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ABsTRACT. There are numerous methods for rational approximation
of real numbers. Continued fraction convergent is one of them and New-
ton’s iterative method is another. Connections between these two approxi-
mation methods were discussed by several authors. Householder’s methods
are generalisation of Newton’s method. In this paper, we will show that
for these methods analogous connection with continued fractions hold.

1. INTRODUCTION AND MAIN RESULTS

Let a be a quadratic irrational, ie. o = ¢+ Vd, ¢,d € Q, d > 0 and d is
not a square of a rational number. It is well known that continued fraction
expansion of « is periodic, i.e. has the form

= [a’07a17" '7ah7ah+17ah+27"' aah-‘r@]'

Here ¢ = ¢(a) denotes the length of the shortest period in the expansion of a.
We will observe quadratic irrationals whose period begins with a;. We will

say that period is palindromic if it holds a; = ay_1, as = ay_9, ..., i.e. the
period without the last term is symmetric.
Continued fraction convergents z—" = [ag,a1,...,a,] give good rational

approximations of «. Another approximation method we obtain using the
Householder’s iterative method of order p. This method is a numerical algo-
rithm for solving the nonlinear equation f(z) = 0, where f(x) is a p+ 1 times
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2 V. PETRICEVIC

continuously differentiable function and « is a zero of f but not of its deriva-
tive. Householder’s method of order p consists of a sequence of iterations

(/)P (i)

(1/f)®)(z;)
beginning with an initial guess xy. Householder’s method of order 1 is just
Newton’s method and for Householder’s method of order 2 one gets Halley’s
method.

In this paper we study connections between continued fraction conver-
gents of quadratic irrational o = ¢ + v/d and Householder’s iterative method
of order m — 1, m € N, m > 2 (with rate of convergence m) for the equation
f(z) = (z—a)(z—a') = 0, where o/ = ¢—+/d. Precisely, if the initial iteration

= % is the nth continued fraction convergent of «, the principal question

Tit1 =% +p-

Zo

is whether the first iteration Rﬁf" ) — x1 also a convergent of . In that case
we say that R, ’ is good approximant.

We will show that for quadratic irrational o whose period of the length ¢
begins with ai, there is a good approximant at the end of the period, i.e. it
holds
(1.1) R = PmbEl g all ke N,

Amke—1

and when period is palindromic and has even length, say £ = 2t, there is a
good approximant in the half of the period, i.e. it holds

(1.2) R = Pmkt=l o all k € N,
qmkt—1

In Section 3 we show:

THEOREM 1.1. To be a good approximant is a periodic property, i.e. for
all k € N it holds

Ds (m) Pkmi+s
R(m = == — Ry =
" qs kttn qkmi+s ’
and when period is palindromic, it is also a palindromic property, i.e. it holds:
Ps (m) Pme—s—2
Rm™ — == = R, ==
" qs fmn=2 dme—s—2

When ¢ < 2, from (1.1) and (1.2) it follows that then every approximant
is good, and then it holds RS”) = PmtD=t 50 a1l > 0. So if R&m) is a good

qrn(n#»l)—l
approximant, one might expect that it hits convergent with m-times larger
index. However, this is not always true. If R;m) = z—s we can define numbers

j,(Lm) = jy(Lm)(a) as half of the distance from convergent with m times larger

index:

) +1-—m(n+1)
1.3 (m) _ 2 .
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We prove that it is unbounded by constructing an explicit family of quadratic
irrationals, which involves the Fibonacci numbers:

THEOREM 1.2. Let Fy denote the £-th Fibonacci number. Let £ > 3,0 =
+1 (mod 6). Then for dp = (P=2F)? 4 By 3Fy y +1 and M € N it holds
((\/dy) = ¢ and

FEMD gy = 8 (dg) = i (V) = 52 - M

Connection between Newton’s iterative method

(i)

f'(xi)

for solving nonlinear equations f(z) = 0 and continued fractions was discussed

by several authors. So, let us briefly mention what is known for case m = 2.
It is well known that for & = v/d, d € N, d not a perfect square, and the

Lit+1 = T —

corresponding Newton’s approximant RY? = %(2 no %) it follows that (see
e.g. [1, p. 468])
(1.4) RZ | =Dl o > 1

