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ABSTRACT. Let N = {iy,i2,...,in} be a fixed subset of nonneg-
ative integers and let ¢;;, i, j € N be given complex numbers. We
consider a free unital associative complex algebra B generated by
N generators {e;};cn (each of degree one) together with N linear
operators 9;: B — B, i € N that act as twisted derivations on B.
The algebra B is graded by total degree. More generally B could
be considered as multigraded. Then it has a direct sum decompo-
sition into multigraded (weight) subspaces Bg, where ) runs over
multisets (over N'). An element C in B is called a constant if it is
annihilated by all operators 0;. Then the fundamental problem is
to describe the space C of all constants in algebra B. The space C
also inherits the direct sum decomposition into multigraded sub-
spaces Cg = Bo NC. Thus it is enough to determine the finite
dimensional spaces Cg.
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1. INTRODUCTION

Following the paper [3] by C. Frgnsdal, where he studied the clas-
sification of the ideals of ‘free differential algebras’ and g-algebras,
our study here is modeled on a unital associative complex algebra
B =C/{e;,e€i,---,eiy) with a multiparametric g-differential structure.
In the study of the universal R-matrix of quantum groups, the gen-
erators {e;}ien could be regarded as positive Serre generators and
the negative Serre generators are represented by g-differential oper-
ators {0; }ienr, which act on B according to the twisted Leibniz rule
0;(ejx) = d;jx + gi;¢;0i(x) for each x € B, where the parameters ¢;; are
(complex) values of a function g: N'x N'— C\{0}, (4,7) — ¢;. In

this twisted Leibniz rule we ‘mark’ each passing of d; through e; (from
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the left) by additional factor g;;, so 0; is a kind of generalized i-th
partial derivative. This rule is in direct relation to g;;-canonical com-
mutation relations (see [6, 1.1]), where the authors examine the Hilbert
space realizability of the {g¢;; }-multiparametric quon algebras. By com-
paring these two approaches it can be easily seen that the generator e;
should be regarded as the i-th creation operator and 0; as the i-th an-
nihilation operator in the Fock representation. Note that the algebra
B can also be considered as multigraded, and then the operators 0;,
of degree —1, respects the direct sum decomposition of B into multi-
graded subspaces By (Q a multiset over N'). The action of 9; on any
monomial e, ;. € By (where B denotes the monomial basis of Bg)
is given explicitly by

Oi(€jy..5n) = Z Qijr " Dijp—1Ci1.dp—1ipt1-in
1<p<n, jp=i
The number of terms in this sum is equal to the number of appearances
(multiplicity) of the generator e; in monomial e;, j, =e€; ---¢€j,. An
important special case is the following
82(6?) = (1 + qi; + qi- + -+ q{fl) 6?71 = [n]q“ 6?71,

where [n], =1+¢+ -+ ¢"!is a g-analogue of a natural number n.
We define a constant C' € B to be any element of B with the property
0;,C =0 for each 1 <p< N (i.e 9;C =0 for every i € N). Denote
by C the space of all constants in B. In our approch to determine
constants we define a multidegree operator 0 on B by 0 =), ,r€;0;,
which preserves the multigrading. Then C' is a constant iff 9C' =0 i.e
0;,C =0 for each i € NV.

Now we can study the restrictions 99 of 9 to Bg. If we denote by
Co the space of all constants in Bg, then Cog = Bg N C. In the case
Card () =1, zero is the only constant in Bg. Hence nontrivial con-
stants might exist only in the spaces Bg, Card Q > 2. Our procedure
of computing nontrivial constants in By is as follows. Let By denote
the matrix of 99. Its entries are given by (19) i.e by the polynomials
in g;;’s, so det By is also a polynomial in ¢;;’s. Of particular interest
is the study of det Bg. Namely, if det Bg # 0 (or equivalently in ter-
minology of Frgnsdal’s if the parameters ¢;;’s are in general position)
then Coy = {0}. The space Cg is nonzero only for singular parameters
¢i;'s for which det Bg = 0. In view of the fact that det Bg has a nice
factorization (c.f. Remark 10) with factors fr for each T C Q, |T'| > 2,
we are going to distinguish two types of singular parameters (c.f. (20)
resp. (21)), which we shall call Q-cocycle condition or top cocycle condi-
tion resp. (Q;T)-cocycle condition. In the description of certain basic



nontrivial constants belonging to Cqo we shall use certain iterated g-
commutators Y; and certain simple g-commutators X; and also some

binomials XZ defined in the Section 3. Next we study some singular
orbits (long and short) and explain the dimension of Cp (differently
than in [3]). Our motivation is to show that the basic constants in
degenerated Bg’s can be constructed from those in the generic case
by a certain specialization procedure. This leads us to the conclusion
that the fundamental problem of description the constants in C can
be reduced to the problem of determining the constants Cg in generic
subspaces Cg, under the top cocycle condition cg. Further studies
show that each ‘generic basic constant’ Cy € Co, @ =1y ...1, under
the top cocycle condition can be expressed in terms of (n — 1)! iterated
g-commutators Y ¢, where [; € @ is fixed and the remaining n — 1 in-
dices £ = j5...J, vary. The cases n = 3,4 are treated in Remark 11.
The cases n > 5 are more complicated and will not be considered here.

2. FREE ASSOCIATIVE COMPLEX ALGEBRA B

Let Ny = {0,1,...} be the set of nonnegative integers and let N' =
{i1,...,in} be a fixed subset of Nyg. Then we denote by B = By =
C (e, ..., eiy) the free (unital) associative C-algebra with N genera-
tors {e; }ienr, where degree of each generator ¢; is equal to one. We can
think of B as an algebra of noncommutative polynomials in N noncom-
muting variables e;,, ..., ¢e;,. Every sequence i, ... [, € N such that
Iy <--- <, we can think of as a multiset Q = {l; <--- <I[,} over
N of size n = |Q|, where |Q| = Card @) denotes the cardinality of the
multiset (). Sometimes, we will simply write Q =1 ...1,.

The algebra B is naturally graded by the total degree

(1) B=pn",

where B° = C and B" consists of all homogeneous noncommuting poly-
nomials of total degree n in variables e;,,...,e;,. We also have a finer
decomposition of B into multigraded components (= weight subspaces)

(2) B= b B

n>0,11 <<, l;EN

where each weight subspace Bg = B, ,,, corresponding to a multiset
@, is given by

(3) Bo = spanc {ejlmjn =€) €, [ J1-Jn € Q} .



