starting hence a
new protocol session. These theories, called role regeneration theories, are speci-
fied in the following definition. Notice that all their actions are also balanced.

Definition 6.4. If A1, . . . ,Ak are balanced role theories, a role regeneration the-
ory is a set of rules that either have the form

Q1(~x1) · · ·Qn(~xn)P (∗)→ Q1(~x1) · · ·Qn(~xn)S0(~x)

where Q1(~x1) . . . Qn(~xn) is a finite list of persistent facts not involving any role
states, and S0 is the initial role state of one of the theoriesA1, . . . ,Ak, or the form

Sk → P (∗)
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where Sk is the final state of one of the theories A1, . . . ,Ak.

Notice that our balanced role theories may contain actions with more than
two facts in their pre- and post-conditions. In contrast, the restricted role theories
introduced in [19] and used to derive the complexity results in [19] only con-
tain actions with exactly two facts in their pre- and post-conditions (one for the
network and the other for the role state). Moreover, although restricted role the-
ories were balanced in [19], role generation theories were not balanced. In well
founded theories in [19] one creates all protocol sessions at the beginning of the
trace before any protocol session starts executing. Hence, an unbounded number
of protocol sessions can run concurrently. The use of un-balanced role generation
theories seems to be one source for the undecidability of the secrecy problem.
The explicit use of balanced actions in role theories and role regeneration theories
is a technical novelty of this paper. It allows us to bound the number of concur-
rent protocol sessions without bounding the total number of protocol sessions in
a trace. The number of protocol roles that can run concurrently is bounded by the
number of P (∗) facts available, since one needs at least one P (∗) fact for every
role in a protocol session.

The following definition relaxes well-founded protocols theories in [19] in
order to accommodate the creation of roles while protocols are running.

Definition 6.5. A pair (P , I) is a semi-founded protocol theory if I is a finite set
of facts (called initial set), and P = R]A1] · · · ]An is a protocol theory where
R is a role regeneration theory involving only facts from I and the initial and final
roles states of the balanced role theoriesA1, . . . ,An. For role theoriesAi andAj ,
with i 6= j, no role state predicate that occurs in Ai can occur in Aj .

Intuitively, a semi-founded protocol theory specifies a particular scenario to be
model-checked involving some given protocol(s). Besides empty facts, P (∗) and
R(∗), the finite initial set facts contains all the persistent facts with the information
necessary to start protocol sessions, for instance, shared and private keys, the
names of the participants of the network, as well as any compromised keys.

Remark. In well-founded protocol theories in [19] initialization was achieved by
initialization theory I that preceded role generation and protocol role theories.
In that way all the rules from the initialization theory were applied before any
other rules. That could also be seen as initial creation of persistent facts that we
call initial facts. For simplicity, we follow the assumption in [19, Section 5.1]
and prefer the above definition of initialization consisting of a finite number of
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persistent facts. However, we are equally able to formulate our theories with a
so called balanced sub-theory I similar to [19]. We can then prove that every
derivation in a semi-founded protocol theory can be transformed into a derivation
where the rules from the initialization theory are applied first. This is shown in
the technical report [26].

6.2. Balanced Intruder Theory
This section introduces a balanced intruder theory following the lines of [19]

but for a memory bounded intruder. Similarly to the standard Dolev-Yao in-
truder [18], he is able to intercept, compose, decompose, decrypt messages when-
ever he has the corresponding decryption key, as well as create nonces. We assume
that the intruder acts as the network, intercepting and sending messages between
the honest participants. However, since his memory is bounded, he is constrained
by how many free memory slots he has. A free memory slot for the intruder is
denoted by empty facts R(∗). The intruder will only be able to, for example, learn
new data if there are enough R(∗) facts available. To use his memory more effi-
ciently, for instance, he might have to forget data already learned, freeing up his
memory, before he can learn new data.

Predicates belonging to the Intruder. Besides the empty fact R(∗), this paper
assumes that the following three unary predicates belong to the intruder:

D(msg) : Decomposable messages known to the intruder.
M(msg) : Information stored in intruder memory.
C(msg) : Composable messages known to the intruder.
A(msg) : Auxiliary fact for deferred decryption.

However, as in [19], more complicated theories where the intruder also distin-
guishes the sub-types of messages, that is ekey, dkey, and nonce can also be
specified (see [26]).

Balanced Intruder Theory. Figure 1 contains an example of an intruder theory
that uses the predicate names described above and consists of three parts.

The first part called I/O theory has two rules REC and SND. The former spec-
ifies the intruder’s action of intercepting a message, NS , sent by an agent, while
the latter specifies the action when the intruder sends a message, NR. Notice the
role of the empty facts, R(∗) and P (∗), in these rules. For instance, when the
intruder intercepts a message sent by an honest participants, he consumes one of
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I/O Rules:
REC: NS(x) R(∗)→ D(x) P (∗)
SND: C(x) P (∗)→ NR(x) R(∗)

Decomposition Rules:
DCMP: D(〈x, y〉) R(∗)→ D(x) D(y)
LRN: D(x)→M(x)
DEC: M(kd)KP (ke, kd) D(enc(ke, x)) R(∗)

→M(kd) KP (ke, kd)D(x) M(enc(ke, x))
LRNA: D(enc(ke, x)) R(∗)→M(enc(ke, x)) A(enc(ke, x))
DECA: M(kd) KP (ke, kd) A(enc(ke, x))→M(kd) KP (ke, kd) D(x)

Composition Rules:
COMP: C(x) C(y)→ C(〈x, y〉) R(∗)
USE: M(x)R(∗)→ C(x)M(x)
ENC: KP (kd, ke)M(ke)C(x)→ KP (kd, ke) M(ke) C(enc(ke, x))
GEN: R(∗)→ ∃n.M(n)

Figure 1: Balanced Intruder theory.