) q2k0—1

It was proved by Mikusiriski [9] (see also Elezovié [4]) that if £ = 2¢, then

(1.5) R® =Pl g > 1
q2kt—1

These results imply that if é(\/&) < 2, then all approximants Rgf) are conver-
gents of v/d. In 2001, Dujella [2] proved the converse of this result. Namely,
if all approximants RSLQ) are convergents of v/d, then ¢(v/d) < 2. Thus, if
é(\/&) > 2, we know that some of approximants Rg) are convergents and
some of them are not. Using a result of Komatsu [8] from 1999, Dujella also
showed that being a good approximant is a periodic and a palindromic prop-
erty, so he defined the number b(v/d) as the number of good approximants in
the period. Formulas (1.4) and (1.5) suggest that R'? should be convergent
whose index is twice as large when it is a good approximant. However, this is
not always true, and Dujella defined the number j(1/d) as half of the distance
from two times larger index. He also pointed out that j(1/d) is unbounded.
In 2005, Dujella and the author [3] proved that b(v/d) is unbounded, too.

In 2011, the author [13] proved the analogous results for a = 1+T‘/3, deN,
d not a perfect square and d =1 (mod 4).

Sharma [15] observed arbitrary quadratic surd @ = ¢ + Vd, ¢,d € Q,
d > 0, d is not a square of a rational number, whose continued fraction period
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of the length ¢ begins with a;. He showed that for every such « and the

. ) : (2) _ __ ph—adq} :
corresponding Newton’s approximant Ry’ = T —(atana) it holds
Rl(fl)—l = %, for k> 1,
q2ke—1

and when ¢ = 2¢ and the period is palindromic then it holds

R =PIl g k>

Frank and Sharma [6] discussed generalization of Newton’s formula. They
showed that for every quadratic irrational «, whose period begins with aq, it

holds
(1.6) Pmke—1 _ a(Pre—1 — & qre—1)™ — &' (Pre—1 — aqre—1)™ for k.m € N
Amki—1 (Pre—1 — &' qro—1)"™ — (Pre—1 — aQre—1)™ ’ ’

and when ¢ = 2¢ and the period is palindromic then it holds

A m _ _ m
(1.7) Pmkt—1 _ o(prt—1 — &' qre—1) & (Prt—1 = Oqrt-1) , for k,m € N.

Gmkt—1 (Prt—1 — & Qrt—1)™ — (Pri—1 — OQre—1)™

2. HOUSEHOLDER'S METHODS

Householder’s iterative method (see [14], [7, §4.4]) of order p for rootsolv-
ing, consists of a sequence of iterations:

(/)= (a)
/1)@ (z:)

(where (1/f)®) denotes p-th derivation of 1/ f) beginning with an initial guess
xo. Let f(x) be a p + 1 times continuously differentiable function and «
is a zero of f but not of its derivative, then, in a neighborhood of «, the
convergence has rate p + 1.

Analogous to Newton’s method, we will start with function f(z) = (z —
a)(x — '), which satisfies the above conditions. Let us first observe p-th
derivation of the function 1/f:

N = (G=mo=a) = e o)

_ (—=1)Pp! (( 1 1 )

a— o

w1 =HP (z) =2 +p-

x—a)ptl  (x—o/)ptl
So we have
(@) = o - SO o ) a)
alr — )P — o/ (x — a)PT?
(x — /)Pt — (x — a)pt!
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It is not hard to show that it holds:

H®)(2) — ad’
2.2 He () = 2 for p € N.
( ) (CE) H(p)(x)-i-x—a—o/’ or p

Formula (1.6) shows that for arbitrary quadratic surd, whose period be-
gins with a; and k € N, m = 2,3, ..., it holds

(2.3) Fm=1) (pu—1> _ Pmke—1
drke—1 Gmke—1

and when period is palindromic, and has even length, say ¢ = 2¢, from (1.7)
it follows

(2.4) Fm=1) (pkt—1> _ Pmkt—1
Akt—1 dmkt—1

Let us recall the definition

R = &, and for m >1 R(™ = g(m=1 (&),

qn qn

and we say that R&m’ is good approrimation, if it is a convergent of a. From
(2.3) and (2.4) it follows (1.1) and (1.2). From (2.1) we have

(pn - QIQn)m - O/(pn - QQn>m

2.5 Rm =2
( ) (pn - O/Qn)m - (pn - QQn)m

and formula (2.2) says

R%l)Rglm) —ao’
Rq(ll) + R;m) —a—ao

(2.6) RS{”“): , formeN n=0,1,....
3. GOOD APPROXIMANTS ARE PERIODIC AND PALINDROMIC

From now on, we assume that « is quadratic irrational whose period of
the length ¢ begins with a;. From formula [15, (8)] we obtain:

(3.1) (ae — ao)pre—1 + Proe—2 = —ad qre—1,
(3.2) (ae — ao)qre—1 + qre—2 = pre—1 — (a + &')qre—1,
for all £ € N.