Here Q = 5,Q = {o(ly...1,) | o € S,} denotes the set of all rearrange-
ments of the sequence [y, ... 1, (i.e @ is the set of all distinct permu-

tations of the multiset Q). Thus dim By = ‘@ ‘

Ifly,..., 1, € Nsatisfy l; < --- < l,, then Qisaset, Q = {ly,...,l,} C
N and the corresponding weight subspace Bg we call generic. Any
other weight subspaces Bg (i.e nongeneric) we call degenerate.

Denote by B&™" the (generic) subspace of B spanned by all multilinear
monomials and by B the (degenerate) subspace of B spanned by all
monomials which are nonlinear in at least one variable. Then the direct
sum decomposition (1) can be written in the form: B = B&" @ Bdee,

where
B = @ B:™, Blee = @ B%eg.

Q a set Q@ a multiset (not set)

Fix a map ¢: N XN — C, (i,j) — q;j, i,j € N. Complex numbers
¢i; s are treated as parameters and g can be interpreted as a point in
the parameter space cM.

On the algebra B we introduce N linear operators 0; = 9{: B — B,
1 € N, defined recursively, as follows:

(4) 9(1) =0, dilej) = 6,

(5) Oi(ejx) = dijx + qije;0;(x) for each x € B, i,j € N.

(Here 6;; =1if i = j, and 0 otherwise is a standard Kronecker delta.)
From (5) we see that the operators 0;, i € N act as a generalized i-th
partial derivative on the algebra B. As a result, they depend on addi-
tional parameters (complex numbers) g;;, so we say that 0; is a multi-
parametrically deformed i-th partial derivative or shortly g-deformed
i-th partial derivative. In particular, if all ¢;;’s are equal to one, then
0; coincides with a usual i-th partial derivative.

In what follows we shall consider B equiped with this ‘g-differential
structure’.

By abbreviating j; ... j, by j let us denote by B4 = {61 |j € @} the

monomial basis of Bg. Then by applying the formula (5) several times
we get an explicit formula for the action of J; on a typical monomial
e; € B as follows:

(6) ai(ej) = Z Qijy * - Qijkﬂejl.‘j;;...jn

1<k<n, j,=i



(c.f. eq. (21) in [5]). Here j,, denotes the omission of the corresponding
index jk.
Eg- 82(61321212) = @21G23€131212 t+ QSIQQQQQ3€132112 + QS1Q§2€I236132121-

In special case (where there is only one k,1 < k < n such that j, = 1)
the formula (6) is reduced to:

(7) 0i(€;) = Gijy *** Qi 1€y o ju-

Similarly, if jp =i for all 1 < k < n, then the formula (6) reads as:

(8) die}) = [nl,, e,

where

9) ), = > ¢"=1+q+-+¢" n>1
0<k<n—1

Note that formula (9) is a g-analogue of the natural number n, there-

fore, for ¢; = 1 from the formula (8) we get the classical formula

di(er) =n-el 1.

Suppose that « € B}, ;. Then for any y € B we have a formula more
general than (5):

(10) Oi(xy) = 0i(x)y + qu, - - - qu,, x0;(y) for each i € .

3. COMMUTATORS AND CONSTANTS IN ALGEBRA B
In order to write efficiently some constants in the algebra B we first

introduce the following abbreviations:
() for any subset T C @, |T'| > 2:

(11) qr = H dab

(c.f. eq. (4.1) in [4]); in particular i = GiQi;
(1) for any sequence j; ...Jj, we define X777 to be the following
binomials:

(12) X i=ep oA (0P ] @ie€in
1<a<b<p
(with X7t :=¢;, for p=1);
(ii7) for any sequence j ... j, we define Xj ; to be the following

simple g-commutators:
(13) Xj = ejl, X

o= [6'...'7 6‘:|
Ji---Jp J1---Jp—19 “Jp qujlmqujpfl



and let the iterated g-commutators Y}, ; be defined recursively
by

(14) YJ = €4, le~-jp = [le---jp717€jpj|

DipdrDipip—1

Remark 1. For p = 2 we have:

X2 = X5 = Yiijs = €j1js — aja Cjajr-

In the following three propositions we show how to compute the
action of 0; on the simple g-commutators, the iterated g-commutators
and binomials X7-J». (Note that for p =1 we get: 9; (e;,) = 0,5, for
each i € N.)

Proposition 2. Let p > 2, j1,...,j, € N. Then for cach i € N we
have

(15) 0 (Xj1.gp) = 05 (€j1gpr) €5,

Proof. By using (10) we get

Qijpdipi1 "'ijjp,1

0 (Xj1.gp) = 01 (€h1.jpr€ip = s~ Dipdpr €3 Ci1.rip1)
= [0i (€j.dgpr) €5 + Qi+ Gijyr €110 (€5,)]
~ Qi Ly 105 (€3,) €41gps + i3, €5, 01 (€41, 1) ]
= 0; (ejl...jp_l) €y — QijpBjpis *** Djpjp—1 €5 Oi (ejl...jp-l)
= [0 (Cidus) sl g g
It is clear that 0; (le.,,jp) =0 foreach ¢ ¢ {j1,...,Jp-1} O

Proposition 3. Let p > 2, j1,...,j, € N. Then for each i € N we
have

1—qi i)Y if i=
(16) 0 (Yii..5) :{ ( “1762}) B Héﬁ

where

(17) ijjgl "= Chgs Y;él...jp = [}/jjzl...jp_la ejp]
U1.0p}ydipiz ™ dpip—1

Proof. For p =2, Y}, = [ej,, ejQ]qun
ing (15) it follows that 81 (lejg) = 5ij1 (1 - qiquml)eh. If we ap-
ply (15) several times, then for any 2 <k <p we get 0; (Y}, ;) =
Oijy (1 = GijyQjujr) Y, ;.» Where Y . is given by (17) for j; =i. Fi-
nally, it follows (16).

= 6j1j2 — Qj2j1€j2j1 and by us-



Clearly, if qyj, j,) = 1, then 0; (le_,,jp) =0 for each i € N.
d

Remark 4. The expressions q;,j, - * * Gj,j,—1 T€SP- Qi1 o} Tinsz *** Dipjp1
appearing in (13) and (14) resp. (17) are in Frgnsdal [3, Subsections 2.2.
and 3.1.] denoted by a (ji...7jp) resp. bj, (Ja2---Jp) = rj,0 (Jijz - - - Jp)
and are called the commutation factors.