Memory maintenance rules:
DELM: M(x)→ R(∗)
DELA: A(x)→ R(∗)
DELD: D(x)→ R(∗)
DELC: C(x)→ R(∗)

Figure 2: Memory maintenance theory.

his empty facts, R(∗), and creates an empty fact P (∗), while the opposite happens
when he sends a message.

The second part of the intruder’s theory is the decomposition rules, which con-
tains the rules specifying the decomposition of messages as well as the learning of
new data by the intruder. For instance, the DCMP rule decomposes a composed
message, D(〈x, y〉), into its parts D(x) and D(y), consuming an empty fact R(∗)
in the process. Thus, if the intruder does not have any R(∗) left, that is, no avail-
able free memory slots, then the intruder is not able to decompose a message. The
rule LRN specifies when a message, D(x), containing some data x is learned by
the intruder, denoted by the fact M(x). The rule DECA specifies that the intruder
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can decrypt a message whenever he has the right key, while the rule LRNA spec-
ifies that when the intruder does not have the key, he can remember a message
using the auxiliary predicate A. In that way he can decrypt it later using the rule
DECA, if he learns the right key.

The third part contains composition rules, which are symmetric to the de-
composition rules. Composition rules specify the basic actions used to compose
messages, such as pairing two messages in rule COMP, or using a learned data
to compose a message in rule USE, or encrypting a message with a known en-
cryption key in rule ENC, or creating a nonce in rule GEN. Again, notice the
role of the empty facts R(∗). For instance, when two messages are paired into
one, an empty fact R(∗) is created, while when creating a nonce an empty fact
is consumed. Similarly, in the GEN rule, when the intruder creates a nonce, he
consumes an R(∗) fact.

As previously mentioned, since our intruder has bounded memory, he might
have to manage his memory in a more clever way than the standard Dolev-Yao
intruder, which has unbounded memory. In particular, our intruder might need to
forget data that he learned, so that he has enough space available in order to learn
new information.

The theory that allows the intruder to forget data is called memory mainte-
nance theory and is defined below.

Definition 6.6. A theory E is a memory maintenance theory if all of its rules are
balanced and their post-conditions consist of the fact R(∗), i.e., all the rules have
the form F → R(∗), where F is an arbitrary fact belonging to the intruder.

Figure 2 contains the memory maintenance theory for the intruder theory de-
picted in Figure 1. Since the intruder owns only four predicate names, the memory
maintenance theory has four rules. By using them, the intruder can forget any pre-
viously learned data, creating new empty facts. These empty facts, on the other
hand, can be used by the intruder to learn new data by for instance intercepting
another message (REC) or by decomposing some message (DCMP).

Remark. In [19], the notion of normalized derivations was introduced inspired
by similar notions in proof theory [42]. In such derivations, decomposition rules
always appear before composition rules. It has been argued in [19] that the use
of normalized derivations facilitates proof search and normalization was used to
prove the decidability of intruder actions. In particular, it is enough to consider
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plans where the intruder first decomposes messages before composing new mes-
sages. This separation is formalized in [19] by using the different predicates,
namely D,C,A and M .

The notion of normalized derivations can be easily adapted to our balanced
intruder. However, it might not be always possible to transform a non-normal
derivation into a normalized derivation without providing the intruder with more
space or memory, i.e.with more R(∗) facts. The problem is that a permutation of
an instance of a COMP rule over an instance of a DCMP rule, might require an
extra R(∗) fact, as illustrated below:

C(a) C(b) D(c, d)→COMP C(a, b) R(∗) D(c, d)→DCMP C(a, b) D(c) D(d).

We are unable to switch DCMP and COMP rules unless there is an empty fact in
the configuration:

C(a) C(b) D(c, d)→DCMP not enabled →COMP .

Pushing COMP rule to the right disabled a rule, since there are no empty facts in
the configuration. We, therefore, need an extra memory slot to push the COMP
rule to the right, as illustrated below:

C(a) C(b) D(c, d) R(∗) →DCMP C(a) C(b) D(c) D(d) →COMP

C(a, b) R(∗) D(c) D(d).

Therefore, if we provide the same number of R(∗) facts as the number of de-
composition rules in the non-normalized derivation, then one can show that the
transformation to a normalized derivation is possible.

Finally, it is worth noting that although normalized derivations are useful for
improving proof search, the use of normalized derivations is not necessary for our
PSPACE-completeness of the secrecy problem described in Section 7. It would
be enough to use a single predicate M to denote the knowledge of the intruder.