LEMMA 3.1. Form,keN andi=1,2,...,¢, it holds
Rl(czi)leTl) —aa’

RN E—

(3:3) Rl(gzl-&)-i—l =

PRrROOF. For m = 1, statement of the lemma is proven in [5, Thm. 2.1].
Suppose that (3.3) holds for some m € N, and let us show that it holds for
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m—+1 too. Using the notation s = Rl(:@ll, S = R;:Zl, t= Rgi)l and T = REZ),
we have:

(1) (m) ’ st—aa’ | _ST—aa’ _ /

R(m+D) 26) Ry Ry, —oa _ stt-a-o  StT—a-o _ %
ké+i—1 — (1) (m) st—aa’ ST—aa’ Y
Ry 1+ Ry, —a—d  TFia-a T 5iT—a-a QT Q

_ (st—aa’)(ST—ad’)—ad (s+t—a—a')(S+T—a—a')

T (st—ad)(SHT—a—a’)+(ST—aa’)(st+t—a—a’)—(a+a’)(s+t—a—a’) (S+T—a—a')
(sS—aa)(tT—ad')—ad/ (s+S—a—a' ) t+T—a—<a’)

(sS—aa’)(t+T—a—a’)+({tT—aa’)(s+S—a—a’)—(a+a’)(s+S—a—a’) (t+T—a—a')

sS—aa’ | _tT—ad’ / (m+1) p(m+1) ’
- HS—a—o  HT—a—o OO (2.6) Rké—l Ri—l —aw
sS—aa’ tT—aa’ . 1 (m+1) (m+1) :
s+S—a—a’ + G T—a-o X C Rk[_1 =+ Ri—l —a—a
]
We have (see e.g. [12, §23]) —(a — ag)’ = [@g, @e—1,---, a2, a1 ), and so
1

p— a/=[az_1,---,a2,a1,ae].
o —ar —

So when period is palindromic, we have a+ o’ = 2ap — ag, thus formulas (3.1)
and (3.2) in palindromic case become

(3.4) aoPke—1 + Pro—2 = (@ + &' )pre—1 — ad’ qre—1,
(3.5) aoqre—1 + qre—2 = Pre—1-

LEMMA 3.2. For m,k € N and i = 1,2,...,¢ — 1, when period is palin-
dromic, it holds

&~
»—-é

. R™ (R!
(3.6) RI(CZ—)i—l e

PROOF. For m = 1 we have:

1) _ Pre—i—1 0 pre—i + Pro—io1
szfifl - - - [ao,a/],...704]@,@71‘71,@]@[71‘,0]
Qke—i-1 0 Gre—i + Qro—i—
= [G/Oa A1y ey Qff—is Apl—it1y- - - 7ak€717a0707 —ap, —A1y. .., =041 ]
Pi—1
:[QOaala'"7ak€—iaak£—i+l7"'7ak’f—17a07 q ]
i—1

_ pre—1(ao — R + pre—2 (3.4) 3121411(3517)1 —a—d)+ad
qro—1(ag — Rl(l,)l) + Qro—o (39 R§1)1 - Rl(clé)—l
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Suppose that (3.6) holds for some m € N, and let us show that it holds
for m + 1 too. With the same notation as in the proof of Lemma 3.1, we have

1 m
R(m+D) (2.6) Rl(cl)fiflRl(clf)ifl — ad

kt—i—1 7 (1) (m) ’
Ryt Byypoyq ——a
’ ’ ’ ’
s(t octi)zs)Jraa . S(T o%_a )taa’ ao!
= s(t—a—a’)+aa’ S(T—a—a')taa’ ’
t—s + T-S —a—a

(s(t—a—a')+aa’)(S(T—a—a')+aa’)—aa’ (t—s)(T—S)
(s(t—a—a’)+aa’)(T-S)+(S(T—a—a’)+aa’)(t—s)—(a+a’)(t—s)(T—S)
_ (sS—ad)(tT—ad' —(at+a ) t+T—a—<a'))tad’ (s+S—a—a')(t+T—a—a')
- (tT—aa’)(s+S—a—a’)—(sS—aa’)(t+T—a—a')

sS—aa’ tT—ac’ ’ (m+1) ; p(m+1) / /
v atalgraty —a— o)+ ad 26 Ry (BT —a—d) +oa
- tT—aa’ _  sS—aad’ - R(m+1) R(m+1)
t+T—a—a’ s+S—a—a’ i—1 — Ly q
0

Let us show that each approximant can be expressed as the combination
of convergent with m times larger index and carefully selected numbers Bi(m),
which are periodic (so we take them for ¢ = 1,...¢—1).