Proposition 5. Let p > 2, j1,...,j, € N. Then for eachi € N such
that i = j;, we have

ai (X]l--~]p)
e e (s ~ _1\p—1 e . ~
= ijr " Gigpy <ej1...jk..jp +(=1) H qﬁbﬁaoﬂjlﬁ-l,---Jpejp.‘.jk...jl>
1<a<b<p—1
and 0; (X71+J») = (0 otherwise. Here we have used the notation
Ui‘jkﬁ»lv""jp = H q{l,]m}
k+1<m<p

Proposition 6. If for some i # j € N qpj; = 1, then Yj; = —q;;Y;.

Proof. From qy; ;3 = 1 we obtain ¢;; = 1/¢;; and then Yj; = eje; —

qij€i€; = —qij (eiej - sz'ej@i) = —q;;Yi;. =
Corrolary 7. Let ji,...,j, € N,2 <p < Nandji # jo. If qijy = 1
then Y}Zjug._,jp = _Qj1jzy}1j2j3---jp‘

Definition 8. A constant in B is any element C' in B annihilated
by all 9;’s (i € N) i.e 9;(C) =0 for every i € N.

Denote by C = {C € B| 9;(C) =0, for all i € N'} the space of all
constants in B.
Observe that B® = C consists of trivial constants and in B* the only
constant is zero. Thus, nontrivial constants could exist only in the

space D,,5, B".

Definition 9. We define a multidegree operator 0: B — B by the

formula:
8 = Z (& 81-,
ieN

where e;: B — B are considered as (multiplication by e;) operators on

B.



Note that 0 is the operator of degree zero. Clearly,

0C =) e;0,C=0 iff 8C=0 forall icN.
ieN
Therefore C = ker 0, where ker 9 denotes the kernel of the multidegree
operator 0. The operator 0 preserves the direct sum decomposition
of the algebra B, i.e 0By C Bg. In other words, each subspace By is
an invariant subspace of 9. Denote by 9%: By — By the restriction of
0: B — B to the subspace By i.e

(18) 0% =0r  for every z € Bo.

Let Cg be the space of all constants belonging to Bg. Thus Cg = ker 9%
and Cg = By NC. The space C also inherits the direct sum decompo-
sition into multigraded subspaces Cqp. Hence the fundamental problem
to determine the space C can be reduced to determine the finite dimen-
sional spaces Cq (= ker 99) for all multisets @ over N.

Let |@Q] =n > 2 and let e;, j, be any basis element from a monomial
basis B¢ of Bg. Then by definition of 99 and using the formula (6) it
follows that

631 ]n E el ( 631 Jn = E :ei E : iy~ Qij—1€4,.. 5p..in

iEN iEN 1<k<n,jr=i
= E § Qijy * " qijk—leijl...j{;...jn
1<k<n €N, i=j
i.e

(19) 0 (€. jn) Z Dirgr * " Dirdge-1C5 1. Fpriin

1<k<n

for each j;...7, € @

Let Bg denotes the matrix of 99 w.r.t B¢ (considered with the Johnson-
Trotter ordering on permutations c.f. [7]).

For any muliset Q {k” . knp} (k; distinct) of cardinality |Q| =
ny +---+n, =: n the size of the matrix B is equal to the following
multinomlal coePﬁment

n! n
o ( ) (= dim Bo).
nil---ny Ny, ..., Ny

The entries of By are polynomials in ¢;;’s, hence its determinant is also
a polynomial in ¢;;’s. It turns out that the polynomial det By has a
nice factorization (which, in case @ is a set, has only binomial factors,
see (26)) with factors S for each T'C @, |T'| > 2. Thus, det By =0



implies that fr vanishes for at least one T° C Q).
Of particular interest are the actual values of parameters ¢;;’s (called
singular values or singular parameters) for which at least one f7 = 0.
In other words, we say that parameters ¢;;’s are singular parameters
if detBg =0, otherwise they are regular (i.e parameters in general
position). We have that there are no nontrivial constants in By (i.e
Co = {0}) when the parameters ¢;;’s are in general position. The space
Co is nonzero only for singular parameters. Thus singular parameters
play the crucial role in computing (nontrivial) constants in Bg,.
In this paper we shall distinguish two types of singular parameters
satisfying

Type 1: (Q-cocycle condition):

(20) €Q = {ﬁQ =0, Or 7& 0, vT ; Q}
or
Type 2: ((Q; T)-cocycle condition): for fixed T G Q

(21) CQT = {BQ :07 ﬁT:()? 55 %07 VS; Q; S#T}

respectively. Notice that
(1) the Q-cocycle condition implies
Co# {0}, Cr={0},VTSQ and
(2) the (Q; T)-cocycle condition implies
Co# {0}, Cr#{0}, Cs={0}, VSGQ,S#T.
Sometimes, the ()-cocycle condition we shall simply call ‘top cocycle
condition’.
From our experience in finding constants in the cases |Q] < 4 we guess
that Type 2 constants could be obtained from Type 1 constants by
certain specialization procedure. Thus in By it is enough to determine
the Type 1 constants.

Remark 10. We can rewrite the operator 9% (c.f. (19)) in terms of
simpler operators acting on Bg. Let 17, = i¢d and let Ty, = T,gl be
given as follows

TkJ Chodn = Dirg1 """ Dirdr-1C5041.. Gn v iin
for each jy...7, € @, 2 < k < n. Then 99 can be rewritten as
8Q - Z Tk71.
1<k<n

Moreower, we have the following (specialized) factorization (a special
case of the braid factorization from [2, Proposition 4.7] c.f. matrix



factorization from [6])
(22) 0% - Cg = Dy.
where
Co:=(td—Ty1)(id —Tp—11) - (id = T31) (id — Ta,),
Dq = (id — T3, Ty 2) (id — T5,Tr1) - - (id — T35, Ts2) (id — T3, Th2) -
Observe that the operators T22, 1T} 2 appearing in Dg act as
T3\ k25 g = Qr sy Dinio " Lindeos rijon oo

Then (22) can be rewritten as

(23) 99 (id — Tp1) M = (id — T3, Tn2) N
where
— <
M= ] Gd-Tw), N= ][] (id-T3Tz).
2<k<n-—1 2<k<n-—1

Under the top cocycle condition N is invertible and we can rewrite (23)
further as
09 (id — T,,1) MN ™" = (id — T3, T, »)
le.
99 (id — To,1) MN™Y) = (id — T3, Tn) (Y) for each Y € B.
From this last formula we can relate: ker (id — T 51Th2) C Bg to

ker 9% = the space of constants in Bg. To each Y € ker (id — T2271Tn,2)
the right hand side is zero, so the corresponding vector

(24) X = ((id—Tp1)-M-N"-Y) € ker 89
belongs to ker 99, hence is a constant in Bg. It turns out that

(25) dim (ker 99) = dim (ker (id — T3 ,Ty,2)) — dim (ker (id — T, 1)).

