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Abstract. Let N = {i1, i2, . . . , iN} be a fixed subset of nonneg-
ative integers and let qij , i, j ∈ N be given complex numbers. We
consider a free unital associative complex algebra B generated by
N generators {ei}i∈N (each of degree one) together with N linear
operators ∂i : B → B, i ∈ N that act as twisted derivations on B.
The algebra B is graded by total degree. More generally B could
be considered as multigraded. Then it has a direct sum decompo-
sition into multigraded (weight) subspaces BQ, where Q runs over
multisets (over N ). An element C in B is called a constant if it is
annihilated by all operators ∂i. Then the fundamental problem is
to describe the space C of all constants in algebra B. The space C
also inherits the direct sum decomposition into multigraded sub-
spaces CQ = BQ ∩ C. Thus it is enough to determine the finite
dimensional spaces CQ.
AMS Subject Classification: 05Exx;
Key Words and Phrases: q-algebras, noncommutative polyno-
mial algebras, twisted derivations.

1. Introduction

Following the paper [3] by C. Frønsdal, where he studied the clas-
sification of the ideals of ‘free differential algebras’ and q -algebras,
our study here is modeled on a unital associative complex algebra
B = C 〈ei1 , ei2 , . . . , eiN 〉 with a multiparametric q -differential structure.
In the study of the universal R-matrix of quantum groups, the gen-
erators {ei}i∈N could be regarded as positive Serre generators and
the negative Serre generators are represented by q -differential oper-
ators {∂i}i∈N , which act on B according to the twisted Leibniz rule
∂i(ejx) = δijx+ qijej∂i(x) for each x ∈ B, where the parameters qij are
(complex) values of a function q : N ×N → C\{0}, (i, j) 7→ qij. In
this twisted Leibniz rule we ‘mark’ each passing of ∂i through ei (from
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the left) by additional factor qij, so ∂i is a kind of generalized i -th
partial derivative. This rule is in direct relation to qij-canonical com-
mutation relations (see [6, 1.1]), where the authors examine the Hilbert
space realizability of the {qij}-multiparametric quon algebras. By com-
paring these two approaches it can be easily seen that the generator ei
should be regarded as the i-th creation operator and ∂i as the i-th an-
nihilation operator in the Fock representation. Note that the algebra
B can also be considered as multigraded, and then the operators ∂i,
of degree −1, respects the direct sum decomposition of B into multi-
graded subspaces BQ (Q a multiset over N ). The action of ∂i on any
monomial ej1...jn ∈ BQ (where BQ denotes the monomial basis of BQ)
is given explicitly by

∂i(ej1...jn) =
∑

1≤p≤n, jp=i

qij1 · · · qijp−1ej1...jp−1jp+1...jn .

The number of terms in this sum is equal to the number of appearances
(multiplicity) of the generator ei in monomial ej1...jn = ej1 · · · ejn . An
important special case is the following

∂i(e
n
i ) =

(
1 + qii + q2ii + · · ·+ qn−1ii

)
en−1i = [n]qii e

n−1
i ,

where [n]q = 1 + q + · · ·+ qn−1 is a q-analogue of a natural number n.
We define a constant C ∈ B to be any element of B with the property
∂ipC = 0 for each 1 ≤ p ≤ N (i.e ∂iC = 0 for every i ∈ N ). Denote
by C the space of all constants in B. In our approch to determine
constants we define a multidegree operator ∂ on B by ∂ =

∑
i∈N ei∂i,

which preserves the multigrading. Then C is a constant iff ∂C = 0 i.e
∂iC = 0 for each i ∈ N .
Now we can study the restrictions ∂Q of ∂ to BQ. If we denote by
CQ the space of all constants in BQ, then CQ = BQ ∩ C. In the case
Card Q = 1, zero is the only constant in BQ. Hence nontrivial con-
stants might exist only in the spaces BQ, Card Q ≥ 2. Our procedure
of computing nontrivial constants in BQ is as follows. Let BQ denote
the matrix of ∂Q. Its entries are given by (19) i.e by the polynomials
in qij’s, so det BQ is also a polynomial in qij’s. Of particular interest
is the study of det BQ. Namely, if det BQ 6= 0 (or equivalently in ter-
minology of Frønsdal’s if the parameters qij’s are in general position)
then CQ = {0}. The space CQ is nonzero only for singular parameters

qij’s for which detBQ = 0. In view of the fact that det BQ has a nice
factorization (c.f. Remark 10) with factors βT for each T ⊆ Q, |T | ≥ 2,
we are going to distinguish two types of singular parameters (c.f. (20)
resp. (21)), which we shall call Q-cocycle condition or top cocycle condi-

tion resp. (Q;T )-cocycle condition. In the description of certain basic



nontrivial constants belonging to CQ we shall use certain iterated q -
commutators Yj and certain simple q -commutators Xj and also some

binomials Xj defined in the Section 3. Next we study some singular
orbits (long and short) and explain the dimension of CQ (differently
than in [3]). Our motivation is to show that the basic constants in
degenerated BQ’s can be constructed from those in the generic case
by a certain specialization procedure. This leads us to the conclusion
that the fundamental problem of description the constants in C can
be reduced to the problem of determining the constants CQ in generic
subspaces CQ, under the top cocycle condition cQ. Further studies
show that each ‘generic basic constant’ CQ ∈ CQ, Q = l1 . . . ln under
the top cocycle condition can be expressed in terms of (n− 1)! iterated
q -commutators Yl1ξ, where l1 ∈ Q is fixed and the remaining n− 1 in-
dices ξ = j2 . . . jn vary. The cases n = 3, 4 are treated in Remark 11.
The cases n ≥ 5 are more complicated and will not be considered here.

2. Free associative complex algebra B

Let N0 = {0, 1, . . . } be the set of nonnegative integers and let N =
{i1, . . . , iN} be a fixed subset of N0. Then we denote by B = BN =
C 〈ei1 , . . . , eiN 〉 the free (unital) associative C-algebra with N genera-
tors {ei}i∈N , where degree of each generator ei is equal to one. We can
think of B as an algebra of noncommutative polynomials in N noncom-
muting variables ei1 , . . . , eiN . Every sequence l1, . . . , ln ∈ N such that
l1 ≤ · · · ≤ ln we can think of as a multiset Q = {l1 ≤ · · · ≤ ln} over
N of size n = |Q|, where |Q| = Card Q denotes the cardinality of the
multiset Q. Sometimes, we will simply write Q = l1 . . . ln.
The algebra B is naturally graded by the total degree

(1) B =
⊕

n≥0

Bn,

where B0 = C and Bn consists of all homogeneous noncommuting poly-
nomials of total degree n in variables ei1 , . . . , eiN . We also have a finer
decomposition of B into multigraded components (= weight subspaces)

(2) B =
⊕

n≥0, l1≤···≤ln, lj∈N

Bl1...ln ,

where each weight subspace BQ = Bl1...ln , corresponding to a multiset
Q, is given by

(3) BQ = spanC

{
ej1...jn := ej1 · · · ejn | j1 . . . jn ∈ Q̂

}
.



Here Q̂ = SnQ = {σ(l1 . . . ln) | σ ∈ Sn} denotes the set of all rearrange-

ments of the sequence l1, . . . , ln (i.e Q̂ is the set of all distinct permu-

tations of the multiset Q). Thus dimBQ =
∣∣∣Q̂
∣∣∣.

If l1, . . . , ln ∈ N satisfy l1 < · · · < ln, then Q is a set, Q = {l1, . . . , ln} ⊆
N and the corresponding weight subspace BQ we call generic. Any
other weight subspaces BQ (i.e nongeneric) we call degenerate.
Denote by Bgen the (generic) subspace of B spanned by all multilinear
monomials and by Bdeg the (degenerate) subspace of B spanned by all
monomials which are nonlinear in at least one variable. Then the direct
sum decomposition (1) can be written in the form: B = Bgen ⊕ Bdeg,
where

Bgen =
⊕

Q a set

Bgen
Q , Bdeg =

⊕

Q a multiset (not set)

Bdeg
Q .