PROPOSITION 3.3. Let m € N. Fori=1,2,...,0—1 let

,B(m) _ _pMi—l - RZ('Tl)qmi—l .
Pmi — RETl) qmi

Then it holds

(m)
m 7 m [ + m 1)—
1) R, = D Pt TPmdt g s,

52-(m)Qm(ke+i) + Gm(ke+i)—1

and when period is palindromic, then

Lo im .
(3.8) R Pm(ke—i)—1 — Pi Pm(bt==2 e k> 1,

Gm(kt—i)—1 — /3Z~(m)qm(u7i)72

PROOF. Let us first consider the continued fraction expansion of BZ.(m).

(m)
Oaami;amifla <., Qa1,00 — Rz’_l]

3 — _| g Dmi — RETl)(Jmi [13, Lm.3] [
' Pmi—1 — Rng)Qmiq

= [07 —Omiy —Qmi—15---, —01, =00 + RETl) ] .
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If K = 0 we have

ﬂi(m)pmi + Pmi—1
BEM)Qmi + gmi—1

- (m)1 _ p(m)
- [a07a17 <oy Gmi—1, Amig, 0) —Amiy, —0mi—1y---, —A1, —QQ + Rifl ] - Ri717

= I:()J(%al7 e ,ami—hamiaﬁi(m)}

and if £ > 0 we have

ﬁi(m)pm(kui) + P (ke+i)—1

= [a a a a a a ; B(m) ]
(m) - 0,1y« s Umkl—1,Umkl; Umkl+15- - - m(k5+2)7 7
Bi Gm(keri) t Am(keri)—1
(m) DPrmkot—1(Gmike — Go + RZ(Tl)) + Dmke—2
= [a();al)"'7amk€—17amk€_a0+Ri71] = (m)
Umke—1(@mre — a0 + R;Z{) + Gmre—2
(3.1) pmkﬁflRZQ_nl) - Oéa/qug,1 (2.3) R](gzL_)lRY—nl) — o/ Lm.3.1 (m)
o, = = Rk€+i—1'

32 prake—1 + Gmie—1 (R — a — o) R 4+ R™ o — o

When period is palindromic we have:

Pm(kt—i)—1 — 5fm)pm(ke—i)—2 1
) = ao,al,...,am(u_i)_hfm
Am(ke—i)—1 — B; Am(kt—i)—2 i
= [0,07(],17 - ,am(kg,i),l,(), 0, Amiy Ami—1y---,01,00 — Rffl) }
= [0, @1, s Qo (ko—i)—15 G (kt—i)s Gn(kt—i) 415 - - - Gmkt—1, G0 — RL”

 Pmke—1(ao — R§T1)) + Pmke—2 (3.4) pmkeq(RETl) —a—ad)+ ad ¢gmre—1

Gmie—1(ao — R§T1)) + Gmpo—2 (35 qmuqRETl) — Dmke—1
(2:3) RJ(CZL(RZ(A) —a—a)+ad Lm.3.2

(m)
R R e

7

|

REMARK 3.4. [8, Thm.1] and [13, Thm. 2] are special cases of the last
proposition for m = 2 and & = V/d and a = 1+T\/&’ respectively.

PROOF OF THEREOM 1.1. The first part for n = ¢ — 1 is (1.1) and for
n =0,1,...,¢ — 2 follows from (3.7). The second part follows similarly as
in [2, Lm. 3|, but we have three cases. Let Ri™ = % = [ag,a1,...,as].