This gives an alternative proof of a result of Frgnsdal and Galindo
[4, Theorem 4.1.2] that the space of constants has dimension (n — 2)!
in the generic case.

When Q is a set, then the matrix B of the operator 99 (w.r.t monomial
basis Bg) is a n! by n! (monomial) matrix. Its determinant is given
explicitly as product of binomial factors Grp:

(26) det Bg = H (5T)(\Tl—2)!(n—|T|)!

TCQ
2<[T|<n



(c.f. [6, Theorem 1.9.2]), where f7 =1— qr, with gr = Ha#eT Gab
given by (11). Here Q-cocycle resp. (Q;T')-cocycle condition take the
form

(27) cg=1{ap=1, qp#1 forall T G Q},

resp.

(28) cor=1{00=1, qr=1, qs #1 forall SG Q, S #T}.

4. COMPUTATION OF NONTRIVIAL CONSTANTS

In this section we are going to determine the explicit formulas for
nontrivial constants depending on the top cocycle condition, but also
for the appropriate (Q;T)-cocycle conditions. Here we shall not exam-
ine the constants depending on all singular parameters (see [4, Sub-
section 4.2.] for a detailed overview in the case |Q| =3). In what
follows we shall give the dimension of the space Cg in the generic and
degenerate cases (for Type 1 and Type 2 constants).

4.1. Generic case. Let us examine the basic constants in generic sub-
spaces Bg, 2 < |Q] < 4.

4.1.1. Basic constants in the space By, |Q] = 2. Let Q = {l1, 2},
(I; < ly). Then the matrix of 99 w.r.t the monomial basis B;,;, =

{entys e, } is
I qu
B — 102
htz ( T, 1

and hence det By;, =1 — qq, .-
So ()-cocycle condition is given by ¢, = {Q{h,lz} = 1}. If ¢4, holds,
then

Clllz = €lly — Qi1 Claly = Y21l2

is a nontrivial constant in Bj,;,, where Y, ,, is the iterated g-commutator.
Thus the space of constants in B,;, is the following 1-dimensional space
Cii, =C {thz}'

It is easy to see that Cp;, = C{Y},;,} = C{Y},,} (c.f. Proposition 6).
Here det By,;, has only one factor of the binomial form 1 — gy, 1,1, so
we have only the (Q-cocycle condition. In general, when ()-cocycle con-
dition does not hold, the space Cy,;, is zero.



4.1.2. Basic constants in the space Bg, |Q| = 3. Let Q = {l1, 15,5},
(I1 < ly < l3). Then the matrix By, of 09 w.r.t basis B, =
{€111s155 €lrlsls s Clslilas Clalaly s Clalsly s Clalyls | 1S glven by

1 0 0 0 qiy1291415 qiyl,
0 1 Qs QisQls 0 0
Blllglg _ disl; 9151, disl 1 0 0 0
0 0 0 1 Qs Qsla Qs
0 0 QatsQiaty Qs 1 0
Qiaty Qialy Qials 0 0 0 1

and its determinant is equal to
det Blllzlg = (1 - Q{ll,l2,l3}) H (1 - q{llvl]}) :
1<i<j<3
Under the @-cocycle condition
Clllglg, - {q{ll,lz,lg} - ]-7 q{li,lj} 3& 1 fOI' all 1 S ? <] S 3}

we get that the space of constants is 1-dimensional Cj, 1,1, = C{Cl,1,1 },
where a basic constant Cj,;,;, can be written as

Clll2l3 = Ity (1 N q{l17l3}) Xl1l2l3 + stz sl (1 - Q{h,lz}) X12l3l1
+ QI3I1QZ112 (1 — Q{l27l3}) Xl3l1l2
or shortly
(29) Cl1l213 = Z qiy1591515 (1 — q{lhls}) Xl1l2l3
cyc

where X% (= e;ix + q;iqriqr;er;i) are defined in (12) and chc denotes
the cyclic sum.

On the other hand, under (Q;T")-cocycle condition (T = {l;,1;} C Q is
fixed) we obtain that the constant Cj,;,;, further reduces to the iterated
g-commutator Y;,; ., , where {i, 5, k} = {1,2,3}.

For example, assume that T'= {ly,ls}. Then the condition (28) now
reads as follows

Chtalsints = {0 otsy = L Guiey =1 Gy # 10 Quagsy # 1}

what implies g, 1,390 = 1 1€ G15Q50, G121 @131, = 1. In this case,
the constant (29) reduces to

0111213 = Q111591513 (1 - q{h,lg}) (€l11213 + QI2l1QZ311QI312613l211)
+ Qs qiy 1, (1 - Q{z2,13}) (6z31112 + Ql1z391213,CJz211€l2z113) .



By using that

1 i (1 = i)
Qi3l: dirls (1 - q{lz,lg}) = Q311 qia s (1 — ) — e ( i3 )
411154151, Qi1

= —qi1159151591312 91514 (1 - q{ll,lg}) = —qis12 9151 <QlllQQI2l3 (1 - q{ll,lg})>
and iyl Qist, Qs Dols Qioty, = Qinl, W€ Obtain
Clllglg = 44yl (1 - q{l1,l3}) Y0115
where  Yi 1,15 = €11515 + Qiaty Qisly Qists Clslaly, — Qiglo sl €lslyly — Qialy €lalyls-
4.1.3. Basic constants in the space Bg, |Q| = 4. Let Q = {l1, 12,3, 14},

(Ih < ly < I3 < ly). The matrix By, of 99 in the monomial basis
$B/,1,151, has determinant given by

det By, = (1 — Q{11,12,13,14})2 H (1- Q{zi,zj})2 H (1= qua,01) -
1<i<j<4 1<i<j<k<4

1) The space of Q-constants, under the ()-cocycle condition ¢y, =
{@iotsiy =1 Qg 1, quay #1 forall 1 <i<j<k<4}is

2-dimensional Cj 1,15, = C{Clisistss Clitorgs} with the following basis
elements
011121314 2211121314 + Quui5 Qial3 911,14} 211141213 + Qi Qialo 94y 15,14} 211131412,
Clll2l4l3 =q13149{11 12,15} Zl/]_l2lgl4 + i4129{11,14} Zl/1l4l213
+ Qusto Quaty Dt Qi 15} D0 s ey Zlytg1as -
where

o 111213 o 121371
QZ311 qu’LQ

1 - 11,2 i 1 - 11,1 i
Dot =Cooiis (LV il (UES R
+Qisis (q{il,iQ}q{il,ig} - 1) ‘/I/zl;zlzg) )

L — Giris) oo ri L — Qirin} 17
::Ci1i2i3i4 ( ] ‘1 - Wi14i2ig + ] .1 : I/Vi;igil
%311 Qivio

7!