Fix a map q : N ×N → C, (i, j) 7→ qij, i, j ∈ N . Complex numbers
qij’s are treated as parameters and q can be interpreted as a point in

the parameter space CN 2
.

On the algebra B we introduce N linear operators ∂i = ∂q

i : B → B,
i ∈ N , defined recursively, as follows:

(4) ∂i(1) = 0, ∂i(ej) = δij ,

(5) ∂i(ejx) = δijx+ qijej∂i(x) for each x ∈ B, i, j ∈ N .

(Here δij = 1 if i = j, and 0 otherwise is a standard Kronecker delta.)
From (5) we see that the operators ∂i, i ∈ N act as a generalized i -th
partial derivative on the algebra B. As a result, they depend on addi-
tional parameters (complex numbers) qij, so we say that ∂i is a multi-
parametrically deformed i -th partial derivative or shortly q -deformed
i -th partial derivative. In particular, if all qij’s are equal to one, then
∂i coincides with a usual i -th partial derivative.
In what follows we shall consider B equiped with this ‘q -differential
structure’.

By abbreviating j1 . . . jn by j let us denote by BQ =
{
ej | j ∈ Q̂

}
the

monomial basis of BQ. Then by applying the formula (5) several times
we get an explicit formula for the action of ∂i on a typical monomial
ej ∈ BQ as follows:

(6) ∂i(ej) =
∑

1≤k≤n, jk=i

qij1 · · · qijk−1
ej1...ĵk...jn



(c.f. eq. (21) in [5]). Here ĵk denotes the omission of the corresponding
index jk.

Eg. ∂2(e1321212) = q21q23e131212 + q221q22q23e132112 + q221q
2
22q23e132121.

In special case (where there is only one k, 1 ≤ k ≤ n such that jk = i)
the formula (6) is reduced to:

(7) ∂i(ej) = qij1 · · · qijk−1
ej1...ĵk...jn .

Similarly, if jk = i for all 1 ≤ k ≤ n, then the formula (6) reads as:

(8) ∂i(e
n
i ) = [n]qii e

n−1
i ,

where

(9) [n]q :=
∑

0≤k≤n−1

qk = 1 + q + · · ·+ qn−1, n ≥ 1.

Note that formula (9) is a q-analogue of the natural number n, there-
fore, for qii = 1 from the formula (8) we get the classical formula
∂i(e

n
i ) = n · en−1i .

Suppose that x ∈ Bl1...ln . Then for any y ∈ B we have a formula more
general than (5):

(10) ∂i(xy) = ∂i(x)y + qil1 · · · qilnx∂i(y) for each i ∈ N .

3. Commutators and constants in algebra B

In order to write efficiently some constants in the algebra B we first
introduce the following abbreviations:

(i) for any subset T ⊆ Q, |T | ≥ 2:

(11) qT :=
∏

a 6=b∈T

qab

(c.f. eq. (4.1) in [4]); in particular q{i,j} = qijqji;
(ii) for any sequence j1 . . . jp we define Xj1...jp to be the following

binomials:

(12) Xj1...jp := ej1...jp + (−1)p−1
∏

1≤a<b≤p

qjbjaejp...j1 .

(with Xj1 := ej1 for p = 1);
(iii) for any sequence j1 . . . jp we define Xj1...jp to be the following

simple q -commutators:

(13) Xj1 := ej1 , Xj1...jp :=
[
ej1...jp−1 , ejp

]
qjpj1 ···qjpjp−1



and let the iterated q -commutators Yj1...jp be defined recursively
by

(14) Yj1 := ej1 , Yj1...jp :=
[
Yj1...jp−1 , ejp

]
qjpj1 ···qjpjp−1

.

Remark 1. For p = 2 we have:

Xj1j2 = Xj1j2 = Yj1j2 = ej1j2 − qj2j1ej2j1 .

In the following three propositions we show how to compute the
action of ∂i on the simple q -commutators, the iterated q -commutators
and binomials Xj1...jp . (Note that for p = 1 we get: ∂i (ej1) = δij1 for
each i ∈ N .)

Proposition 2. Let p ≥ 2, j1, . . . , jp ∈ N . Then for each i ∈ N we

have

(15) ∂i
(
Xj1...jp

)
=
[
∂i
(
ej1...jp−1

)
, ejp

]
qijpqjpj1 ···qjpjp−1

.

Proof. By using (10) we get

∂i
(
Xj1...jp

)
= ∂i

(
ej1...jp−1ejp − qjpj1 · · · qjpjp−1ejpej1...jp−1

)

=
[
∂i
(
ej1...jp−1

)
ejp + qij1 · · · qijp−1ej1...jp−1∂i

(
ejp
)]

− qjpj1 · · · qjpjp−1

[
∂i
(
ejp
)
ej1...jp−1 + qijpejp∂i

(
ej1...jp−1

)]

= ∂i
(
ej1...jp−1

)
ejp − qijpqjpj1 · · · qjpjp−1ejp∂i

(
ej1...jp−1

)

=
[
∂i
(
ej1...jp−1

)
, ejp

]
qijpqjpj1 ···qjpjp−1

.

It is clear that ∂i
(
Xj1...jp

)
= 0 for each i /∈ {j1, . . . , jp−1}. �

Proposition 3. Let p ≥ 2, j1, . . . , jp ∈ N . Then for each i ∈ N we

have

(16) ∂i
(
Yj1...jp

)
=

{ (
1− q{j1,j2}

)
Y j1
j2...jp

if i = j1
0 if i 6= j1

where

(17) Y j1
j2

:= ej2 , Y j1
j2...jp

:=
[
Y j1
j2...jp−1

, ejp

]
q{j1,jp}qjpj2 ···qjpjp−1

.

Proof. For p = 2, Yj1j2 = [ej1 , ej2 ]qj2j1
= ej1j2 − qj2j1ej2j1 and by us-

ing (15) it follows that ∂i (Yj1j2) = δij1 (1− qij2qj2j1) ej2 . If we ap-
ply (15) several times, then for any 2 ≤ k ≤ p we get ∂i (Yj1...jk) =
δij1 (1− qij2qj2j1)Y

i
j2...jk

, where Y i
j2...jk

is given by (17) for j1 = i. Fi-
nally, it follows (16).



Clearly, if q{j1,j2} = 1, then ∂i
(
Yj1...jp

)
= 0 for each i ∈ N .

�

Remark 4. The expressions qjpj1 · · · qjpjp−1 resp. q{j1,jp}qjpj2 · · · qjpjp−1

appearing in (13) and (14) resp. (17) are in Frønsdal [3, Subsections 2.2.
and 3.1.] denoted by a (j1 . . . jp) resp. bj1 (j2 . . . jp) = qj1jpa (j1j2 . . . jp)
and are called the commutation factors.

Proposition 5. Let p ≥ 2, j1, . . . , jp ∈ N . Then for each i ∈ N such

that i = jk, we have

∂i
(
Xj1...jp

)

= qij1 · · · qijk−1

(
ej1...ĵk...jp + (−1)p−1

∏

1≤a<b≤p−1

qjbjaσi|jk+1,...,jpejp...ĵk...j1

)

and ∂i (X
j1...jp) = 0 otherwise. Here we have used the notation

σi|jk+1,...,jp :=
∏

k+1≤m≤p

q{i,jm}.

Proposition 6. If for some i 6= j ∈ N q{i,j} = 1, then Yji = −qijYij.

Proof. From q{i,j} = 1 we obtain qji = 1/qij and then Yji = ejei −
qijeiej = −qij (eiej − qjiejei) = −qijYij. �

Corrolary 7. Let j1, . . . , jp ∈ N , 2 ≤ p ≤ N and j1 6= j2. If q{i,j} = 1
then Yj2j1j3...jp = −qj1j2Yj1j2j3...jp .

Definition 8. A constant in B is any element C in B annihilated
by all ∂i’s (i ∈ N ) i.e ∂i(C) = 0 for every i ∈ N .

Denote by C = {C ∈ B | ∂i(C) = 0, for all i ∈ N} the space of all
constants in B.
Observe that B0 = C consists of trivial constants and in B1 the only
constant is zero. Thus, nontrivial constants could exist only in the
space

⊕
n≥2 B

n.