6.3. Encoding Known Anomalies with a Bounded Memory Intruder
We can show that many protocol anomalies, such as Lowe’s anomaly [35],

can also occur when using our bounded memory adversary. We assume that the
reader is familiar with such anomalies, see [14, 19, 35, 8, 10]. In this Section, we
only demonstrate Lowe’s anomaly in detail. However, we have encoded a number
of anomalies for other protocols, such as Yahalom [14], Otway-Reese [14, 48],
Woo-Lam [14], and Kerberos 5 [8, 10].
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Table 2: The size of configurations (m), the number of R(∗) facts, the size of configurations
modulo intruder (l), and the upper-bound on the size of facts (k) needed to encode protocol runs
and known anomalies when using LSTSes with balanced actions. The largest size of facts needed
to encode an anomaly is the same as in the corresponding normal run of the protocol. In the
cases for the Otway-Rees and the Kerberos 5 protocols, we encode different anomalies, which are
identified by the numbering, as follows: (1) The type flaw anomaly in [14]; (2) The attack 5 in [48];
(3) The ticket anomaly and (4) the replay anomaly in [8]; (5) The PKINIT anomaly also for Kerberos
5 described in [10].

Needham Otway Woo Kerberos
Protocol

Schroeder
Yahalom

Rees Lam 5
PKINIT(5)

Normal Size of conf. (m) 9 8 8 7 15 18

Anomaly

Size of conf. (m) 19 15 11(1), 17(2) 8 22(3), 20(4) 31
No of R(∗) 7 9 5(1), 9(2) 2 9(3), 4(4) 10
Size mod. intruder (l) 12 6 6(1),8(2) 6 13(3),16(4) 21

Upper-bound on size of facts (k) 6 16 26 6 16 28

Table 2 summarizes the number of P (∗) and R(∗) facts and the upper bound
on the size of facts needed to encode normal runs, where no intruder is present, and
to encode the anomalies where the bounded memory intruder is present. The size
modulo the intruder of the configuration is the number of facts in the configuration
that do not belong to the intruder. For instance, to realize the Lowe anomaly to the
Needham-Schroeder protocol, the intruder requires only seven R(∗) facts. Notice
that here we only encode standard anomalies described in the literature [8, 14, 48].
This does not mean, however, that there are not any other anomalies that can be
carried out by an intruder with less memory, that is, with less R(∗) facts.

One can interpret the size of a configuration as an upper bound on how hard
is it for a protocol analysis tool to check whether a particular protocol is secure,
while the number ofR(∗) facts can be interpreted as an upper bound on how much
memory the intruder needs to carry out an anomaly. The size modulo the intruder
can be interpreted as the amount of memory available for protocol sessions. It
intuitively bounds the number of concurrent protocol sessions. This is because
for each protocol session, one needs some free memory slots to remember, for
instance, the internal states of the agents involved in the session. Therefore, if we
bound the size modulo the intruder of configurations, then the amount of P (∗)
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facts is bounded. Furthermore, from Definitions 6.3 and 6.4 one P (∗) fact is con-
sumed for every role states created and another P (∗) fact is consumed in order to
compose the initial message. Therefore, the number of protocol sessions running
at the same time is bounded by the number of P (∗) facts available, which on the
other hand is bounded by the size modulo the intruder of configurations.

Although clearly other factors would need to be taken into account in order to
evaluate how secure a protocol is, we believe that the values in Table 2 provides
one such factor, namely, the memory required by the intruder to discover a secret.
We believe that finding other factors and determining their relations is an interest-
ing research direction. It is, however, out of the scope of this paper and therefore
left for future work.

6.4. Lowe anomaly to the Needham-Schroeder protocol
We formalize the well known Lowe anomaly of the Needham-Schroeder pro-

tocol [35]. In particular, the intruder uses his memory maintenance theory to
handle his memory adequately.

The balanced role theory specifying the Needham-Schroeder protocol is de-
picted in Figure 3. Predicates A0, A1, A2, B0, B1 and B2 are the role state predi-

Role Regeneration Theory :

ROLA : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)A0(ke)
ROLB : GoodGuy(ke, kd)P (∗)→ GoodGuy(ke, kd)B0(ke)
ERASEA : A2(ke, k

′
e, x, y)→ P (∗)

ERASEB : B2(ke, k
′
e, x, y)→ P (∗)

Protocol Theories A and B :

A1 : AnnK(k′e) A0(ke)P (∗)
→ ∃x.A1(ke, k

′
e, x) NS(enc(k′e, 〈x, ke〉)) AnnK(k′e)

A2 : A1(ke, k
′
e, x) NR(enc(ke, 〈x, y〉))→ A2(ke, k

′
e, x, y) NS(enc(k′e, y))

B1 : B0(ke) NR(enc(ke, 〈x, k′e〉)) AnnK(k′e)
→ ∃y.B1(ke, k

′
e, x, y) NS(enc(k′e, 〈x, y〉)) AnnK(k′e)

B2 : B1(kek
′
e, x, y) NR(enc(ke, y))→ B2(ke, k

′
e, x, y) P (∗)

