COMPUTATION OF CONSTANTS IN
 MULTIPARAMETRIC ALGEBRAS OF
 NONCOMMUTATIVE POLYNOMIALS

(Talk)

Milena Sosic
Department of Mathematics, University of Rijeka
msosic@math.uniri.hr

Let $\mathbb{N}_{0}=\{0,1, \ldots\}$ be the set of nonnegative integers and let $\mathcal{N}=\left\{i_{1}, \ldots, i_{N}\right\}$ be a fixed subset of \mathbb{N}_{0}. Then we denote by $\mathcal{B}=\mathcal{B}_{\mathcal{N}}=\mathbb{C}\left\langle e_{i_{1}}, \ldots, e_{i_{N}}\right\rangle$ the free unital associative \mathbb{C}-algebra with N generators $\left\{e_{i}\right\}_{i \in \mathcal{N}}$, each of degree one. We can think of \mathcal{B} as an algebra of noncommutative polynomials in N noncommuting variables $e_{i_{1}}, \ldots, e_{i_{N}}$.
We equip \mathcal{B} with a multiparametric $q_{i j}$-differential structure given by N linear operators $\partial_{i}: \mathcal{B} \rightarrow \mathcal{B}, i \in \mathcal{N}$ that act as twisted derivations on \mathcal{B} :
$\partial_{i}(1)=0, \partial_{i}\left(e_{j}\right)=\delta_{i j}, \partial_{i}\left(e_{j} x\right)=\delta_{i j} x+q_{i j} e_{j} \partial_{i}(x)$ for all $x \in \mathcal{B}, i, j \in \mathcal{N}$ ($q_{i j}$ are complex numbers).
The algebra \mathcal{B} is naturally graded by total degree $\mathcal{B}=\bigoplus_{n \geq 0} \mathcal{B}^{n}$, where $\mathcal{B}^{0}=\mathbb{C}$ and \mathcal{B}^{n} consists of all homogeneous noncommuting polynomials of total degree n in variables $e_{i_{1}}, \ldots, e_{i_{N}}$. More generally we also have a finer decomposition of \mathcal{B} into multigraded components ($=$ weight subspaces)

$$
\mathcal{B}=\bigoplus_{n \geq 0, l_{1} \leq \cdots \leq l_{n}, l_{j} \in \mathcal{N}} \mathcal{B}_{l_{1} \ldots l_{n}},
$$

where each weight subspace $\mathcal{B}_{Q}=\mathcal{B}_{l_{1} \ldots l_{n}}$, corresponds to a multiset $Q=\left(l_{1} \ldots l_{n}\right)$, is given by

$$
\mathcal{B}_{Q}=\operatorname{span}_{\mathbb{C}}\left\{e_{j_{1} \ldots j_{n}}:=e_{j_{1}} \cdots e_{j_{n}} \mid j_{1} \ldots j_{n} \in \widehat{Q}\right\} .
$$

Here $\widehat{Q}=S_{n} Q=\left\{\sigma\left(l_{1} \ldots l_{n}\right) \mid \sigma \in S_{n}\right\}$ denotes the set of all rearrangements of the sequence l_{1}, \ldots, l_{n} (i.e \widehat{Q} is the set of all distinct permutations of the multiset $Q)$. Thus $\operatorname{dim} \mathcal{B}_{Q}=|\widehat{Q}|$.
Of particular interest in algebra \mathcal{B} are elements called constants which satisfy $\partial_{i} C=0$ for every $i \in \mathcal{N}$. Let \mathcal{C} denotes the space of all constants in algebra \mathcal{B} and similarly let \mathcal{C}_{Q} denotes the space of all constants in \mathcal{B}_{Q}. Then the main problem of describing the space \mathcal{C} can be reduced to describing the space \mathcal{C}_{Q}. Here we shall give the explicit formulas for nontrivial (basic) constants in \mathcal{B}_{Q} up to total degree equal to four.

MSC2010: 05Exx.
Keywords: q-algebras, noncommutative polynomial algebras, twisted derivations.

Section: 14.

References

[DKKT] G. Duchamp, A. Klyachko, D. Krob, J.-Y. Thibon: Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras, Discrete Mathematics and Theoretical Computer Science 1 (1997), 159216.
[F2] Frønsdal C.: On the classification of q-algebras, Lett. Math. Phys. 222 (1999), 708-746 (q-alg/0003146).
[FG] Frønsdal C. and Galindo A.: The ideals of free differential algebras, J. Algebra 222 (1999), 708-746 (q-alg/9806069).
[MPS] Meljanac S., Perica A. and Svrtan D.: The energy operator for a model with a multiparametric infinite statistics, J. Phys. A36 no. 23 (2003), 63376349 (math-ph/0304038).
[MS1] Meljanac S. and Svrtan D.: Determinants and inversion of Gramm matrices in Fock representation of $q_{k l}$-canonical commutation relations and applications to hyperplane arrangements and quantum groups. Proof of an extension of Zagier's conjecture, arXiv:math-ph/0304040vl, 26 Apr 2003.
[Z] Zagier D.: Realizability of a model in infinite statistics, Commun. Math. Phys. 147 (1992), 199-210.