Definition 9. We define amultidegree operator ∂ : B → B by the
formula:

∂ :=
∑

i∈N

ei ∂i,

where ei : B → B are considered as (multiplication by ei) operators on
B.



Note that ∂ is the operator of degree zero. Clearly,

∂C =
∑

i∈N

ei ∂iC = 0 iff ∂iC = 0 for all i ∈ N .

Therefore C = ker ∂, where ker ∂ denotes the kernel of the multidegree
operator ∂. The operator ∂ preserves the direct sum decomposition
of the algebra B, i.e ∂BQ ⊂ BQ. In other words, each subspace BQ is
an invariant subspace of ∂. Denote by ∂Q : BQ → BQ the restriction of
∂ : B → B to the subspace BQ i.e

(18) ∂Qx = ∂x for every x ∈ BQ.

Let CQ be the space of all constants belonging to BQ. Thus CQ = ker ∂Q

and CQ = BQ ∩ C. The space C also inherits the direct sum decompo-
sition into multigraded subspaces CQ. Hence the fundamental problem
to determine the space C can be reduced to determine the finite dimen-
sional spaces CQ (= ker ∂Q) for all multisets Q over N .
Let |Q| = n ≥ 2 and let ej1...jn be any basis element from a monomial
basis BQ of BQ. Then by definition of ∂Q and using the formula (6) it
follows that

∂Q (ej1...jn) =
∑

i∈N

ei∂i (ej1...jn) =
∑

i∈N

ei
∑

1≤k≤n, jk=i

qij1 · · · qijk−1
ej1...ĵk...jn

=
∑

1≤k≤n

∑

i∈N , i=jk

qij1 · · · qijk−1
eij1...ĵk...jn

i.e

(19) ∂Q (ej1...jn) =
∑

1≤k≤n

qjkj1 · · · qjkjk−1
ejkj1...ĵk...jn ,

for each j1 . . . jn ∈ Q̂.

Let BQ denotes the matrix of ∂Q w.r.tBQ (considered with the Johnson-
Trotter ordering on permutations c.f. [7]).

For any muliset Q =
{
kn1
1 , . . . , k

np
p

}
(ki distinct) of cardinality |Q| =

n1 + · · · + np =: n the size of the matrix BQ is equal to the following
multinomial coefficient

n!

n1! · · ·np!
=

(
n

n1, . . . , np

)
(= dimBQ).

The entries of BQ are polynomials in qij’s, hence its determinant is also
a polynomial in qij’s. It turns out that the polynomial det BQ has a
nice factorization (which, in case Q is a set, has only binomial factors,
see (26)) with factors βT for each T ⊆ Q, |T | ≥ 2. Thus, det BQ = 0



implies that βT vanishes for at least one T ⊆ Q.
Of particular interest are the actual values of parameters qij’s (called
singular values or singular parameters) for which at least one βT = 0.
In other words, we say that parameters qij’s are singular parameters
if det BQ = 0, otherwise they are regular (i.e parameters in general
position). We have that there are no nontrivial constants in BQ (i.e
CQ = {0}) when the parameters qij’s are in general position. The space
CQ is nonzero only for singular parameters. Thus singular parameters
play the crucial role in computing (nontrivial) constants in BQ.
In this paper we shall distinguish two types of singular parameters
satisfying

Type 1: (Q-cocycle condition):

(20) cQ := {βQ = 0, βT 6= 0, ∀T $ Q}

or

Type 2: ((Q;T )-cocycle condition): for fixed T $ Q

(21) cQ;T := {βQ = 0, βT = 0, βS 6= 0, ∀S $ Q, S 6= T}

respectively. Notice that

(1) the Q-cocycle condition implies
CQ 6= {0}, CT = {0}, ∀T $ Q and

(2) the (Q;T )-cocycle condition implies
CQ 6= {0}, CT 6= {0}, CS = {0}, ∀S $ Q, S 6= T .

Sometimes, the Q-cocycle condition we shall simply call ‘top cocycle
condition’.
From our experience in finding constants in the cases |Q| ≤ 4 we guess
that Type 2 constants could be obtained from Type 1 constants by
certain specialization procedure. Thus in BQ it is enough to determine
the Type 1 constants.

Remark 10. We can rewrite the operator ∂Q (c.f. (19)) in terms of

simpler operators acting on BQ. Let T1,1 = id and let Tk,1 = TQ
k,1 be

given as follows

Tk,1 ej1...jn := qjkj1 · · · qjkjk−1
ejkj1...ĵk...jn

for each j1 . . . jn ∈ Q̂, 2 ≤ k ≤ n. Then ∂Q can be rewritten as

∂Q =
∑

1≤k≤n

Tk,1.

Moreower, we have the following (specialized) factorization (a special
case of the braid factorization from [2, Proposition 4.7] c.f. matrix



factorization from [6])

(22) ∂Q · CQ = DQ.

where

CQ := (id− Tn,1) (id− Tn−1,1) · · · (id− T3,1) (id− T2,1) ,

DQ :=
(
id− T 2

2,1Tn,2

) (
id− T 2

2,1Tn−1,2

)
· · ·
(
id− T 2

2,1T3,2

) (
id− T 2

2,1T2,2

)
.

Observe that the operators T 2
2,1Tk,2 appearing in DQ act as

T 2
2,1Tk,2 ej1...jn = q{j1,jk}qjkj2 · · · qjkjk−1

ej1jkj2...ĵk...jn .

Then (22) can be rewritten as

(23) ∂Q (id− Tn,1)M =
(
id− T 2

2,1Tn,2

)
N

where

M =
←∏

2≤k≤n−1

(id− Tk,1) , N =
←∏

2≤k≤n−1

(
id− T 2

2,1Tk,2

)
.

Under the top cocycle condition N is invertible and we can rewrite (23)
further as

∂Q (id− Tn,1)MN−1 =
(
id− T 2

2,1Tn,2

)

i.e.

∂Q (id− Tn,1)MN−1(Y ) =
(
id− T 2

2,1Tn,2

)
(Y ) for each Y ∈ B.

From this last formula we can relate: ker
(
id− T 2

2,1Tn,2

)
⊂ BQ to

ker ∂Q = the space of constants in BQ. To each Y ∈ ker
(
id− T 2

2,1Tn,2

)

the right hand side is zero, so the corresponding vector

(24) X :=
(
(id− Tn,1) ·M ·N−1 · Y

)
∈ ker ∂Q

belongs to ker ∂Q, hence is a constant in BQ. It turns out that

(25) dim
(
ker ∂Q

)
= dim

(
ker
(
id− T 2

2,1Tn,2

))
− dim (ker (id− Tn,1)).

This gives an alternative proof of a result of Frønsdal and Galindo
[4, Theorem 4.1.2] that the space of constants has dimension (n − 2)!
in the generic case.

WhenQ is a set, then the matrix BQ of the operator ∂Q (w.r.t monomial
basis BQ) is a n! by n! (monomial) matrix. Its determinant is given
explicitly as product of binomial factors βT :

(26) det BQ =
∏

T⊆Q
2≤|T |≤n

(βT )
(|T |−2)!(n−|T |)!



(c.f. [6, Theorem 1.9.2]), where βT = 1− qT , with qT =
∏

a 6=b∈T qab
given by (11). Here Q-cocycle resp. (Q;T )-cocycle condition take the
form

(27) cQ = {qQ = 1, qT 6= 1 for all T $ Q} ,

resp.

(28) cQ;T = {qQ = 1, qT = 1, qS 6= 1 for all S $ Q, S 6= T} .

4. Computation of nontrivial constants

In this section we are going to determine the explicit formulas for
nontrivial constants depending on the top cocycle condition, but also
for the appropriate (Q;T )-cocycle conditions. Here we shall not exam-
ine the constants depending on all singular parameters (see [4, Sub-
section 4.2.] for a detailed overview in the case |Q| = 3). In what
follows we shall give the dimension of the space CQ in the generic and
degenerate cases (for Type 1 and Type 2 constants).