Figure 3: Balanced semi-founded protocol theory for the Needham-Schroeder Protocol.
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cates for initiator and responder roles. First the initiator A (commonly referred to
as Alice) sends a message to the responder B (commonly referred to as Bob). The
message contains Alice’s name, and a freshly chosen nonce, na (typically a large
random number) encrypted with Bob’s public key. Assuming perfect encryption,
only somebody with Bob’s private key can decrypt that message and learn its con-
tent. When Bob receives a message encrypted with his public key, he uses his
private key to decrypt it. If it has the expected form (i.e., a name and a nonce),
then he replies with a nonce of his own, nb, along with initiator’s (Alice’s) nonce,
encrypted with Alice’s public key. Alice receives the message encrypted with her
public key, decrypts it, and if it contains her nonce, Alice replies by returning
Bob’s nonce, encrypted with his public key. At the end they believe that they are
communicating with each other.

The Lowe anomaly has 3 participants to the protocol: Alice, Bob (the beautiful
brother) and Charlie (the ugly brother). Alice wants to talk to Bob. However, un-
fortunately, Bob’s key is compromised, so the intruder who knows his decryption
key can impersonate Bob, and play an unfair game of passing Alice’s messages to
Charlie. In particular, the intruder is capable of creating a situation where Alice
is convinced that she’s talking to Bob while at the same time Charlie is convinced
that he’s talking to Alice. In reality Alice is talking to Charlie, and Bob receives
no messages.

The informal description of Lowe’s anomaly is depicted in Figure 4.
This anomaly demonstrates two main points of insecurity for this protocol.

First, the nonces na and nc are not secrets between participants who are commu-
nicating, Alice and Charlie, because the intruder learns these nonces. The second
point regards authentication. The participants in the protocol choose a particular
person they want to talk to and at the end of the protocol run they are convinced
to have completed a successful conversation with that person. In reality they talk
to someone else.

A {A, na}KB−−−−−−−→
M(B) {A, na}KC−−−−−−→

C

A {na, nc}KA←−−−−−−−
M(B) {na, nc}KA←−−−−−−−

C

A {nc}KB−−−−−−−→
M(B) {nc}KC−−−−→

C

Figure 4: Lowe attack to Needham-Schroeder Protocol
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Let us take a closer look at the protocol trace with above anomaly. The ini-
tial set of facts contains 9 facts for the protocol participants and 4 facts for the
intruder’s initial memory. We will call those initial facts WI .

WI = GoodGuy(ke1, kd1) KP (ke1, kd1) AnnK(ke1)
BadKey(ke2, kd2) KP (ke2, kd2) AnnK(ke2)
GoodGuy(ke3, kd3) KP (ke3, kd3) AnnK(ke3)
M(ke1) M(ke2) M(kd2) M(ke3)

A trace representing the anomaly is shown below. Alice starts the protocol by
sending the message to Bob, but the intruder intercepts it.

WIA0(ke1) B0(ke3) R(∗)R(∗)R(∗)P (∗)→A1

WIA1(ke1, ke2, na) B0(ke3) NS(enc(ke2, 〈na, ke1〉)) R(∗)R(∗)R(∗)→REC

WIA1(ke1, ke2, na)B0(ke3)D(enc(ke2, 〈na, ke1〉)) R(∗)R(∗)P (∗)→
Intruder has Bob’s private key and can therefore decrypt the message. He then
encrypts the contents with Charlie’s public key, so he sends the message to Charlie
pretending to be Alice.

→DEC

WIA1(ke1, ke2, na) B0(ke3) D(〈na, ke1〉) M(enc(ke2, 〈na, ke1〉)) R(∗)P (∗)→LRN

WIA1(ke1, ke2, na) B0(ke3) M(〈na, ke1〉) M(enc(ke2, 〈na, ke1〉)) R(∗)P (∗)→DEL

WIA1(ke1, ke2, na) B0(ke3) M(〈na, ke1〉) R(∗) R(∗)P (∗)→USE

WIA1(ke1, ke2, na) B0(ke3) M(〈na, ke1〉) C(〈na, ke1〉) R(∗)P (∗)→ENC

WIA1(ke1, ke2, na) B0(ke3) M(〈na, ke1〉) C(enc(ke3, 〈na, ke1〉)) R(∗)P (∗)→SND

WIA1(ke1, ke2, na) B0(ke3) M(〈na, ke1〉) NR(enc(ke3, 〈na, ke1〉)) R(∗)R(∗)→DEL

WIA1(ke1, ke2, na) B0(ke3) NR(enc(ke3, 〈na, ke1〉) R(∗)R(∗)R(∗)→
Additionally the intruder deletes some facts from his memory that he no longer
needs using rules from the memory maintenance theory. Charlie receives the mes-
sage and responds thinking that he is responding to Alice.

→B1 WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) NS(enc(ke1, 〈na, nc〉) R(∗)R(∗)R(∗)→
The intruder forwards the message to Alice, that is, decomposes the received mes-
sage and composes the same message.