11121314

+ 131112

q{i1,i2}q{i1,i3} - 1vz4 >
Qizizq{iy,i2}q{i1,i3} ’

Ci1i2i3i4 3:%31‘1(1 - q{i1,i4})(1 - Q{il,iQ,i4})(1 - Q{i1,i3,i4})v
o =X i Gk Qe X

[]nk ::Xijkm — Qi Gk Xmijk

with  XY75™ = €;itn — Q5iQkiQeGmiGm;Gmiemiji (£ (12)).

2) (Q;T)-constants:



a) Let |T| =2, T ={l;,[;} C Q and let {l;,l,,} = @\ T. Then,
by using the additional condition gy, ;;; = 1, the two expres-
sions Cy,1,151, and Cj,p,1,1, turn out to be proportional. But we
have two independent constants given by simpler expressions
as the following iterated g-commutators Y] and Y7,
(c.f. (14)).

b) Let |T| =3, T = {l;,l;,lx} C Q and let {l,,} = Q\ 7. Then,
by using the additional condition gy, ;5,3 = 1, the two ex-
pressions Cj,1,i,1, and Cj,p,1,1, turn out to be proportional. In
this case we obtain one constant given by simpler expression
[Cliljzk, elm}qlmliqlmqulmlk, where Cj,,y, is given by (29). Thus the

space C(qr) is one-dimensional.

1ljlkl’m 7rle

Remark 11. According to Remark 10 for Q = {l, 15,13}, (1 <l <
l3) under the Q-cocycle condition, if we take the following three linearly
independent vectors yq, y2, y3 € ker (z’d — TQ% 1T372) given by:

Y1 = €hilsls T Qsloqfly ls} Clhisles Y2 = €lsiily T Qiali Qs 13} Clslalys Y3 =
€ty T Qi3Glo,01 ) €lialy, then their images z; under the correspondence
(24) in Remark 10 give the following three constants

Dityt; = (1 = qi053) Yooty + Qsta @ 53 (1 = @qi100)) it

Dlglgll - (1 - q{l17l2}>1/igl3l1 + QI1Z3Q{Z1,Z2}(1 - q{lg,lg})Yizlll:w

Digiy1, = (1 - q{127l3}>§/l31112 + Ql2l1q{l2,l3}(1 - q{l17l3})Y23l2l1
written in terms of g-iterated commutators (c.f. (14)). It is easy to
check that all three constants above are proportional ie Dy, =
Qsts /sty Distotss Digints = Qots/ sty D1yt hence the space of constants
is one-dimensional. Therefore, we can take that a basic constant in
Ciya1 18 given by Dy 15 = (1—61{11,13})3/211213 +QI312(]{11,Z3}(1—Q{zl,b})}ﬁllgzg
(compare with (29)).

Similarly, for Q) = {ll,lg,l37l4}, (ll <l <3 < l4) under the Q-
cocycle condition there are eight linearly independent vectors y; €
ker (id — T3 ,Tyz) given by y; = (id — T3, Tus + (T22’1T472)2) e

for j = lilalsls; Lilalals; lalilsls; lalylals; Uslilaly; 3lilale; Lalylals; Lalylsl.
Their images z; under the correspondence (24) in Remark 10 give the



following two basic constants (written in terms of g-iterated commu-
tators (c.f. (14)):

Diyty1310 =8115131 Y tot3s T Quats Qi 0003 Stalolals Yol
+ nglﬂ{zl,13}&11312145/11131214 + QZ312Ql4l2Q{ll,l3,14}§lllgl4zg3/21131412
+ Qa5 91415 Q{zl,l4}flll41213 3/21141213
+ sty Qala Gigls Q{h,14}q{11713,l4}€l1l4l3l2 Y21l4l3l2 )
Dlll2l4l3 ZQZ3l4Q{ll,lz,l3}€11l2l3l4Y21l2l3l4 + €l1l2l413}/l112l4l3
+ Qato Q1044010531 Sl 31000 Y1311
+ %12QZ314Ql412Q{11,zg}Q{ll,13,l4}5111314l2Y11131412
+ Gt Qg 103 St lalals Y lalals + QaloQials iy 15,00 Sl lalsls Yilalsls -

where £i1i213i4 = (1 - q{il,if,})(l - q{il,i4})(1 - q{i17i27i4}>(1 - q{il,is,i4})'

Note that the last two basic constants are proportional respectively to
corresponding the basic constants Cj, 1,151, , Ciylalyls-

4.2. Degenerate cases. Here we consider ()-cocycle conditions g =
0 for some special @) of the following types:

Case 1: 1+¢q;+ - +q7 ' (=]m],,) =0, if Q=" (cf. (9)).

Case 2: qﬁ?’lq{i,j} =1, if Q =i"y.

Case 3: ql'iqjjq%i’j} =—1, if Q=14

Case 4: q%q%i’j}q%i’k}q{ﬁk} =1, if Q =1i*jk.
4.2.1. Basic constants in the weight subspaces Bz, [ € N, n >
2. Let @ =17. Then the matrix By of 99 in the monomial basis
Bip = {ey, .1, } has determinant det Bjp = [n], -, so the Q-cocycle con-

1°1

dition is: ¢ = {[n]qllll = 0}. If ¢» holds, then Cpp = C{el?} ie
dim Cp» = 1, otherwise Cj» = {0}.

4.2.2. Basic constants in the weight subspaces leflz, lelga k> 2.

We shall elaborate only the case Q) = l’flg, Iy < ly, k> 2. The matrix
By, of 09 w.r.t the monomial basis By, = {1y 110y €lyalys - - > Cloly. s }
has determinant

(30) det By, = [K],, ! (1- qlifl}(J{ll,zz}) ;

k
Qqtq°

i=1
(c.f. formula (13) in [1, Section 6]), so the Q-cocycle condition is given

by, = {ql’jﬁq{zl,zg} =L gt #1L,1<i<k-11[], #0



2 <j<k}. If the condition Cpiy, holds, then it is easy to check that
the space Cz'fzg is one-dimensional with the bases given by the iterated
g-commutator Yy ;x. To ilustrate this we take & = 2. Then Q = 131,
and the matrix By,,;, of 99 w.r.t basis By,1,1, = {€11110s Clitaly» €lolyly } 19
given by