4.1. Generic case. Let us examine the basic constants in generic sub-
spaces BQ, 2 ≤ |Q| ≤ 4.

4.1.1. Basic constants in the space BQ, |Q| = 2. Let Q = {l1, l2},
(l1 < l2). Then the matrix of ∂Q w.r.t the monomial basis Bl1l2 =
{el1l2 , el2l1} is

Bl1l2 =

(
1 ql1l2

ql2l1 1

)

and hence detBl1l2 = 1− q{l1,l2}.

So Q-cocycle condition is given by cl1l2 =
{
q{l1,l2} = 1

}
. If cl1l2 holds,

then

Cl1l2 = el1l2 − ql2l1el2l1 = Yl1l2

is a nontrivial constant in Bl1l2 , where Yl1l2 is the iterated q -commutator.
Thus the space of constants in Bl1l2 is the following 1-dimensional space
Cl1l2 = C {Yl1l2}.
It is easy to see that Cl1l2 = C {Yl1l2} = C {Yl2l1} (c.f. Proposition 6).
Here det Bl1l2 has only one factor of the binomial form 1− q{l1,l2}, so
we have only the Q-cocycle condition. In general, when Q-cocycle con-
dition does not hold, the space Cl1l2 is zero.



4.1.2. Basic constants in the space BQ, |Q| = 3. LetQ = {l1, l2, l3},
(l1 < l2 < l3). Then the matrix Bl1l2l3 of ∂Q w.r.t basis Bl1l2l3 =
{el1l2l3 , el1l3l2 , el3l1l2 , el3l2l1 , el2l3l1 , el2l1l3} is given by

Bl1l2l3 =




1 0 0 0 ql1l2ql1l3 ql1l2
0 1 ql1l3 ql1l3ql1l2 0 0

ql3l1ql3l2 ql3l1 1 0 0 0
0 0 0 1 ql3l2 ql3l2ql3l1
0 0 ql2l3ql2l1 ql2l3 1 0

ql2l1 ql2l1ql2l3 0 0 0 1




and its determinant is equal to

det Bl1l2l3 =
(
1− q{l1,l2,l3}

) ∏

1≤i<j≤3

(
1− q{li,lj}

)
.

Under the Q-cocycle condition

cl1l2l3 =
{
q{l1,l2,l3} = 1, q{li,lj} 6= 1 for all 1 ≤ i < j ≤ 3

}

we get that the space of constants is 1-dimensional Cl1l2l3 = C {Cl1l2l3},
where a basic constant Cl1l2l3 can be written as

Cl1l2l3 = ql1l2ql2l3
(
1− q{l1,l3}

)
X l1l2l3 + ql2l3ql3l1

(
1− q{l1,l2}

)
X l2l3l1

+ ql3l1ql1l2
(
1− q{l2,l3}

)
X l3l1l2

or shortly

(29) Cl1l2l3 =
∑

cyc

ql1l2ql2l3
(
1− q{l1,l3}

)
X l1l2l3

where X ijk (= eijk+ qjiqkiqkjekji) are defined in (12) and
∑

cyc denotes
the cyclic sum.

On the other hand, under (Q;T )-cocycle condition (T = {li, lj} ⊂ Q is
fixed) we obtain that the constant Cl1l2l3 further reduces to the iterated
q -commutator Ylilj lk , where {i, j, k} = {1, 2, 3}.
For example, assume that T = {l1, l2}. Then the condition (28) now
reads as follows

cl1l2l3;l1l2 =
{
q{l1,l2,l3} = 1, q{l1,l2} = 1, q{l1,l3} 6= 1, q{l2,l3} 6= 1

}
,

what implies q{l1,l3}q{l2,l3} = 1 i.e ql1l3ql3l1ql2l3ql3l2 = 1. In this case,
the constant (29) reduces to

Cl1l2l3 = ql1l2ql2l3
(
1− q{l1,l3}

)
(el1l2l3 + ql2l1ql3l1ql3l2el3l2l1)

+ ql3l1ql1l2
(
1− q{l2,l3}

)
(el3l1l2 + ql1l3ql2l3ql2l1el2l1l3) .



By using that

ql3l1ql1l2
(
1− q{l2,l3}

)
= ql3l1ql1l2

(
1−

1

ql1l3ql3l1

)
= −

ql1l2
(
1− q{l1,l3}

)

ql1l3
= −ql1l2ql2l3ql3l2ql3l1

(
1− q{l1,l3}

)
= −ql3l2ql3l1

(
ql1l2ql2l3

(
1− q{l1,l3}

))

and ql3l2ql3l1ql1l3ql2l3ql2l1 = ql2l1 we obtain

Cl1l2l3 = ql1l2ql2l3
(
1− q{l1,l3}

)
Yl1l2l3 ,

where Yl1l2l3 = el1l2l3 + ql2l1ql3l1ql3l2el3l2l1 − ql3l2ql3l1el3l1l2 − ql2l1el2l1l3 .

4.1.3. Basic constants in the space BQ, |Q| = 4. LetQ = {l1, l2, l3, l4},
(l1 < l2 < l3 < l4). The matrix Bl1l2l3l4 of ∂Q in the monomial basis
Bl1l2l3l4 has determinant given by

detBl1l2l3l4 =
(
1− q{l1,l2,l3,l4}

)2 ∏

1≤i<j≤4

(
1− q{li,lj}

)2 ∏

1≤i<j<k≤4

(
1− q{li,lj ,lk}

)
.

1) The space of Q-constants, under the Q-cocycle condition cl1l2l3l4 ={
q{l1,l2,l3,l4} = 1, q{li,lj ,lk} 6= 1, q{li,lj} 6= 1 for all 1 ≤ i < j < k ≤ 4

}
is

2-dimensional Cl1l2l3l4 = C {Cl1l2l3l4 , Cl1l2l4l3} with the following basis
elements

Cl1l2l3l4 =Zl1l2l3l4 + ql4l2ql4l3q{l1,l4} Zl1l4l2l3 + ql3l2ql4l2q{l1,l3,l4} Zl1l3l4l2 ,

Cl1l2l4l3 =ql3l4q{l1,l2,l3} Z
′
l1l2l3l4

+ ql4l2q{l1,l4} Z
′
l1l4l2l3

+ ql3l2ql3l4ql4l2q{l1,l3}q{l1,l3,l4} Z
′
l1l3l4l2

.

where

Zi1i2i3i4 :=ζi1i2i3i4

(
1− q{i1,i3}

qi3i1
V i4
i1i2i3

+
1− q{i1,i2}

qi1i2
V i4
i2i3i1

+qi3i2
(
q{i1,i2}q{i1,i3} − 1

)
W i4

i3i1i2

)
,

Z ′i1i2i3i4 :=ζi1i2i3i4

(
1− q{i1,i3}

qi3i1
W i4

i1i2i3
+

1− q{i1,i2}
qi1i2

W i4
i2i3i1

+
q{i1,i2}q{i1,i3} − 1

qi2i3q{i1,i2}q{i1,i3}
V i4
i3i1i2

)
,

ζi1i2i3i4 :=qi3i1(1− q{i1,i4})(1− q{i1,i2,i4})(1− q{i1,i3,i4}),

V m
ijk :=X ijkm − qmiqmjqmkq{i,j,k}X

mijk,

Wm
ijk :=X ijkm − qmiqmjqmk X

mijk

with X ijkm = eijkm − qjiqkiqkjqmiqmjqmkemkji (c.f. (12)).

2) (Q;T )-constants:



a) Let |T | = 2, T = {li, lj} ⊂ Q and let {lk, lm} = Q \ T . Then,
by using the additional condition q{li,lj} = 1, the two expres-
sions Cl1l2l3l4 and Cl1l2l4l3 turn out to be proportional. But we
have two independent constants given by simpler expressions
as the following iterated q -commutators Ylilj lklm and Ylilj lmlk

(c.f. (14)).
b) Let |T | = 3, T = {li, lj , lk} ⊂ Q and let {lm} = Q \ T . Then,

by using the additional condition q{li,lj ,lk} = 1, the two ex-
pressions Cl1l2l3l4 and Cl1l2l4l3 turn out to be proportional. In
this case we obtain one constant given by simpler expression[
Clilj lk , elm

]
qlmli

qlmlj
qlmlk

, where Clilj lk is given by (29). Thus the

space C(Q;T ) is one-dimensional.