→REC

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) D(enc(ke1, 〈na, nc〉) R(∗)R(∗)P (∗)→LRN

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) M(enc(ke1, 〈na, nc〉) R(∗)R(∗)P (∗)→USE

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) C(enc(ke1, 〈na, nc〉) R(∗)R(∗)P (∗)→SND

WIA1(ke1, ke2, na) B1(ke3, ke1, na, nc) NR(enc(ke1, 〈na, nc〉) R(∗)R(∗)R(∗)→
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Alice receives the message, responds (to Charlie) and goes to the final state think-
ing that she has completed a successful run with Bob.

→A2

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) NS(enc(ke2, nc)) R(∗)R(∗)R(∗)→REC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) D(enc(ke2, nc)) R(∗)R(∗)P (∗)→DEC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) M(enc(ke2, nc)) D(nc) R(∗)P (∗)→DEL

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗) D(nc) R(∗)P (∗)→LRN

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗) M(nc) R(∗)P (∗)→USE

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗) M(nc) C(nc) P (∗)→ENC

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗) M(nc) C(enc(ke3, nc)) P (∗)→SND

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) R(∗) M(nc)
NR(enc(ke3, nc)) R(∗)→(DEL)

WIA2(ke1, ke2, na, nc) B1(ke3, ke1, na, nc) NR(enc(ke3, nc)) R(∗)R(∗)R(∗)→

Intruder learns Charlie’s nonce from Alice’s message by decrypting it with the
key kd2. He then sends the nonce encrypted with Charlie’s public key.

→B2 WIA2(ke1, ke2, na, nc) B2(ke3, ke1, na, nc) R(∗)R(∗)R(∗)P (∗)

Charlie receives the message and goes to the final state thinking that he has com-
pleted a successful run with Alice.

The anomaly requires a configuration of at least 19 facts in total: 12 P (∗) facts
for the honest participants ( i.e., the size of the configuration modulo the intruder
is 12) and 7 R(∗) facts for the intruder. The size of facts has to be at least 6.

Remark. Many anomalies are not strictly secrecy problems. For example, they
can be authentication anomalies like the Lowe anomaly modeled above. Also, an
anomaly can be a run where an intruder discovers a nonce, freshly generated by
an honest protocol participant. That is again shown in the Lowe anomaly and is
not strictly a secrecy problem. However, nonces are often used as session keys
and therefore such anomalies can be reduced to the secrecy problem. When an
intruder learns a nonce, i.e., a freshly generated session key that is later used to
encrypt the secret, he is also able to learn the secret since he knows the encryption
key.

7. Complexity Results for Protocol Theories

In this section we prove a polynomial space complexity result for the secrecy
problem of balanced protocol theories with a bounded memory intruder. The se-
crecy problem of a protocol theory is the problem of determining whether or not
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an intruder can learn a secret s, i.e.of determining whether or not a configuration
containing the fact M(s) is reachable from a given initial configuration.

Theorem 7.1. The secrecy problem with respect to the memory bounded intruder
is PSPACE-complete in the size of the balanced semi-founded protocol theory,
(P , I), the size of the balanced intruder theory,M, and the bound, k, on the size
of facts.

PSPACE-hardness. In order to prove the lower bound, we encode a deterministic
Turing machine T that accepts in space n2 in terms of the secrecy problem.

Without loss of generality, we assume the following:

(a) T has only one tape, which is one-way infinite to the right. The leftmost cell
(numbered by 0) contains the marker $.

(b) Initially, an input string, say x1x2 . . . xn2 , is written in cells 1, 2,. . . ,n2 on the
tape. In addition, a special marker # is written in the (n2+1)-th cell.

$ x1 x2 · · · xn2 # . . .

(c) The program of T contains no instruction that could erase either $ or #. There
is no instruction that could move the head of T either to the right when
T scans symbol #, or to the left when T scans symbol $. As a result, T acts
in the space between the two unerased markers.

(d) Finally, T has only one accepting state, and, moreover, all accepting config-
urations in space n are of one and the same form. Moreover, we assume that
the accepting state is different from the initial state.

Given an instantaneous description (configuration) of T in space n2 - that T scans
ith cell in state q, where a string ξ0ξ1ξ2 . . . ξi . . . ξnξn+1 is written left-justified on
the otherwise blank tape, will be represented by the message:

〈ξ0ξ1ξ2 . . . ξi . . . ξn2ξn2+1, q, i〉 or 〈τ, q, i〉

where τ marks the tape contents. For each machine and an arbitrary initial con-
figuration, encoded by the message I = 〈τ1, q1, i1〉, we build a semi-founded
protocol theory (PT , I ′). The initial set of facts is

I ′ = {Guy(A, k), Guy(B, k), Init(I), Secret(s), 3× P (∗), 6×R(∗)}.
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The set I ′ specifies that the agents A and B share the uncompromised key k and
contains T ’s initial configuration encoded by the message I . Moreover, one needs
three P (∗) to execute a single protocol session, while the intruder needs at least
six empty facts to carry an anomaly: two for storing encrypted messages and the
remaining for decomposing and composing messages.