If s =m(n+1)—1, from (3.7) we have 55:1)1 = 0, so from (3.8) we have
R&m) , = Pm(t—m—1)—1 __ Pml—s—2

dm(b—n—1)—1 qme—s—2 "

If s >m(n+1) — 1, then from (3.7) we have

B = [ @ (nt1)+1> Om(nt 1) 425 - - 5 Gs ] = [m(t—n—1)=1, Cm(t—n—1)—=2; - - - » Gml—s |-



HOUSEHOLDER’S APPROX. AND CONT. FRACTIONS 9

From (3.8) we have

(m) Pm(t—n—1)—1 — 8 (b—n—1)—2 1
m m({—n—1)— m({—n—1)—
Rg_n_g = ?:ri) = aOaala"'aam(f—n—l)—lafw
Am(l—n—-1)—1 — BnJr]qm(Z—n—l)—Q BnJrl
= [GOa Q155 ml—n—1)—1> 0, —Am(f—n—1)—1> ~Aml-—n—1)—25- > _a’mf—s]
Pme—s—2
= [(107@17 - ,amg_s_l,O] = u.
qme—s—2

If s <m(n+1)—1, then from (3.8) we have

éTr)Lﬂ = [am(n+1)—17 Am(n4+1)—25 - s asi2 ]

= [am(€7n71)+13 Am(f—n—1)+25 -+ Aml—s—2 ]

From (3.7) we have

R(m) o ﬁlgrfnzbflpm(@fnfl) +pm(£7n71)71  Pme—s—2
0— - m - :
5277)7,71Qm(ffn71) + qm(—n—1)—1 gme—s—2

|

Let us show how Theorem 1.1 can be applied. The first example shows
palindromic situation, the second is not palindromic (but we accidentally get
good approximation in the half of the period), and the third shows that good
approximants do depend on m.

EXAMPLE 3.5. Let us observe v/44 = [6,1,1,1,2,1,1,1,12]. The period
is palindromic and we have £ = 8. Let us consider e.g. the case m = 5. From

. () _ pd+440p3 ¢2 +9680pnqp
(2.5) we have: Ry’ = S g FAA0LE (T T 193645 -

(5) _ piv _ 3160100 (5) _ pso __ 4993116004999

From (1.2) we have Ry’ = @ = 476403 R;7 = @0 752740560150

(5) __ Dbs9 (5) __ P79 (5) __ P20k-—1
Rll T oase? R15 T oqre’ T THAR—=1 T qaok-1”

; (5) _ ps _ 2514 (5) _ pso _ 7944493914
Since, Ry~ = e = 379 From Theorem 1.1 we have Ry’ = oo = Tio7677521

5 5 _
and also RS} = Diokss apq RY) | — pavkcio,
q40k+8 q40k—10

(5) _ 235487 ; ; (5) (5) ;

Ry” = 5207 is not a convergent of v44, so neither Rg,;’,; nor Ry, 5 will be.
(5) _ 6251453 ; ; (5) (5) ;
Ry = %5515 is not a convergent of V44, so neither Ry’ , nor R, , will
be. ]

EXAMPLE 3.6. Let us observe @ = 3+¥2L = [9,56,1,2] and m = 3.

. p(3) _ 37p2 —4572p,, q2 +23368¢>
From (2.5) we have: Ry, = STp 1013y, 2 T 45040T -

We have Rég) = bu — 44004059 " and so Rg,?_l = B2k=L " The period is

q11 435564 q12k—1
. . . 3 . . .
not palindromic, and accidentally we have Rg ) = % = 33?9%%9 (in palindromic
ps (3)  _ Pizksr
case would be £2), and so Ry’ = pTE—— d
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EXAMPLE 3.7. Let us observe o = ”T‘/ﬁ =[2,15,1,3,1,3,1]. Form =3

. pB) _ pisk—1. p(3) _ pr (3)  _ pisk4r
we have: Ry | = P Ry = pm and R6k+1 = Gerir
_ . (4) _ paak—1. pd) _ ps (4) _ poarss.
For m = 4 we have: Ry , = P Ry’ = o and Ry, = vl
(4) _ pin (4)  _ paaksn. p(4) _ pir (4)  _ poawtir
Rl T oqn and R6k+1 T qoakt11’ R3 T qir and R6k+3 T qaaks17” U

4. WHICH CONVERGENTS MAY APPEAR?

From now on, let us observe only quadratic irrationals of the form o = v/d,
d € N, d not a perfect square. It is well known that period of such « begins
with a; and is palindromic.