Remark 11. According to Remark 10 for Q = {l1, l2, l3}, (l1 < l2 <
l3) under the Q-cocycle condition, if we take the following three linearly
independent vectors y1, y2, y3 ∈ ker

(
id− T 2

2,1T3,2

)
given by:

y1 = el1l2l3 + ql3l2q{l1,l3} el1l3l2 , y2 = el3l1l2 + ql2l1q{l2,l3} el3l2l1 , y3 =
el2l3l1+ ql1l3q{l2,l1} el1l2l3 , then their images xi under the correspondence
(24) in Remark 10 give the following three constants
Dl1l2l3 = (1− q{l1,l3})Yl1l2l3 + ql3l2q{l1,l3}(1− q{l1,l2})Yl1l3l2 ,
Dl2l3l1 = (1− q{l1,l2})Yl2l3l1 + ql1l3q{l1,l2}(1− q{l2,l3})Yl2l1l3 ,
Dl3l1l2 = (1− q{l2,l3})Yl3l1l2 + ql2l1q{l2,l3}(1− q{l1,l3})Yl3l2l1

written in terms of q-iterated commutators (c.f. (14)). It is easy to
check that all three constants above are proportional i.e Dl2l3l1 =
ql1l2/ql3l1Dl1l2l3 , Dl3l1l2 = ql2l3/ql3,l1Dl1l2l3 , hence the space of constants
is one-dimensional. Therefore, we can take that a basic constant in
Cl1l2l3 is given by Dl1l2l3 = (1−q{l1,l3})Yl1l2l3+ql3l2q{l1,l3}(1−q{l1,l2})Yl1l3l2

(compare with (29)).

Similarly, for Q = {l1, l2, l3, l4}, (l1 < l2 < l3 < l4) under the Q-
cocycle condition there are eight linearly independent vectors yj ∈

ker
(
id− T 2

2,1T4,2

)
given by yj =

(
id− T 2

2,1T4,2 +
(
T 2
2,1T4,2

)2)
ej

for j = l1l2l3l4; l1l2l4l3; l2l1l3l4; l2l1l4l3; l3l1l2l4; l3l1l4l2; l4l1l2l3; l4l1l3l2.
Their images xi under the correspondence (24) in Remark 10 give the



following two basic constants (written in terms of q-iterated commu-
tators (c.f. (14)):

Dl1l2l3l4 =ξl1l2l3l4Yl1l2l3l4 + ql4l3q{l1,l2,l4}ξl1l2l4l3Yl1l2l4l3

+ ql3l2q{l1,l3}ξl1l3l2l4Yl1l3l2l4 + ql3l2ql4l2q{l1,l3,l4}ξl1l3l4l2Yl1l3l4l2

+ ql4l2ql4l3q{l1,l4}ξl1l4l2l3Yl1l4l2l3

+ ql3l2ql4l2ql4l3q{l1,l4}q{l1,l3,l4}ξl1l4l3l2Yl1l4l3l2 ;

Dl1l2l4l3 =ql3l4q{l1,l2,l3}ξl1l2l3l4Yl1l2l3l4 + ξl1l2l4l3Yl1l2l4l3

+ ql3l2ql3l4q{l1,l3}ξl1l3l2l4Yl1l3l2l4

+ ql3l2ql3l4ql4l2q{l1,l3}q{l1,l3,l4}ξl1l3l4l2Yl1l3l4l2

+ ql4l2q{l1,l4}ξl1l4l2l3Yl1l4l2l3 + ql3l2ql4l2q{l1,l3,l4}ξl1l4l3l2Yl1l4l3l2 .

where ξi1i2i3i4 := (1− q{i1,i3})(1− q{i1,i4})(1− q{i1,i2,i4})(1− q{i1,i3,i4}).

Note that the last two basic constants are proportional respectively to
corresponding the basic constants Cl1l2l3l4 , Cl1l2l4l3 .

4.2. Degenerate cases. Here we consider Q-cocycle conditions βQ =
0 for some special Q of the following types:

Case 1: 1+ qii+ · · ·+ qm−1ii (= [m]qii) = 0, if Q = im (c.f. (9)).

Case 2: qm−1ii q{i,j} = 1, if Q = imj.

Case 3: qiiqjjq
2
{i,j} = −1, if Q = i2j2.

Case 4: q2iiq
2
{i,j}q

2
{i,k}q{j,k} = 1, if Q = i2jk.

4.2.1. Basic constants in the weight subspaces Bln1
, l1 ∈ N , n ≥

2. Let Q = ln1 . Then the matrix Bln1
of ∂Q in the monomial basis

Bln1
= {el1...l1} has determinant detBln1

= [n]ql1l1
, so the Q-cocycle con-

dition is: cln1 =
{
[n]ql1l1

= 0
}
. If cln1 holds, then Cln1 = C

{
eln1
}

i.e

dim Cln1 = 1, otherwise Cln1 = {0}.

4.2.2. Basic constants in the weight subspaces Blk1 l2
, Bl1l

k
2
, k ≥ 2.

We shall elaborate only the case Q = lk1 l2, l1 < l2, k ≥ 2. The matrix
Blk1 l2

of ∂Q w.r.t the monomial basisBlk1 l2
= {el1...l1l2 , el1...l2l1 , . . . , el2l1...l1}

has determinant

(30) det Blk1 l2
= [k]ql1l1

! ·
k∏

i=1

(
1− qi−1l1l1

q{l1,l2}
)
,

(c.f. formula (13) in [1, Section 6]), so the Q-cocycle condition is given

by clk1 l2 =
{
qk−1l1l1

q{l1,l2} = 1, qi−1l1l1
q{l1,l2} 6= 1, 1 ≤ i ≤ k − 1, [j]ql1l1

6= 0,



2 ≤ j ≤ k} . If the condition clk1 l2 holds, then it is easy to check that
the space Clk1 l2 is one-dimensional with the bases given by the iterated

q -commutator Yl2l
k
1
. To ilustrate this we take k = 2. Then Q = l21l2

and the matrix Bl1l1l2 of ∂Q w.r.t basis Bl1l1l2 = {el1l1l2 , el1l2l1 , el2l1l1} is
given by

Bl1l1l2 =




1 + ql1l1 ql1l1ql1l2 0
0 1 ql1l2(1 + ql1l1)

q2l2l1 ql2l1 1




and its determinant is equal to det Bl1l1l2 = (1 + ql1l1)(1− q{l1,l2})(1−
ql1l1q{l1,l2}). The nullspace of the matrix Bl1l1l2 one obtains by solving
the following system of equations:

(1 + ql1l1)α112 + ql1l1ql1l2 α121 = 0

α121 + ql1l2(1 + ql1l1)α211 = 0

q2l2l1 α112 + ql2l1 α121 + α211 = 0

If ql1l1 6= −1 we can take α211 as a free variable, then we get α112 =
ql1l1q

2
l1l2

α211, α121 = −ql1l2(1 + ql1l1)α211. Hence

ql1l1q
2
l1l2

e112−ql1l2(1 + ql1l1) e121 + e211 =
[
[el2 , el1 ]ql1l2

, el1

]
ql1l2ql1l1

= [Yl2l1 , el1 ]ql1l2ql1l1
= Yl2l1l1 (= Yl2l

2
1
)

(c.f. (14)) is a basic constant when ql1l1q{l1,l2} = 1 or q{l1,l2} = 1. On
the other hand, in the case ql1l1 = −1 we obtain α121 = 0, so here we
can take α112 as a free variable. Then we get α211 = −q2l2l1 α112. Hence
e112 − q2l2l1 e211 = [el1l1 , el2 ]q2

l2l1

= Xl1l1l2 (c.f. (13)) is a basic constant if

ql1l1 = −1. Note that under the Q-cocycle condition

cl21l2 =
{
ql1l1q{l1,l2} = 1, q{l1,l2} 6= 1, ql1l1 6= −1

}

the space Cl21l2 (of Q-constants) is one-dimensional, where the iterated
q -commutator Yl2l

2
1
is a basic constant. Similarly, we can show that

the space Clk1 l2 , k ≥ 2 is one-dimensional with a basic constant Yl2l
k
1
.