The protocol theory PT is formalized by the following theories for the partic-
ipants A and B:

Theory for A:
ROLA: Guy(G, k)Init(I)P (∗)→A Guy(G, k)Init(I)A0(I, k)
UPDA: A0(X, k)P (∗)→A A1(X, k)NS(〈update, enc(k,X)〉)
CHKA: A1(X, k)NR(〈done, enc(k, Y )〉)→A A2(Y, k)NS(〈check, enc(k, Y )〉)
RESA: A2(X, k)NR(Res)→A A3(X,Res, k)P (∗)
ERASEA: A3(X,Res, k)→A P (∗)

Theory for B:
ROLB: Guy(G, k)Secret(s)P (∗)→ Guy(G, k)Secret(s)B0(k, s)
UPDB: B0(k, s)NR(〈update, enc(k, 〈x0, . . . , xi−1, ξ, xi+1, . . . , xn2+1, q, i〉)〉)

→ B1(〈x0, . . . , xi−1, η, xi+1, . . . , xn2+1, q
′, i′〉, k, s)

NS(〈done, enc(k, 〈x0, . . . , xi−1, η, xi+1, . . . , xn2+1, q
′, i′〉)〉)

CHKB: B1(X, k, s)NR(〈check, enc(k,X)〉)→ B2(X, k, s)NS(result)
ERASEB: B2(X, k, s)→ P (∗)

For each instruction γ of the machine T of the form qξ→q′ηD, denoting “if in
state q looking at symbol ξ, replace it with η, move the tape head one cell in
direction D along the tape, and go into state q′”, is specified by n2 UPDB rules
of B’s protocol theory, where 1 ≤ i ≤ n2 is the position of the head of the
machine. Hence the reduction is polynomial on n and the number of instructions
in T . Both theories for A and for B have the corresponding role generation rules
ROLA and ROLB, which create new sessions, as well as ERASEA and ERASEB,
which delete role state predicates of completed sessions. As previously discussed,
this allows traces to have an unbounded number of protocol sessions.

The informal description of the protocol involving A and B is given in Fig-
ure 5. The participant A sends a message requesting B to update the encrypted
message {〈τ, q, i〉}k encoding T ’s configuration, which includes the state of the
machine, head position as well as the contents of the tape. The participant B, who
is able to execute instructions of the machine T , deterministically returns the en-
crypted message {〈τ ′, q′, i′〉}k encoding the configuration resulting from applying
the single instruction to the configuration {〈τ, q, i〉}k. Then the participant A just
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A −→ B : 〈update, {〈τ, q, i〉}k〉
B −→ A : 〈done, {〈τ ′, q′, i′〉}k〉
A −→ B : 〈check, {〈τ ′, q′, i′〉}k〉
B −→ A : result

Figure 5: Normal session for the protocol encoding Turing machines.

bounces this message back to B, so that he can check whether this is the final
configuration. If {〈τ ′, q′, i′〉}k is the accepting configuration then B returns the
secret s unencrypted, otherwise if {〈τ ′, q′, i′〉}k is not the accepting configuration,
then he returns the message no also unencrypted.

The informal description of the anomaly carried out by the intruder is depicted
in Figure 6. In the first session of the anomaly, the intruder acts as a man-in-
the-middle by only overhearing the messages transmitted, that is, he does not
modify any of the messages transmitted. In particular, he learns a message {X ′}k
encoding T ’s updated configuration. Notice that since he does not possess the key
k, he cannot learn nor modify the messageX ′. Once the first session is completed,
the intruder starts a new session by acting as A and sending a message to B to
update the last configuration {X}k. Then B returns the new configuration {X ′}k
encoding the configuration resulting from applying the instruction of T to the sent
configuration X . The intruder then deletes the learned fact M({X}k) from his
memory, freeing his memory to learn the fact M({X ′}k) containing the encoding
of the new configurationX ′. He then proceeds with the protocol and requestsB to
check {X ′}k. If B returns the secret, then X ′ is encoding the accepting state and
the intruder has learned the secret. Otherwise, the intruder starts a new session,
again acting asA, but using {X ′}k as the initial message. The intruder repeats this
process until the secret is revealed, that is, an accepting state is reached. Notice

First Session Later Sessions
A −→M −→ B : 〈update, {〈τ, q, i〉}k〉 M(A) −→ B : 〈update, {〈τ, q, i〉}k〉
B −→M −→ A : 〈done, {〈τ ′, q′, i′〉}k〉 B −→M(A) : 〈done, {〈τ ′, q′, i′〉}k〉
A −→M −→ B : 〈check, {〈τ ′, q′, i′〉}k〉 M(A) −→ B : 〈check, {〈τ ′, q′, i′〉}k〉
B −→M −→ A : result B −→M(A) : result

Figure 6: Sessions in the anomaly for the protocol encoding Turing machines.
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that we need to be careful with the memory of agents. In particular, intruder needs
to delete facts from his memory and the participant B needs to delete the fact with
the final role state predicate from the previous session before starting a new one.

Lemma 7.2. Let (PT , I
′) be the balanced semi-founded protocol theory encoding

the Turing machine T with the given initial configuration I as described above.
Let M be a balanced two-phase intruder theory with the memory maintenance
theory E . A trace obtained from the theory (PT , I

′) andM can lead to a config-
uration containing the fact M(s), where s is the secret, if and only if the machine
T can reach the accepting state qf starting from I .