LEMMA 4.1. a) R%m) < Vd if and only if n is even and m is odd.
Therefore, R™ can be an even convergent only if n is even and m is
odd.

b)

(41) IR Vil < | — V).
PROOF. a) From (2.5) we have

Rglm) _ \/a — Qﬂ(pn B Qn\/;i)m )

(pn + qn\/a)"b - (pn - Qn\/a)’”
On the right side of (4.2), denominator is always greater than 0, and nomi-
nator is less than 0 if and only if n is even (then we have p,, —v/dg, < 0) and
m is odd.

b) Let us observe (4.2). From 1 <py <p;1 <ps <... and 1 <go < q1 <
g2 < ... we have 2 < pg + Vdqo < p1 + Vdg, < .... On the other hand, we
have 1 > |pg — Vdqo| > |p1 — Vdqi| > ... (see e.g. [12, §15]), so it holds (4.1).
0

(4.2)

Let us observe the definition (1.3). The number jﬁlm) is an integer, by
Lemma 4.1 a). Using Theorem 1.1 we have

(4.3) jﬁlm) = jgzgn, and in palindromic case: jf{” = fjéT,)l_?

PROPOSITION 4.2. Forn > 0 and m € N we have
(m m(/2 —1)
(V) < mE22Y,

PROOF. Let R/ = %. According to (4.3), it suffices to con-
m(n j—

sider the case j > 0 and n < {.
Assume first that ¢ is even, e.g. ¢ = 2¢t. We have Rﬁ’_"{ = Emi=l and

dmt—1
REZTZ = Z;‘%. For n < t—1, using (4.1) we have m(n+1)+2j—1 < mt—1,

and 2j < m(t—1)—1. Forn=t¢t—1and n = ¢ — 1 we have j = 0, and for



HOUSEHOLDER’S APPROX. AND CONT. FRACTIONS 11

t—l<n</{—1lwehavem(n+1)+2j—1<ml—1,o0r2j <ml—m(n+1) <
m(t — 1), so again we get j < %

Let £ is odd, e.g. £ =2t + 1. If for some n,0 < n < t holds j > w,
we would have s := m(n +1)+2j — 1 > mf/2 — 1. By Theorem 1.1 it

follows Rém,)l o = tm==2 and mf — s —2 < ml/2— 1. Now it holds
|\/&—§ {f pm" == 2| thus ’\f R(m)| < {f R(m) . This is not

possible by (4.1), slnce € —n—2>t Fort—1<n</{—1, the proof is the

same as in the even case. 0

PROPOSITION 4.3. Let £ € N and ay,...,a¢_1 € N such that a1 = ap_1,
as = ag—3, .... The number [ag,a1,as,...,as_1,2a9] s of the form Vi,
d € N if and only if
(4.4) 2a0 = (— 1)2 11’2 2(113 2 (mod p%—l)a
where p” =[a1,a2,...,an_1,ay,]. Then it holds:

2a / + !
(4.5) d=q2 2T
Py
PROOF. See [12, §26] O

LEMMA 4.4. Let Fy denote the k-th Fibonacci number. Let n € N and
k>1,k=1,2 (mod3). Fordi(n) = (2=UE+)? L (9p —1)F, 4 +1 it
holds €(\/dy(n)) =k and

dp(n) = [C=UEAL T AL, (20— D) F, + 1.
—_———

k—1 times

PRrROOF. From (4.4), it follows:

200 = (1) F 1 B = () F (Fi—Fro1) = () Y(=F2_,) (mod F}).

Now from Cassini’s identity FyFy_o — F2 , = (=1)*"! we have 2a9 = 1
(mod Fy). When 3 | k, this congruence is not solvable, and if 3 { k, the
solution is ag = 5 (mod Fy), i.e

Fip+1 2n —1)F, + 1
k; +(n_1)Fk:—(n 2)k+,

From (4.5) it follows:

(2n — 1)Fk + 1>2 N (2n—1)Fy + 1) Fy_1 + Fi—o
Fy,

n € N.