Now in special cases k = 2, 3 we elaborate (Q;T )-constants.

(1) In case Q = l21l2 we have two subcases T = l21 and T = l1l2,
(|T | = 2).

a) Let T = l21. Then, by using the additional condition ql1l1 =
−1, the basic constant Yl2l

2
1
can be written as the simple q -

commutator Xl1l1l2 = [el1l1 , el2 ]q2
l2l1

.

(Compare above given commutators Yl2l1l1 , Xl1l1l2 . Note that



ql1l1q{l1,l2} = 1 and ql1l1 = −1 imply q{l1,l2} = −1, so we can
take −q2l2l1 = 1/ql1l1q

2
l1l2

).
b) In the case T = l1l2, where we use the additional condition

q{l1,l2} = 1, the basic constant Yl2l
2
1
simplifies to [Yl2l1 , el1 ]ql1l2

.

(Note that ql1l1q{l1,l2} = 1 and q{l1,l2} = 1 imply ql1l1 = 1).

(2) In case Q = l31l2 we have four subcases T = l31, T = l21, T = l21l2,
T = l1l2.

a) Let T = l31. Then, by using the additional condition 1 + ql1l1 +
q2l1l1 = 0, the basic constant Yl2l

3
1
= e2111 − ql1l2(1 + ql1l1 +

q2l1l1) e1211+ ql1l1q
2
l1l2

(1+ ql1l1 + q2l1l1) e1121− q3l1l1q
3
l1l2

e1112 can be
written as the simple q -commutator Xl1l1l1l2 = [el1l1l1 , el2 ]q3

l2l1

.

(Note that 1 + ql1l1 + q2l1l1 = 0 implies q3l1l1 = 1, so we can take
q3l2l1 = 1/q3l1l1q

3
l1l2

).
b) Let T = l21. Then, by using the additional condition ql1l1 = −1,

the basic constant Yl2l
3
1
simplifies to [Yl2l1 , el1l1 ]q2

l1l2

.

c) In the case T = l21l2 with the additional condition ql1l1q{l1,l2} =

1, the basic constant Yl2l
2
1
simplifies to

[
[Yl2l1 , el1 ]ql1l2

, el1

]
ql1l2

.

d) In the case T = l1l2, where we use the additional condition
q{l1,l2} = 1, the basic constant Yl2l

2
1
simplifies to [Yl2l1l1 , el1 ]ql1l2

.

Similarly, we compute the basic constants in the weight subspaces Bl1l
k
2
,

k ≥ 2.

4.2.3. Basic constants in the weight subspaces Bl21l
2
2
, l1, l2 ∈ N ,

l1 6= l2. The matrix Bl21l
2
2
of ∂Q w.r.t Bl21l

2
2
= {el1l1l2l2 , el1l2l1l2 , el1l2l2l1 ,

el2l1l1l2 , el2l1l2l1 , el2l2l1l1} has determinant

detBl21l
2
2
= (1 + ql1l1) (1 + ql2l2)

(
1− q{l1,l2}

)2 (
1− ql1l1q{l1,l2}

)
(
1− ql2l2q{l1,l2}

) (
1 + ql1l1ql2l2q

2
{l1,l2}

)
.

Under theQ-cocycle condition cl21l22 =
{
ql1l1ql2l2q

2
{l1,l2}

= −1, q{l1,l2} 6= 1,

qlj ljq{l1,l2} 6= 1, 1 + qlj lj 6= 0, j = 1, 2
}

we obtain a basic constant

Cl21l
2
2
=ql1l2ql1l1ql2l2

(
1− q{l1,l2}

)
X l1l1l2l2 − (1 + ql1l1) (1 + ql2l2)X

l1l2l1l2

+ ql2l1ql2l2 (1 + ql1l1)
(
1− ql1l1q{l1,l2}

)
el1l2l2l1

+ ql2l1ql1l1 (1 + ql2l2)
(
1− ql2l2q{l1,l2}

)
el2l1l1l2

and the space of Q-constants is one-dimensional. Now we elaborate
(Q;T )-constants.



(i) Let T = l2i , i ∈ {1, 2}. Then, by using the additional condition
qlili = −1, the basic constant Cl21l

2
2
simplifies to the iterated

q -commutator Ylililj lj , {i, j} = {1, 2}.
(ii) Let T = l1l2. Then, by using the additional condition q{l1,l2} =

1, the basic constant Cl21l
2
2
simplifies to the following product

Yl2l1 · Yl2l1 or to
[
[el1 , Yl1l2 ]

+
ql2l1ql2l2

, el2

]
q2
l2l1

ql2l2

, where [x, y]+q =

xy + qyx denote the well known q-anticommutator.
(iii) Let T = l2i lj {i, j} = {1, 2}. Then, by using the additional

condition qliliq{l1,l2} = 1, the basic constant Cl21l
2
2
can be written

as the iterated q -commutator Ylj lililj .

4.2.4. Basic constants in the weight subspaces Bl21l2l3
, l1, l2, l3 ∈ N ,

l1 6= l2 6= l3 6= l1. In this case the determinant of the matrix BQ = Bl21l2l3

is given by

detBl21l2l3
=(1 + ql1l1)

2 (1− q{l1,l2}
)2 (

1− q{l1,l3}
)2 (

1− q{l2,l3}
)

(
1− ql1l1q{l1,l2}

) (
1− ql1l1q{l1,l3}

) (
1− q{l1,l2,l3}

)
(
1− q2l1l1q

2
{l1,l2}q

2
{l1,l3}q{l2,l3}

)
.

Under the Q-cocycle condition cl21l2l3 we obtain one-dimensional space

of Q-constants Cl21l2l3 = C
{
Cl21l2l3

}
with the basis element

Cl21l2l3
=ql1l1q

2
l1l2

(
1− q{l1,l3}

) (
1− ql1l1q{l1,l3}

)
X l1l1l2l3

+ ql1l1q
2
l3l1

(
1− q{l1,l2}

) (
1− ql1l1q{l1,l2}

)
X l2l3l1l1

− ql1l2 (1 + ql1l1)
(
1− ql1l1q{l1,l3}

) (
1− ql1l1q{l1,l2}q{l1,l3}

)
X l1l2l1l3

− ql3l1 (1 + ql1l1)
(
1− ql1l1q{l1,l2}

) (
1− ql1l1q{l1,l2}q{l1,l3}

)
X l2l1l3l1

+ ql1l2ql3l1 (1 + ql1l1)
(
1− ql1l1q{l1,l3}

) (
1− ql1l1q{l1,l2}

)
X l1l2l3l1

+
(
1− ql1l1q{l1,l2}q{l1,l3}

) (
1− q2l1l1q{l1,l2}q{l1,l3}

)
X l2l1l1l3 .

Now we elaborate (Q;T )-constants.

(a) Let T = l1l2l3. By using the additional condition q{l1,l2,l3} = 1,
the basic constant Cl21l2l3

can be written as the iterated q -

commutator [Cl1l2l3 , el1 ]ql1l1ql1l2ql1l3
(where Cl1l2l3 is given by (29)).

(b) Let T = l21lj , j ∈ {2, 3}. Then, by using the additional condition
ql1l1q{l1,lj} = 1, the basic constant Cl21l2l3

simplifies to Ylj l1l1lk ,

{j, k} = {2, 3}.
(c) Let T = l2l3. By using the additional condition q{l2,l3} = 1, the

basic constant Cl21l2l3
simplifies to Yl2l3l1l1 .



(d) Let T = l1lj , j ∈ {2, 3}. Then, by using the additional condition
q{l1,lj} = 1, the basic constant Cl21l2l3

still makes two independent

constants Ylj l1l1lk and Ylj l1lkl1 , {j, k} = {2, 3}.
(e) Let T = l21. Then, by using the additional condition ql1l1 = −1,

the basic constant Cl21l2l3
still makes two independent constants

Yl1l1l2l3 and Yl1l1l3l2 .