T+ aquy  quuqus 0
Bllhlz = 20 1 QZ1l2(1 + Qlel)
qlgll ql2ll ]'

and its determinant is equal to det By, = (14 g1, ) (1 — qpuy 103) (1 —
Q11,941 12))- The nullspace of the matrix By ;,;, one obtains by solving
the following system of equations:

(14 qui) a1z + @i @, 121 =0
191 + @i (1 + @) @011 =0
CllZQh 112 + iy 121 + 211 =0

If 1,1, # —1 we can take asy; as a free variable, then we get ay10 =
2 _
qiy1,191,1, @211, 121 = —QI112(1 + th) ag11. Hence

2
41911, e112— i1, (1 + quiy) €121 + €211 = [[612, Gll]ql L, 0 Eh
172 diq1o9111,

= [Yl2l17 el1]q1112qllll = Yo, (: Y22l%)

(c.f. (14)) is a basic constant when ¢y, qq,0,3 = 1 or ¢, .3 = 1. On
the other hand, in the case ¢,;, = —1 we obtain ;91 = 0, so here we
can take aq1o as a free variable. Then we get g1 = _q12211 o115. Hence
e112 — Qi €211 = [en,5 elz]quzl = X1, (c.f. (13)) is a basic constant if

qi,;, = —1. Note that under the Q-cocycle condition
G2y, = {thlq{ll,lQ} =1, a{iy 12} # 1, 411 # _1}

the space Cpz, (of Q-constants) is one-dimensional, where the iterated
g-commutator Y},;2 is a basic constant. Similarly, we can show that
the space Cl’fl2’ k > 2 is one-dimensional with a basic constant Yy .
Now in special cases k = 2,3 we elaborate (Q;T)-constants.

(1) 1In case @Q =I3l, we have two subcases T = I? and T = Iy,
(IT] =2).
a) Let T = [3. Then, by using the additional condition q,;, =
—1, the basic constant Y;,;2 can be written as the simple g-
commutator Xj 5, = [ellll’el2]qz22ll'

(Compare above given commutators Y, Xi,1,1,- Note that

2l1l1y



Q440 = 1 and ¢, = —1 imply qq, 5,3 = —1, so we can
take _ql22l1 = 1/Ql1l1ql2112)'

b) In the case T' = lyly, where we use the additional condition
q{i 1y = 1, the basic constant Y,z simplifies to [}/22[1,611](”112.

(Note that g1, qq,,,3 =1 and qq, 1,3 = 1 imply ¢, = 1).

(2) In case Q = [3ly we have four subcases T =13, T =12, T = 21y,
T = lyly.

a) Let T =1[3. Then, by using the additional condition 1+ q;,;, +
qz;, = 0, the basic constant Vi = eanr — quin(1 + gy +
ql2111) €1211 + %111%2152(1 +qu, + %2111) €1121 — qlglzlql?’llz e1112 can be
written as the simple g-commutator Xj, 11,1, = €111, el2]q?l :

211
(Note that 1+ g, + q12111 = 0 implies qill =1, so we can take
b) Let T = [?. Then, by using the additional condition ¢,;, = —1,
the basic constant Y;,;s simplifies to [Y1,;,, ellll]qlgl :
1°2

¢) In the case T = I3l with the additional condition g1, qg, 1,3 =

1, the basic constant Y,z simplifies to | [V, e;,] ey

qQqiy ‘11112.

d) In the case T = lyly, where we use the additional condition

G, 1} = 1, the basic constant Y,z simplifies to [Yi,u1,, 6l1]qzlzg'

Similarly, we compute the basic constants in the weight subspaces B;, 5
k> 2.

4.2.3. Basic constants in the weight subspaces Bz, 1,12 € N,
1 7é l5. The matrix Bl%l% of 99 w.r.t %l%lg = {6[1111212, €l1lsl1105 Clilaloly s
€lol1l1les Clalylaly s 612121111} has determinant

2
det Bl%l% = (1 + thl) (1 + qlzb) (1 - q{ll,l2}) (1 - qllllq{ll,lz})
(1 - qulQQ{ll,lz}) (1 + thQlQZQQ%ll,b}) :

Under the Q-cocycle condition ¢z = {qllllql2l2q%ll7l2} =1L quu) # 1,
W00y F L1+ qu, #0,5 =1, 2} we obtain a basic constant

Cl%lg =190, 121, (1 o q{ll,l2}) Xhbbal (1 + th) (1 + QZ212) Xhiehts
+ oty Qiat, (1 + @) (1 = @y Qs 0}) €ntataty
+ oty @ity (1 Giats) (1 = Qata @i o)) €ataiato

and the space of ()-constants is one-dimensional. Now we elaborate
(Q; T)-constants.



(i) Let T =12, i € {1,2}. Then, by using the additional condition
qi,;;, = —1, the basic constant szlg simplifies to the iterated
g-commutator Y10, 14,7} = {1,2}.

(1) Let T' = l1l5. Then, by using the additional condition g, 1,3 =
1, the basic constant Cpzz simplifies to the following product

Yz Y2211 or to [6117 }/2112]+

+
dty iy €12 , where [z,y], =

2ly * 2
iy, Aoty

xy + qyx denote the well known g-anticommutator.

(ii1) Let T = I2l; {i,5} ={1,2}. Then, by using the additional
condition q;;,qq, 1,3 = 1, the basic constant C@@ can be written
as the iterated g-commutator Yj ;.

4.2.4. Basic constants in the weight subspaces By, l1, 12,13 € N,
li # lo # I3 # l1. In this case the determinant of the matrix Bg = Bz,
is given by
2 2 2
det Bl%blg = (1 + th) (1 - q{ll,lz}) (1 - q{ll,l3}) (1 - q{lst})

(1 - thQ{ll,lz}) (1 - QlelfJ{zl,lg}) (1 - q{ll,lZ,l?)})

(1 - q12111q?llJz}qfll’ls}q{l?’li‘}) :
Under the @Q-cocycle condition ¢pz;,;, we obtain one-dimensional space

of Q-constants Cp,, =C {0@1213} with the basis element

Crais =i, (1= qsy) (1= @ g i) Xlililals
+ @i, (1= qusy) (1= @iy ny) xlalslily
=t (14 gun) (1= @i sy) (1= @und oy ) X200
= @it (14 @) (1= aun @ y) (1= @@ o9 15y) X000
s (14 aun) (1= aun 9 i) (1= s g iny) XM
+ (1 = @i @ o) G tst) (1= @y i o) Qg 1y ) X 2000

Now we elaborate (Q; T')-constants.