ag =

i

M — 1)Fj, + 112
- (¢ F2n—1)F1 + 1L
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REMARK 4.5. Periodic continued fractions involving Fibonacci numbers
with all a; = 1, ¢ = 1,...,f/ — 1 were known earlier. First example was
shown in [16]. Construction of such examples, using Pellian equations was
given in several papers by Mollin, see e.g. [11] and [10]. However, in all such

examples, the numbers are of the form with all a; = 1 in symmetric

part of the period, but for the numbers of the form v/d there is at least one
a; # 1. In [13, Lemma 5] we constructed, in a similar was as in Lemma 4.4,

all numbers of the form 1+T‘/E, d €N, d=1 (mod 4), with all a; = 1 in
symmetric part of the period. We have show that all such numbers are of the

form Hfd;“(n), where dj,(n) = 4((n- Fr, + 1)>+n-Fy_3) + 1, k,n € Nor

2n € N when 3 | k. Some of those numbers was also given in [11, Example
5: Di(n) = 4F3n% + (20F2 + 8(—1)%)n + 5, i.e it is not hard to show that
it holds Dy (n) = dj,(n). It turns out that for the numbers in Lemma 4.4 it
holds di(n) = 1d,(2%1), and when 3 { k, continued fraction of \/dx(n) have
desired form (and there is no other number with such period).

PROOF OF THEOREM 1.2. By (1.3), we have to prove

R(()SJVI—l) _ pJV[€727 R(()BM) _ psz1’ R(()SM-H) _ pr‘
qne—2 qnme—1 qne
We have ag = %, and since 3 1 ¢, F;_3 is odd, thus by Lemma 4.4 it

holds

Ve = [a0, T,1,...,1,1,2a0 .
—_——

£—1 times

From Cassini’s identity, since £ is odd (¢ = £1 (mod 6)), it follows
200 = Fy3(Fpo1 + Fro) + 1 =F} o+ Fy_3F) o = Fy_1Fy_o,
d—a2=F, 3F, 1 +1=F},.

So we get:
R(()l) - @ = ao,
do
2 2 2 2
+d af+d d—a F,_ _
R(()z):po 9% _ % — ag + 0 _ g0+ e2:pez’
2poqo 2a9 2a9 Foov qua
) _ po(p§ +3dg3) _ ao(ad +3d) _ g 4 200(d — ag)
0 q0(3p3 + dg3) 3a3 +d 0" 4a2 +d - a2
—ap + Fia P, — a0t Fo1Fro _ a Fp 1Fp o
0 F€2—1Fl2—2 + Féz_g 0 Fg2_1 + 1 0 Fg,gFg
Fy_ _
(46) :a0+ Elzpf 1

Iy Q-1
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Let us prove the theorem using induction on M. For proving the inductive
step, first observe that from (2.6) for m > 3 we have:

y  RPR"® +d y  RYR"Y +d

(4.7) R = Tk Ry = Tk
RY + R RY + RV
: o 7 . P(M—1)e+i _ p(m=3)
Suppose that for some i € {0,¢ — 2,¢ — 1} it holds o e © R, .
We have:
Darts = a071717"'71717a’0+p(M1)e+i] - [a0’1317"'51717a0+R(()m_3)
qMo+i — q(M—1)e+i ~—

£—1 times £—1 times
(m—3) (m—3) d
_ pe—1(ao + Ry )+ pe—2 (3:4) pe—1Ry + dqe—1
qe—1(ao + R(()m73)) + qu—o 35 qé71R(()m73) + Ppe—1
(o) RVRG" +d (7

|

COROLLARY 4.6. Let £(\/d) = { be the length of the shortest period of the
continued fraction expansion of V/d. Then for each m > 2 it holds

sup {1 Va)|} = +os,

. |Jq(1m)(\/67)| m
e i )2 6

5. NUMBER OF GOOD APPROXIMANTS

Analogously as in [2], let us define
b () = [{n:0<n<e-1, R{™ is a convergent of a}].

For arbitrary m experimental results suggest that similar properties could
hold as for m = 2. However, there are some differences, as the following
example shows.

EXAMPLE 5.1. We have £(1/45) = 6 and

4, ifm=2 (mod4)
b (Vas) =¢ 7 ’
(Vi5) { 6, ifm#2 (mod4).

PROOF. We have 45 = [6,1,2,2,2,1,12] = [6,1,2,2,2,1,6,0]. We
will denote convergents of regular expansion with %. Using (2.3) and (2.4),
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Rgm) = Z 2= and R(m) = ngﬁ are good approximants, and by The-

orem 1.1, we only have to check R(()m) and Rgm). The first few conver-

gents of /45 are sequentially &, 7 30 47 111 161

1s 1 5 =5 575 91 and let us observe

how other convergents look like ([...]as denote matrix form of convergents:
[ao, a1, ..., an]n = (% (1)) () (%) = (5: 5::)), and let us write
(7+\/4T5)3k _
2
k
<P6k+1 p6k>:[61222160}k (6,114 (161 1080) (7 6)
q6k+1 qu ) ) ) ) ) ) ) 24 161 1 1