5. The relationship between basic constants in generic

and degenerated subspaces of the algebra B

In this section, by working under top cocycle condition, we will com-
pute the dimension of the space CQ of all constants in the weight sub-
space BQ of B. To achieve this we shall make use of some notations
from [3] and some considerations from [6] (c.f. Lemma 1.9.1).

Let Q = {l1 ≤ · · · ≤ ln} =
{
kn1
1 , . . . , knm

m , . . . , k
np
p

}
be a multiset of car-

dinality n (= n1 + · · · + np). Then we define the submultisets Qkm ,
(1 ≤ m ≤ p) by removing one copy of km from Q i.e Qkm = Q\{km} ={
kn1
1 , . . . , knm−1

m , . . . , k
np
p

}
. Further let Q̂km denotes the set of all mul-

tiset permutations of the multiset Qkm .

Let us now assume that a : Q̂ → C\{0} and bkm : Q̂km → C\{0},
1 ≤ m ≤ p are functions (analagous to those in [3]) defined by:

(31) a (j1 . . . jn) = qjnj1 · · · qjnjn−1 , j1 . . . jn ∈ Q̂,

(32) bkm

(
j1 . . . k̂m . . . jn

)
= qkmjn a

(
km j1 . . . k̂m . . . jn

)
,

j1 . . . k̂m . . . jn ∈ Q̂km which are called (in [3]) commutation factors. As
in Remark 4 we can rewrite (32) as follows

(33) bkm

(
j1 . . . k̂m . . . jn

)
= q{km,jn}qjnj1 · · · q̂jnkm · · · qjnjn−1 .

5.1. Singular orbits and the dimension of the space CQ. For
each 1 ≤ i ≤ n, let 〈ti,1〉 = {id, ti,1, (ti,1)

2, . . . , (ti,1)
i−1} be the cyclic

subgroup of (the symmetric group) Sn generated by the cycle ti,1 =
(1 2 ... i) ∈ Sn i.e

ti,1 =

(
1 2 · · · i− 1 i i+ 1 · · · n
2 3 · · · i 1 i+ 1 · · · n

)
.

Its set of inversions is given by I(ti,1) = {(1, i), (2, i), . . . , (i − 1, i)}.
Let us denote by t1,i the inverse of ti,1 (i.e t1,i = (ti,1)

−1). Then for

each j ∈ Q̂, 1 ≤ i ≤ n we have

(34) eti,1·j = ejt1,i(1)...jt1,i(n)
(= ejt1,i(1) · · · ejt1,i(n)

)



(c.f. [6, Sections 1.8]). The 〈ti,1〉 - orbit on BQ, generated by ej1...jn ,

j1 . . . jn = j ∈ Q̂, we denote by

B
(j1j2...ji)ji+1...jn
Q := spanC

{
etαi,1·j | 0 ≤ α ≤ i− 1

}
.

These orbits are in one by one correspondence to cyclic ti,1 - equivalence

classes (j1j2 . . . ji)ji+1 . . . jn of the sequences j ∈ Q̂. Notice that

Ti,1

(
etαi,1·j

)
= cα etα+1

i,1 ·j
, 0 ≤ α ≤ i− 1 (see Remark 10), where

c0 = qjij1qjij2qjij3 . . . qjiji−1
(= a (j1 . . . ji)),

c1 = qji−1jiqji−1j1qji−1j2 . . . qji−1ji−2
,

c2 = qji−2ji−1
qji−2jiqji−2j1 . . . qji−2ji−3

,

...

ci−2 = qj2j3qj2j4qj2j5 . . . qj2j1 ,

ci−1 = qj1j2qj1j3qj1j4 . . . qj1ji .

(Compare with ck, 0 ≤ k ≤ b− a treated in [6]; here they are modified

w.r.t the inverse of ta,b for a = 1, b = i). Hence Ti,1|B
(j1j2...ji)ji+1...jn
Q is

a cyclic operator such that

det
(
I − Ti,1|B

(j1j2...ji)ji+1...jn
Q

)
= 1−

∏

0≤α≤i−1

cα.

Now it is easy to see that a 〈ti,1〉 - orbit on BQ, |Q| = n is singular if

(35) 1−
∏

0≤α≤i−1

cα = 0

and it is long singular when i = n, where (35) reduces to

(36) 1−
∏

1≤a 6=b≤n

qlalb = 0.

The product runs over all n · (n− 1) pairs (lalb) of elements from the
multiset Q.
Note that (35) represents the top cocycle condition (20). Similarly, in
generic cases the appropriate top cocycle condition (27) is represented
with (36), because all orbits are long in generic ones.

Assume now that 〈ti,2〉, 2 ≤ i ≤ n be the cyclic subgroup of S1 × Sn−1

generated by the cycle ti,2 = (2 3 ... i) ∈ S1 × Sn−1 i.e

ti,2 =

(
1 2 3 · · · i− 1 i i+ 1 · · · n
1 3 4 · · · i 2 i+ 1 · · · n

)
.



The 〈t22,1ti,2〉 - orbit on BQ we denote by

B
j1(j2j3...ji)ji+1...jn
Q := spanC

{
e
t
β
i,2·j

| 0 ≤ β ≤ i− 2
}
.

These orbits are in one by one correspondence to cyclic ti,2 - equivalence

classes j1(j2j3 . . . ji)ji+1 . . . jn of the sequences j ∈ Q̂.

Then we have T 2
2,1Ti,2

(
e
t
β
i,2·j

)
= dβ etβ+1

i,2 ·j
, 0 ≤ β ≤ i− 2, where

d0 = q{j1,ji}qjij2qjij3qjij4 . . . qjiji−1
,

d1 = q{j1,ji−1}qji−1jiqji−1j2qji−1j3 . . . qji−1ji−2
,

d2 = q{j1,ji−2}qji−2ji−1
qji−2jiqji−2j2 . . . qji−2ji−3

,

...

di−3 = q{j1,j3}qj3j4qj3j5qj3j6 . . . qj3j2 ,

di−2 = q{j1,j2}qj2j3qj2j4qj2j5 . . . qj2ji .

(Compare with (33)). Here we obtain

det
(
I − T 2

2,1Ti,2|B
j1(j2j3...ji)ji+1...jn
Q

)
= 1−

∏

0≤β≤i−2

dβ.

Similarly as above a 〈t22,1ti,2〉 - orbit on BQ is singular if

(37) 1−
∏

0≤β≤i−2

dβ = 0

and it is long singular when (37) reduces to (36).
Hence we can conclude that a 〈ti,1〉 - orbit resp. 〈t

2
2,1ti,2〉 - orbit on BQ is

short singular when l.h.s. of (35) resp. l.h.s. of (37) is nontrivial divisor
of l.h.s. of (36).
Let Tk,1 denotes the matrix of the operator Tk,1 resp. T 2

2,1Tk,2 in the
monomial basis BQ, where I is identity matrix of T1,1. Then by using
the considerations of Remark 10 we can conclude that under the top
cocycle condition it is enough to strudy only the matrices (I− Tn,1),(
I− T2

2,1Tn,2

)
. If these matrices were transformed into a block-diagonal

matrices, then the number of blocks in a block-diagonal matrix corre-
sponds to the number of distinct singular orbits on BQ. Let
χ1 = the number of distinct singular 〈tn,1〉 - orbits on BQ,
χ2 = the number of distinct singular 〈t22,1tn,2〉 - orbits on BQ.

Then by applying (25) we have that the dimension of CQ can be calcu-
late by the formula:

(38) dim CQ = χ2 − χ1.