(a) Let T' = l1lyl3. By using the additional condition gy, 4,1, = 1,
the basic constant Cpz,;, can be written as the iterated g-
commutator [Cy, 1,1, ell]qzlzlqzleqzle (where Cj, 1,1, is given by (29)).

b) Let T = 1?1, j € {2,3}. Then, by using the additional condition

( il
q,1,97,,,3 = 1, the basic constant szlgzg simplifies to Y,
{j7 k} = {27 3}

(c) Let T' = lyl5. By using the additional condition gy, ,; = 1, the
basic constant Cjz;,,, simplifies to Y111, -

1

Il



(d) Let T' = Lil;, j € {2,3}. Then, by using the additional condition
q{1,.1;3 = 1, the basic constant C’l%lzls still makes two independent
constants Yy,;,5,1, and Yyp,0,0,, {7, K} = {2,3}.

(e) Let T = [2. Then, by using the additional condition ¢,;, = —1,
the basic constant Cz,;, still makes two independent constants
Y21l11213 and }/l11113l2'

5. THE RELATIONSHIP BETWEEN BASIC CONSTANTS IN GENERIC
AND DEGENERATED SUBSPACES OF THE ALGEBRA B

In this section, by working under top cocycle condition, we will com-
pute the dimension of the space Cq of all constants in the weight sub-
space Bg of B. To achieve this we shall make use of some notations
from [3] and some considerations from [6] (c.f. Lemma 1.9.1).

> V'm0

dinality n (= n; + --- + n,). Then we define the submultisets Qy,,,
(1 < m < p) by removing one copy of k,, from @ i.e Qk,, = Q\{kn} =
{ky, .. krm=t o ky” ). Further let Qr,. denotes the set of all mul-
tiset permutations of the multiset Q).

Let us now assume that a: Q — C\{0} and by,, : Qr,. — C\{0},
1 < m < p are functions (analagous to those in [3]) defined by:

Let Q ={li <--- <l,} = {k",..., k", ... kp"} be a multiset of car-

(31) a(Ji---Jn) = Gujr = Gujuss  J1---Jn € Q,
(32) by, <j1...km...jn) :qkmjna(kmjl...km...jn),

1o Kkm - jn € Qp, which are called (in [3]) commutation factors. As
in Remark 4 we can rewrite (32) as follows

33) bk, (jl SRV -jn> = Qe g} Binis " Giaks """ D
5.1. Singular orbits and the dimension of the space Cg. For
each 1 < i < n, let (t;1) = {id, t;1,(ti1)? ..., (t;1)""'} be the cyclic

subgroup of (the symmetric group) S, generated by the cycle ¢;; =
(12..i) € S, i.e

po_ (12 i1 il e
ME 23 0 i 1+l o )
Its set of inversions is given by I(t;1) = {(1,%),(2,4),...,(1 — 1,4)}.

Let us denote by t;; the inverse of ¢;; (i.e t;; = (¢;1)"). Then for
each j € Q, 1 <7 <n we have

(34)

Cting = ejtl,i(l)"'jtl,z‘(“) (: ejt1,i(1) o ejh,i(n))



(c.f. [6, Sections 1.8]). The (t;1)-orbit on By, generated by e;, .,

Ji---Jn =J € Q, we denote by

B i spanc {ew, 5 | 0< @ <i— 1)

These orbits are in one by one correspondence to cyclic ¢; ; - equivalence
classes (jija...Ji)Jit1-..Jn of the sequences j € (. Notice that
Tiq <€t?1'1) = Ca€ot1j, 0<a<i—1 (see Remark 10), where

Co = 95s5195:52 5353 - - - Djsgi—n (: a (]1 .- ']i))v
C1 = Q5; 15951519172 - - - Lji—1di—2s

C2 = 5, o5, 195;—25iDjs—2j1 - - - Djs—2ji—3>

Ci—2 = Qj2539j2jaDjzgs - - - Djojis
Ci—1 = Q5152 9j1jsDrja - - - Djngi-
(Compare with ¢, 0 < k < b — a treated in [6]; here they are modified

w.r.t the inverse of ., for a = 1, b = 7). Hence 7}’1|Bglj2"'ji)ji““'j” is
a cyclic operator such that

det ([ _ E71’881]231)]z+1]n) — 1 _ H Ca-
0<a<i—1
Now it is easy to see that a (t;)-orbit on Bg, |@| = n is singular if
(35) 1— J] c=0
0<a<i-1
and it is long singular when i = n, where (35) reduces to
(36) 1- J[ @, =0
1<a#b<n

The product runs over all n - (n — 1) pairs (I ;) of elements from the
multiset Q).

Note that (35) represents the top cocycle condition (20). Similarly, in
generic cases the appropriate top cocycle condition (27) is represented
with (36), because all orbits are long in generic ones.

Assume now that (t;2), 2 < ¢ < n be the cyclic subgroup of Sy x S,
generated by the cycle ¢;5 = (23...9) € Sy X S,_; i.e

po 1 23 -+ 4—1 4 i+1 -+ n
2=\ 13 4 .- i 2 di+1 -~ n )



The (t3,t;2) - orbit on Bg we denote by
Bg(jﬂg"'ji)ji“'“j” = spang {eth,Z [0<B<i— 2} :

These orbits are in one by one correspondence to cyclic ¢; 5 - equivalence
classes ji(j2js - - - ji)jit1 - - - jn Of the sequences j € Q.
Then we have T22,1Tz‘,2 <et§2'i) =dg € g 0<p<i—2, where

do = Qj1.5iy Bij2 Gigs Tisga - - - Lisgi»
dl = 4{j1,ji-1}95:-15: 95— 152955 —143 - - - Dji—1§i—2>

dy = A{j1,5i—2395;—2§i—19Gi—25i Djs—2j2 - - - Djs—25i—3>

di_g = {41,533 95354 Djsjs Disje - - - Disgo>
di—g = {41,523} 9525395254 Djags - - - Ljogs-

(Compare with (33)). Here we obtain

det <I _ T;IEQ|Bg(j2j3---ji)ji+l---jn) —1_ H ds.