Proof We now show that the secret is discovered by the intruder M if and only
if the machine T reaches the accepting state.

For the forward direction, assume that there is a sequence of instructions σ
that leads the machine T to the accepting state. Then by induction on the length
of σ we can show how to construct a run leading to a state where the secret is
revealed. If σ contains just one instruction γ, then the protocol session between
agentsA andB simulates the application of that instruction reaching the accepting
state and exchanging the secret unencrypted, so the intruder can learn the secret
simply by intercepting the last protocol message. For the inductive case assume
that the sequence of instructions used to reach the accepting state is (γ1, σ

′) and
that the configuration reached by applying γ1 is K2. Moreover, assume that there
is an anomaly from the initial configuration containing the fact M({X2}k) where
X2 encodes the configuration K2. We show that there is also an anomaly from
a configuration containing the fact M({X1}k) encoding theM’s initial configu-
ration K1. The intruder first sends a request to B to update the message {X1}k.
The participant B then uses the action UPDB corresponding to the instruction
γ1, sending the message containing {X2}k. The intruder then deletes the fact
M({X1}k) and learns the fact M({X2}k). When the protocol session is over, the
resulting configuration contains the fact M({X2}k), for which we can apply the
inductive hypothesis ending the proof.

For the reverse direction, we first need the following lemma.

Lemma 7.3. Let (PT , I
′) be the balanced semi-founded protocol theory encoding

the deterministic Turing machine T that accepts in space n2 and the given initial
configuration I of T , as described above. LetM be a balanced intruder theory.
Let S be an arbitrary configuration reachable from I using PT and the balanced
intruder theory. If the term 〈τ, q, i〉 appears in S, then it encodes a configuration
reachable from the initial configuration I using T .

53



Proof We proceed by induction on the length of a protocol run. For the base
case, there are no encrypted messages in I ′. For the inductive case, assume that
all encrypted terms of the form {X}k appearing in the ith configuration, Si, in the
run encode configurations Kj reachable from I by using T . The only interesting
cases are for the rules UPDB in P and ENC in the intruder theory since they are
the only rules that create encrypted messages. The former follows from the defi-
nition of P and the inductive hypothesis: since an application of UPDB simulates
one of T ’s instructions, γ, and the encrypted term {Xj}k used by it encodes a
reachable configuration Kj , the resulting encrypted term created {Xj+1}k by this
rule encrypts a configuration that is also reachable from I by using the sequence
of instructions used to reach the configuration Kj followed by the instruction γ.
Now for the latter rule, namely ENC, one can also show by induction on the length
of a run that the intruder will never acquire the key k. Therefore the rule ENC is
never applicable, that is, the intruder cannot compose terms encrypted with the
key k. 2

(Returning to the proof of Lemma 7.2). Assume that there is a trace for which
the secret is revealed. From the definition of the protocol theory, this is only the
case if a message containing the term {X}k, where X is the accepting configura-
tion, is received by the participantB. From the previous lemma it must be the case
that the accepting configuration X is also reachable from the initial configuration
I by using the machine T . 2

The upper bound algorithm provided in the proof of Theorem 5.5 for balanced
systems in the context of collaborative systems can also be used to determine
whether a memory bounded intruder can discover a secret. Following [32], we
assume the existence of the function T that returns, respectively, 1 when given
as input a transition that is valid, that is, an instance of an action in the protocol
theory or in the intruder theory, and return 0 otherwise. Notice that differently
from [32], we do not need other functions that determine whether a configuration
contains the fact M(s), as this can be checked in polynomial time. We are now
ready to prove the upper bound result.

Theorem 7.4. There is an algorithm that takes as input:

1. a protocol theory (P , I);
2. a balanced intruder theoryM;
3. an upper bound, k, on the size of facts;
4. a program T that recognizes (in PSPACE) actions of P and ofM;

which behaves as follows:
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(a) If there is a trace leading from I to a configuration containing the fact M(s),
then the algorithm outputs “yes” and schedules a trace; otherwise it returns
“no;”

(b) It runs in PSPACE with respect to |P|, |M|, |I|, |k|, and |T |.

Proof The proof is analogous to the proof of Theorem 5.5. We do not need
any critical configurations and moreover all actions in the theories P andM are
balanced. Therefore, the same algorithm used in the proof of Theorem 5.5 is also
applicable here. 2

The above PSPACE-completeness result assumes a bound on the size of facts.
At first sight such assumption seems unrealistic, as an intruder could in principle
construct messages with unbounded depth. In fact, many anomalies, typically the
type flaw anomalies, have been discovered, which exploit the fact that messages
with the size greater than intended in the protocol are constructed [36] (see also
[14]). However, as shown in [4, 25], it is possible to overcome these anomalies by
using tagging mechanisms, which are roughly annotations containing the typing
information of messages. Thus, by using such mechanisms, agents can reject
messages that are of the wrong type. As argued in [4], for such protocols, the
assumption on the size of messages is realistic.

8. Related Work

As previously discussed, we build on the framework described in [32, 31].
In particular, here we investigate the use of actions that can create fresh values
providing new complexity results for the partial reachability problem. In [6, 7],
a temporal logic formalism for modeling organizational processes is introduced.
In that framework, one relates the scope of privacy to the specific roles of the
agents in the system. We believe that our system can be adapted or extended to
accommodate such roles depending on the scenario considered.