Now we are going to apply the Frønsdal’s approach in calculating the
dimensions of CQ depending on the top cocycle condition (c.f. [3, 3.2.5]).
Notice that in that paper all distinct singular orbits on BQ are exam-
ined, as well as on the weight subspaces BQkm

, 1 ≤ m ≤ p. Here it is
necessary that χ resp. χkm denotes the number of distinct singular
orbits on BQ resp. on BQkm

, 1 ≤ m ≤ p under top cocycle condition.
Then

(39) dim CQ =
∑

1≤m≤p

χkm − χ

where these numbers are

χ =
|Q̂|

n
=

(n− 1)!

n1! · · ·np!
, χkm =

nm · (n− 2)!

n1! · · ·np!
, dim CQ =

(n− 2)!

n1! · · ·np!
.

when all orbits are long singular. Particulary, if Q is set (i.e nm = 1,
for all m), then all orbits are long, thus

dim CQ = n · (n− 2)!− (n− 1)! = (n− 2)!.

In the general case determining the dimension of CQ in degenerated
cases is more complicated, because some singular orbits can be short.
In the following examples we shall determine dim CQ for some multisets
of cardinality n depending on the numbers of distinct singular orbits
on BQ and on BQkm

. Hence here we will use the Frosdal’s approach,
where we first assume that l1, l2, l3 ∈ N , l1 6= l2 6= l3 6= l1 and n ≥ 2.

Example 12. Let Q = ln1 . Then we have one short orbit on Bln1
but

also on Bln−1
1

. The short orbit on Bln1
is singular when 1 − qn−1l1l1

= 0

and the short orbit on Bln−1
1

is singular when 1−qnl1l1 = 0. By applying

the well known formula:

(40) 1− qk = (1− q)[k]q, (where [k]q =
k−1∑

i=0

qi and k ≥ 1),

on the factors 1 − qn−1l1l1
= (1 − ql1l1) [n− 1]ql1l1

, 1 − qnl1l1 = (1 −

ql1l1) [n]ql1l1
is obtained:

• if 1− ql1l1 = 0, then both orbits are singular (χ = χl1 = 1), so
dim Cln1 = 0;

• if [n− 1]ql1l1
= 0 then the orbit on Bln1

is singular, but the orbit

on Bln−1
1

is nonsingular (χ = 1, χl1 = 0). Hence dim Cln1 = −1;

• if [n]ql1l1
= 0 then the orbit on Bln1

is nonsingular, but the orbit

on Bln−1
1

is singular. Hence χ = 0, χl1 = 1 and dim Cln1 = 1.

Thus dim Cln1 = 1 when [n]ql1l1
= 0 (c.f. 4.2.1).



Example 13. Let Q = ln−11 l2. Then we have one long orbit on
Bln−1

1 l2
, but also on Bln−2

1 l2
and one short orbit on Bln−1

1
.

The long orbits are singular when 1−
(
qn−2l1l1

q{l1,l2}
)n−1

= 0 or by ap-
plying (40) when

1− qn−2l1l1
q{l1,l2} = 0 or

∑

0≤i≤n−2

(
qn−2l1l1

q{l1,l2}
)i

= 0.

The short orbit is singular when 1− qn−2l1l1
q{l1,l2} = 0. So we can con-

clude dim Cln−1
1 l2

= 1 when all orbits are singular i.e if 1−qn−2l1l1
q{l1,l2} = 0

(compare with 4.2.2).
On the other hand dim Cln−1

1 l2
= 0 when the short orbit is nonsingular.

Example 14. Let Q = ln−21 l22. Depending on parity of n − 2 we
distinguish two cases: (1) n− 2 = 2k and (2) n− 2 = 2k + 1 for all
k ≥ 0. In the first case we have the multiset Q = l2k1 l22 of the cardi-
nality 2k + 2 (k ≥ 0). Hence on Bl2k1 l22

there are k + 1 orbits, one of
them short. We have k orbits on Bl2k−1

1 l22
and one orbit on Bl2k1 l2

, all

long. The long orbits are singular when 1− q
k(2k−1)
l1l1

ql2l2q
2k
{l1,l2}

= 0

or 1 + q
k(2k−1)
l1l1

ql2l2q
2k
{l1,l2}

= 0 and the short orbit is singular when

1− q
k(2k−1)
l1l1

ql2l2q
2k
{l1,l2}

= 0. If all orbits are singular then by applying

(39) we obtain dim Cl2k1 l22
= k + 1− (k + 1) = 0. The space Cl2k1 l22

is
nonzero only in the case when the short orbit is nonsingular. Here
we have dim Cl2k1 l22

= k + 1− k = 1 when the top cocycle condition 1 +

q
k(2k−1)
l1l1

ql2l2q
2k
{l1,l2}

= 0 holds.

In the second case we have the multiset Q = l2k+1
1 l22 of the cardi-

nality 2k + 3 (k ≥ 0). Here we get: k + 1 long orbits on Bl2k+1
1 l22

,

k + 1 orbits, one of them short on Bl2k1 l22
and one long orbit on Bl2k+1

1 l2
.

The long orbits are singular when 1 − q
k(2k+1)
l1l1

ql2l2q
2k+1
{l1,l2}

= 0 or

1 + q
k(2k+1)
l1l1

ql2l2q
2k+1
{l1,l2}

= 0 and the short orbit is singular when 1 −

q
k(2k+1)
l1l1

ql2l2q
2k+1
{l1,l2}

= 0. dim Cl2k+1
1 l22

= k + 2− k − 1 = 1 when all orbits

are singular. It can be easily to seen that the top cocycle condition is

represent by 1−q
k(2k+1)
l1l1

ql2l2q
2k+1
{l1,l2}

= 0 and the space Cl2k+1
1 l22

is zero when

the short orbit is nonsingular. We can now conclude: dim Cln−2
1 l22

= 1

when 1 + (−1)n−2q
(n−2

2 )
l1l1

ql2l2q
n−2
{l1,l2}

= 0 (compare with 4.2.3). Here we

have used:

k(2k−1) =
2k(2k − 1)

2
=

(
2k

2

)
; k(2k+1) =

(2k + 1)(2k)

2
=

(
2k + 1

2

)
.



Example 15. In the case Q = ln−21 l2l3 all orbits are long. They

are singular when 1− q
(n−2)(n−3)
l1l1

qn−2{l1,l2}
qn−2{l1,l3}

q{l2,l3} = 0. We have χ =

n − 1, χl1 = n − 2, χl2 = χl3 = 1, hence dim Cln−2
1 l2l3

= 1. Compare

with 4.2.4.

Note that (36) represents ‘the generic top cocycle condition’. On
the other hand, by a certain specialization procedure from (36) we
can obtain the appropriate ‘degenerate top cocycle condition’ or the
values of parameters qij’s for which the space of all constants is zero
(c.f. examples 12–15). Therefore, this leads us to the conclusion that
‘the degenerate top cocycle condition’ can be constructed from some
‘generic top cocycle condition’. Thus the basic constants in degener-
ated BQ’s can be constructed from those in generic ones.
In accordance with that we can deduce that the fundamental problem
for finding the space of all constants in algebra B can be reduced to the
problem of determining the space of all constants belonging to generic
weight subspace BQ depending only on the top cocycle condition.

References

[1] M. Aguiar, Zonotopes, binomial braids and quantum groups, Annals of Com-

binatorics, 4 (2000), 433–468.
[2] G. Duchamp, A. Klyachko, D. Krob and J.-Y. Thibon, Noncommutative sym-

metric functions III: Deformations of Cauchy and convolution algebra, Discrete

Mathematics and Theoretical Computer Science, 1 (1997), 159–216.
[3] C. Frønsdal, On the classification of q-algebras, Lett. Math. Phys. 222 (1999),

708–746.
[4] C. Frønsdal and A. Galindo, The ideals of free differential algebras, J. Algebra

222 (1999), 708–746.
[5] S. Meljanac, A. Perica and D. Svrtan, The energy operator for a model with

a multiparametric infinite statistics, Journal of physics. A, mathematical and

general. 36 No. 23 (2003), 6337–6349.
[6] S. Meljanac and D. Svrtan, Determinants and inversion of Gramm matrices in

Fock representation of qkl-canonical commutation relations and applications
to hyperplane arrangements and quantum groups. Proof of an extension of
Zagier’s conjecture, preprint, arXiv:math-ph/0304040vl, 26 Apr 2003.

[7] D. Stanton, Constructive Combinatorics, UTM, Springer (1986).