0<B<i—2

Similarly as above a (13 ,t;2) - orbit on By is singular if

(37) 1— ] ds=0

0<p<i—2

and it is long singular when (37) reduces to (36).
Hence we can conclude that a (f;1) - orbit resp. (t3t;2) - orbit on By is
short singular when Lh.s. of (35) resp. L.h.s. of (37) is nontrivial divisor
of Lh.s. of (36).
Let Ty, denotes the matrix of the operator T} ; resp. T22’1Tk72 in the
monomial basis B¢, where I is identity matrix of 77 ;. Then by using
the considerations of Remark 10 we can conclude that under the top
cocycle condition it is enough to strudy only the matrices (I — T, 1),
(I- T§71Tn72). If these matrices were transformed into a block-diagonal
matrices, then the number of blocks in a block-diagonal matrix corre-
sponds to the number of distinct singular orbits on Bg. Let

X1 = the number of distinct singular (¢, 1) - orbits on By,

X2 = the number of distinct singular (3 ¢, 2) - orbits on By,.
Then by applying (25) we have that the dimension of C¢ can be calcu-
late by the formula:

(38) dimCq = x2 — x1-



Now we are going to apply the Frgnsdal’s approach in calculating the
dimensions of Cg depending on the top cocycle condition (c.f. [3, 3.2.5]).
Notice that in that paper all distinct singular orbits on B are exam-
ined, as well as on the weight subspaces Bg, , 1< m < p. Here it is
necessary that y resp. xx, denotes the number of distinct singular
orbits on Bg resp. on Bg, , 1 <m <p under top cocycle condition.
Then

(39) dimCo = Y Xk, — X
1<m<p
where these numbers are
@l (-1 i - (n = 2)!
X = —— ——— - —

) n—2)!
n nyl---ny!

nyl--ony! nyl-eomp!
when all orbits are long singular. Particulary, if @ is set (i.e n, = 1,
for all m), then all orbits are long, thus

dimCop=n-n—-2)! =(n—1)! = (n—2)L

In the general case determining the dimension of Cg in degenerated
cases is more complicated, because some singular orbits can be short.
In the following examples we shall determine dim C¢ for some multisets
of cardinality n depending on the numbers of distinct singular orbits
on By and on Bg, . Hence here we will use the Frosdal’s approach,
where we first assume that Iy, 1y, l3 € N, [} # Iy # I3 # 1} and n > 2.

Example 12. Let @ = [f'. Then we have one short orbit on Bj» but
also on Bl?—l. The short orbit on Bj» is singular when 1 — ql’il_ll =0
and the short orbit on Bl?—l is singular when 1—¢;; = 0. By applying

the well known formula:
k-1
(40) 1-¢"=(1—q)kl,,  (where [k],=) ¢' and k>1),
=0
on the factors 1 — ¢ = (1 — qu,)[n— 1]%11, L—qy, = (1 -
Q1) [n]qz111 is obtained:
o if 1 —¢q;,;, =0, then both orbits are singular (x = x;, = 1), so
dim Cl’f = 0;
o if [n— 1]%11 = 0 then the orbit on Byx is singular, but the orbit
on Bjn-1 is nonsingular (x =1, x;, = 0). Hence dimCpp = —1;
o if [n] = 0 then the orbit on Bj» is nonsingular, but the orbit
on Bl?fl is singular. Hence x =0, x;;, =1 and dimCj» = 1.

Thus dimCp» =1 when [n], =0 (cf 4.2.1).

qiq1q



Example 13. Let Q =1[7"'l;. Then we have one long orbit on
Bpn-1,,, but also on B2, and one short orbit on Bp-1.

The long orbits are singular when 1 — (qﬁl_fq{ll,b})n_l =0 or by ap-
plying (40) when

1= ql?l?q{llvl‘z} =0 or Z (qﬁizq{llvl2})z =0.
0<i<n—2
The short orbit is singular when 1 — qﬁl’fq{lm} = 0. So we can con-
clude dim Clali—lb = 1 when all orbits are singular i.e if 1_‘1711_12‘]{l1,lz} =0
(compare with 4.2.2).
On the other hand dim Cl;z—l 1, = 0 when the short orbit is nonsingular.

Example 14. Let Q = [7"?12. Depending on parity of n — 2 we
distinguish two cases: (1) n—2=2k and (2) n—2=2k+1 for all
k > 0. In the first case we have the multiset Q = I3¥(2 of the cardi-
nality 2k +2 (k > 0). Hence on By there are k + 1 orbits, one of
them short. We have £ orbits on Bl%kfllg and one orbit on B, all

long. The long orbits are singular when 1 — qz]j(ik_l)QlﬂQQ%zkl by =0
or 1+ qﬁ(ikfl)qlzlgqffl by = 0 and the short orbit is singular when

1-— qlkl(ik_l)qbbqffl 1,3 = 0. If all orbits are singular then by applying

(39) we obtain dimCprz =k+1—(k+1)=0. The space Cpgryz is
nonzero only in the case when the short orbit is nonsingular. Here

we have dim Cl%kl% =k +1—Fk =1 when the top cocycle condition 1 +

k(2k—1
qll(ll )qlzlgq%lkl,h} = O hOldS.

In the second case we have the multiset Q = I?*™2 of the cardi-
nality 2k +3 (k > 0). Here we get: k+ 1 long orbits on Bl%k-ﬂl%,
k + 1 orbits, one of them short on Byzwz and one long orbit on BlflﬁLllQ.

The long orbits are singular when 1 — qi(ﬁkﬂ)qlgbq?l’ﬁ;} =0

1+ ql’j(ikﬂ)qblzq?m;} = 0 and the short orbit is singular when 1 —
k(2k . .
qll(i +1)q1252qfﬁ§;} = 0. dlmcl%lﬂ—ll% =k+2—k—1=1 when all orbits

are singular. It can be easily to seen that the top cocycle condition is

represent by 1—Qi(l2lk+1)lezQQ?ﬁE} = 0 and the space Cl§k+1 3 is zero when

or

the short orbit is nonsingular. We can now conclude: dim 61?7215 =1

n—2
when 1+ (—1)”_2ql(1l12 >ql212q?l;i} = 0 (compare with 4.2.3). Here we
have used:

pok-1) = A (%), papgny = CELDER _ (3 0T)



Example 15. In the case Q = I %515 all orbits are long. They
are singular when 1 — ql(ﬁl_Q)(n_g)qz:fz}QZﬁg}CI{lz,lg} = 0. We have y =
n—1 x5, =n—2, xi, = X1 = 1, hence dimcl?_zbl3 = 1. Compare

with 4.2.4.

Note that (36) represents ‘the generic top cocycle condition’. On

the other hand, by a certain specialization procedure from (36) we
can obtain the appropriate ‘degenerate top cocycle condition’ or the
values of parameters ¢;;’s for which the space of all constants is zero
(c.f. examples 12-15). Therefore, this leads us to the conclusion that
‘the degenerate top cocycle condition’ can be constructed from some
‘generic top cocycle condition’. Thus the basic constants in degener-
ated Bg's can be constructed from those in generic ones.
In accordance with that we can deduce that the fundamental problem
for finding the space of all constants in algebra B can be reduced to the
problem of determining the space of all constants belonging to generic
weight subspace B depending only on the top cocycle condition.
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