COMPUTATION OF CONSTANTS IN MULTIPARAMETRIC ALGEBRAS OF NONCOMMUTATIVE POLYNOMIALS

(Talk)

Milena Sosic

Department of Mathematics, University of Rijeka msosic@math.uniri.hr

Let $\mathbb{N}_0 = \{0, 1, \dots\}$ be the set of nonnegative integers and let $\mathcal{N} = \{i_1, \dots, i_N\}$ be a fixed subset of \mathbb{N}_0 . Then we denote by $\mathcal{B} = \mathcal{B}_{\mathcal{N}} = \mathbb{C} \langle e_{i_1}, \dots, e_{i_N} \rangle$ the free unital associative \mathbb{C} -algebra with N generators $\{e_i\}_{i \in \mathcal{N}}$, each of degree one. We can think of \mathcal{B} as an algebra of noncommutative polynomials in N noncommuting variables e_{i_1}, \dots, e_{i_N} .

We equip \mathcal{B} with a multiparametric q_{ij} -differential structure given by N linear operators $\partial_i \colon \mathcal{B} \to \mathcal{B}$, $i \in \mathcal{N}$ that act as twisted derivations on \mathcal{B} :

$$\partial_i(1) = 0$$
, $\partial_i(e_j) = \delta_{ij}$, $\partial_i(e_jx) = \delta_{ij}x + q_{ij}e_j\partial_i(x)$ for all $x \in \mathcal{B}$, $i, j \in \mathcal{N}$ $(q_{ij} \text{ are complex numbers})$.

The algebra \mathcal{B} is naturally graded by total degree $\mathcal{B} = \bigoplus_{n \geq 0} \mathcal{B}^n$, where $\mathcal{B}^0 = \mathbb{C}$ and \mathcal{B}^n consists of all homogeneous noncommuting polynomials of total degree n in variables e_{i_1}, \ldots, e_{i_N} . More generally we also have a finer decomposition of \mathcal{B} into multigraded components (= weight subspaces)

$$\mathcal{B} = \bigoplus_{n \geq 0, \, l_1 \leq \dots \leq l_n, \, l_j \in \mathcal{N}} \mathcal{B}_{l_1 \dots l_n},$$

where each weight subspace $\mathcal{B}_Q = \mathcal{B}_{l_1...l_n}$, corresponds to a multiset $Q = (l_1...l_n)$, is given by

$$\mathcal{B}_Q = span_{\mathbb{C}} \left\{ e_{j_1...j_n} := e_{j_1} \cdots e_{j_n} \mid j_1 \dots j_n \in \widehat{Q} \right\}.$$

Here $\widehat{Q} = S_n Q = \{ \sigma(l_1 \dots l_n) \mid \sigma \in S_n \}$ denotes the set of all rearrangements of the sequence l_1, \dots, l_n (i.e \widehat{Q} is the set of all distinct permutations of the multiset Q). Thus dim $\mathcal{B}_Q = |\widehat{Q}|$.

Of particular interest in algebra \mathcal{B} are elements called *constants* which satisfy $\partial_i C = 0$ for every $i \in \mathcal{N}$. Let \mathcal{C} denotes the space of all constants in algebra \mathcal{B} and similarly let \mathcal{C}_Q denotes the space of all constants in \mathcal{B}_Q . Then the main problem of describing the space \mathcal{C} can be reduced to describing the space \mathcal{C}_Q . Here we shall give the explicit formulas for nontrivial (basic) constants in \mathcal{B}_Q up to total degree equal to four.

MSC2010: 05Exx.

Keywords: q-algebras, noncommutative polynomial algebras, twisted derivations.

Section: 14.

References

- [DKKT] G. Duchamp, A. Klyachko, D. Krob, J.-Y. Thibon: Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras, Discrete Mathematics and Theoretical Computer Science 1 (1997), 159–216.
- [F2] Frønsdal C.: On the classification of q-algebras, Lett. Math. Phys. **222** (1999), 708–746 (q-alg/0003146).
- [FG] Frønsdal C. and Galindo A.: The ideals of free differential algebras, J. Algebra **222** (1999), 708–746 (q-alg/9806069).
- [MPS] Meljanac S., Perica A. and Svrtan D.: The energy operator for a model with a multiparametric infinite statistics, J. Phys. A**36** no. **23** (2003), 6337–6349 (math-ph/0304038).
- [MS1] Meljanac S. and Svrtan D.: Determinants and inversion of Gramm matrices in Fock representation of q_{kl} -canonical commutation relations and applications to hyperplane arrangements and quantum groups. Proof of an extension of Zagier's conjecture, arXiv:math-ph/0304040vl, 26 Apr 2003.
- [Z] Zagier D.: Realizability of a model in infinite statistics, Commun. Math. Phys. **147** (1992), 199–210.