74+/45 1 7—\/45 _ 6+\45 16—/45
e e B e e
= 7T+V45 ,7—45 6+v45 ,6—\45 )

YT o T T R )
V45 V45
474745 147745 ., 20+3v45 120—31/45
P6k+3 P6k+2 LA 7 2 772 T 2
= 474745, 47-7\/45 20+3v45 ,20—345 ,
q6k+3 46k+2 R 2 " 2 R 2 - 2

V45 V45
16142445 /161-24v45 . 11441745 /114—17/45
2 +7 2 v 2 +7 2

P6k+5 P6k+4 v
= 16142445 ,161—241/45 11441745 ,114—17/45
q6k+5 46k+4 R 2 - 2 2l 2 - 2

V45 V45

From (2.5) we have RI™ = otV 4+ wn—anVIN™ | /15 We see now

(pn+Qn\/7)m_(pn_Qn\/7)m
that R(m) (Ziﬁ;m*g \/@; V45 is always a good apprOX1mant Namely,

from (TEY45)2 = ATETVES ;g (TE£Y45)3 — 161 + 244/45, since T, 47 and 161
2 2 2

1
are convergents of V45, we have Rgm) = Zi"‘i‘i.

Finally, let us see when R(()m) = Egi\/\/g;:jg:%g”m

V45 is a convergent.
First consider

(5.1) (6&3\/475)4 = 161 + 24V/45 = (HQ‘/ZEY.

From (5.1) we see R(4m) = Zz;%’i and R(()4m+1) = Pem and since (6++/45)3 =

9(114 + 171/45) and 114 is a convergent of /45, we have R(()4m+3) _ DPomta

g6m+4

From (6 + 1/45)? = 3(27 + 41/45), and since 2T is not a convergent of v/45,

neither Ré4m+2) will be a convergent. d

Let us define
El()m) = min{¢ : there exists d € N such that ¢(v/d) = ¢ and b"™) (v/d) = b}.

@)
In [3] Dujella and the author proved that sup {ng

} < 2, and in
[13] the author showed the same inequality for o = ,d €

N, d=1
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b [ <] a [Ppn<]o]P<] a | Pp<
3| 5 13 | 1.666667 | 18 | 36 | 30420 | 2.941176
4| 6 21 |15 19| 71 | 313157 | 3.736842
5| 11 | 1625 |22 20| 44 | 193648 | 2.2
6| 6 45 1.0 21| 41 | 21125 | 1.952381
7| 11 | 36125 | 1571429 || 22 | 46 | 796500 | 2.0909091
8 | 12 |55800 | 1.5 23| 157 | 221425 | 6.826087
9 | 21 | 277 |2333333| 24| 66 | 740880 | 2.75
10| 14 | 50 |14 25| 97 | 490625 | 3.88

11 37 | 828325 | 3.363636 || 26 a0 29403 | 1.923077
12 20 2548 | 1.666667 || 27 | 113 | 460525 | 4.185185
13| 45 74698 | 3.461538 || 28 78 84500 | 2.785714
14| 28 10125 | 2.461538 || 29 | 171 | 535517 | 5.896552
15| 41 9125 | 2.733333 || 30 | 80 41405 | 2.666667
16 28 1125 | 1.75 31 97 | 903125 | 3.129032
17| 67 |260389 | 3.941176 || 32| 88 | 892125 | 2.75

TABLE 1. Upper bounds for Eég), 3<b<32.

(mod 4) and d is not a perfect square. In Table 1 we show upper bounds for

81()3), obtained by experiments, and corresponding d’s (we tested all d’s smaller
then 10°). Other experiments (we tested all m’s until 20) give similar upper
bounds, but 5™ (1/d) is not a monotonic function in m. Experimental results
lead to the conclusion that for every positive integer m > 3 and every positive
integer b there exist a positive integer d such that b(™ (v/d) = b. Moreover,
(m)
obtained upper bounds for Z”b suggest that
g(m)
(5.2) sup{bT:b21}§2

for all m > 2. In case m = 2 families of examples where constructed which
show that for every positive integer b there exist a positive integer d such that
b3 (V/d) = b and b (v/d) > £(v/d)/2. To prove the inequality (5.2) for each
m > 3 in a similar manner seems nearly impossible because b (v/d) depends
not only on d but also on m (see Example 5.1).
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