In [44], Roscoe formalized the intuition of reusing nonces to model-check pro-
tocols where an unbounded number of nonces could be used, by using methods
from data independence. We confirm his initial intuition by providing tight com-
plexity results and demonstrating that many protocol anomalies can be specified
when using our model that reuses nonces.

Harrison et al. present a formal approach to access control [24]. In their
proofs, a Turing machine was faithfully encoded in their system. However, in con-
trast to our encoding, they use a non-commutative matrix to encode the sequential,
non-commutative tape of a Turing machine. We, on the other hand, encode Turing
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machine tapes by using commutative multisets. Specifically, they show that if no
restrictions are imposed to the systems, the reachability problem is undecidable.
However, if actions are not allowed to create fresh values, then they show that the
same problem is PSPACE-complete. Furthermore, if actions can delete or insert
exactly one fact and in the process check for the presence of other facts and even
create nonces, then they show that the problem is NP-complete, but in their proof
they implicitly impose a bound on the number of nonces that can be used. In their
proofs, the non-commutative nature of the encoding plays an important role.

Our paper is closely related to frameworks based on multiset rewriting systems
used to specify and verify security properties of protocols [1, 2, 12, 15, 19, 46].
While here we are concerned with systems where agents are in a closed room
and collaborate, in those papers, the concern was with systems in an open room
where an intruder tries to attack the participants of the system by manipulating
the transmitted messages. This difference is reflected in the assumptions used by
the frameworks. In particular, the security research considers a powerful intruder
that has an unbounded memory and that can, for example, accumulate messages at
will. On the other hand, we assume here that each agent has a bounded memory,
technically imposed by the use of balanced actions.

In this paper, we do not make any assumptions on protocols nor on the format
of the exchanged messages, but only that on the memory of the intruder and on
the number of parallel protocol sessions.3 It is possible, however, to recover the
decidability of the secrecy problem if further assumptions on the protocol are
made even with an unbounded memory intruder and with unbounded number of
parallel protocol sessions. For instance, [43] shows that for protocols tagging
mechanisms, the secrecy problem is decidable. [16] proposes a general technique
to construct safe protocols by using digital signatures linked to protocol sessions.
Also [3] proposes a general technique to construct secure protocol by using both
digital signature and dynamic tagging mechanisms.

Much work on reachability related problems has been done within the Petri
nets (PNs) community, see e.g., [20]. Specifically, we are interested in the cover-
ability problem which is closely related to the partial goal reachability problem in
LSTSes [31]. To our knowledge, no work that captures exactly the conditions in
this paper has yet been proposed. For instance, [20, 38] show that the coverabil-
ity problem is PSPACE-complete for 1-conservative PNs. While this type of PNs

3Even restricting to balanced protocol theories is not an assumption on protocols, as by using
empty facts, it is possible to transform a unbalanced protocol theory into a balanced one.
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is related to LSTSes with balanced actions, it does not seem possible to provide
direct, faithful reductions between LSTSes and PNs in this case.

More recently, together with Talcott and Perovic, we have capitalized and
extended some of the complexity results in this paper to systems with explicit
time [29]. In [41], we also discuss that LSTSes extended with explicit time can
be used as the foundations for building an automated assistant to help carry out
clinical investigations. Finally, in [40], Nigam identified a fragment of linear au-
thorization logics [21] for which the provability problem is PSPACE-complete.
For this result, Nigam used some of the ideas proposed in this paper to handle an
unbounded number of nonces.

9. Conclusions and Future Work

This paper extends existing models for collaborative systems with confiden-
tiality policies to include actions that can create fresh values. Then, given a sys-
tem with balanced actions, we showed that one only needs a polynomial number
of constants with respect to the number of facts in the initial configuration and
an upper bound on the size of facts to formalize the notion of fresh values. Fur-
thermore, we proved that the weak plan compliance, the plan compliance and the
system compliance problems as well as the secrecy problem for systems with bal-
anced actions that can create fresh values are PSPACE-complete. As an applica-
tion of our results, we showed that a number of anomalies for traditional protocols
can be carried out by a bounded memory intruder, whose actions are all balanced.

There are many directions to follow from here, which we are currently work-
ing on. Here, we only prove the complexity results for the secrecy problem. We
would also like to understand better the impact of our work to existing protocol
analysis tools, in particular, our PSPACE upper bound result. Moreover, we are
currently working on determining more precise bounds on the memory needed by
an intruder to find an attack on a given protocol. Finally, despite of our idealized
model, we believe that the numbers appearing in Table 2 provide some measure on
the security of protocols. Specifically, the more space required by the intruder to
carry an anomaly, the safer one could consider a protocol to be. Clearly other pa-
rameters have to be considered. We are currently investigating how to enrich our
model in order to include new parameters, such as the number of active sessions
running at the same time that are required by the intruder to carry out an attack.
In general, we seek to provide further quantitative information on the security of
protocols. Some of these parameters appear in existing model checkers, such as
Murφ [17]. We are investigating precise connections to such tools.
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