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Abstract - In recent decades there has been an exponential 

growth in quantity of collected data. Various data mining 

procedures have been developed to extract information 

from such large amounts of data. Handling ever increasing 

amount of data generates increasing demand for computing 

power. There are several ways of dealing with this demand, 

such as multiprocessor systems, and use of graphic 

processing units (GPU). Another way is use of field 

programmable gate array (FPGA) devices as hardware 

accelerators. This paper gives a survey of the application of 

FPGAs as hardware accelerators for data mining. Three 

data mining algorithms were selected for this survey: 

classification and regression trees, support vector machines, 

and k-means clustering. A literature review and analysis of 

FPGA implementations was conducted for the three selected 

algorithms. Conclusions on methods of implementation, 

common problems and limitations, and means of 

overcoming them were drawn from the analysis. 

I. INTRODUCTION 

Thanks to development of computer systems and its 
applications, the last several decades have been marked by 
exponential growth of collected data in all areas of human 
activity. To deal with this continuous and increasing 
influx of data it was necessary to develop computational 
methods for extracting information and discovering 
knowledge. Computational process of non-trivial 
information extraction is called data mining. Data mining 
makes use of methods from closely related fields such as 
statistics, artificial intelligence, machine learning, pattern 
recognition and databases. 

With most data mining methods, the quantity of data 
directly impacts computational load. High computational 
loads occur because many problems include large 
quantities of data and require carrying out complex 
computations in many-dimensional space. The issue of 
computational load is a significant one. Quantity of 
collected data continually increases which implies that 
available compute power must increase to keep up with it. 

Since CPU clock frequency no longer increases by the 
Moore’s law, increase in compute power must be achieved 
by other means. One approach to the problem is using 
multi-core processors, multiprocessor systems, and 
computer clusters, where the program is still executed on 
general purpose CPUs. Another approach is using 
hardware accelerators, where the compute-intensive parts 
are executed on special purpose units. Currently available 
accelerator units are graphics processor units (GPU) and 
field programmable gate array (FPGA) devices, which are 
the focus of this paper. Both platforms have their 
advantages and disadvantages, and a review of their 

capabilities in compute-intensive applications is presented 
in [1]. 

FPGAs are integrated circuits designed to be 
configured by the user after manufacturing. An FPGA 
contains a matrix of configurable logic blocks and a 
hierarchy of reconfigurable interconnects that allow the 
blocks to be connected together. A configurable logic 
block contains look-up tables, multiplexers and flip-flops 
which together with interconnect allow performance of 
complex combinatorial and sequential functions and 
implementation of a wide variety of digital systems as 
well. Modern FPGAs also contain specialized memory, 
arithmetic, and communication blocks which enable more 
efficient implementations of digital systems. By allowing 
implementation of custom computational architectures 
FPGAs provide opportunities for exploitation of 
parallelism inherent in implemented algorithm. 

This paper gives a review of current development in 
FPGA based hardware acceleration of select data mining 
algorithms. There are many algorithms developed for, and 
being used in data mining. From the multitude of 
algorithms Wu et al. in [2] present the top ten identified by 
the IEEE International Conference on Data Mining in 
December 2006. Of those ten, three have been selected for 
this survey: classification and regression trees, support 
vector machines, and k-means clustering. For the selected 
algorithms a survey of literature had been conducted, and 
found implementations have been analyzed. 

This paper is organized as follows: Short introduction 
to selected algorithms is given in Section II; Results of 
literature survey are presented in Section III; Analysis of 
characteristics common to most FPGA implementations 
are presented in Section IV; Conclusions are given in 
section V. 

II. SELECTED ALGORITHMS 

To limit the scope of this survey, three algorithms 
have been selected from the ten identified by Wu et al. [2]. 
Data mining tasks of primary interest were classification 
and clustering as arguably the most common tasks. Of the 
top ten algorithms, five—C4.5, classification and 
regression trees, support vector machines, k-nearest 
neighbors, and naïve Bayes—are used for classification 
and two—k-means and expectation maximization—are 
used for clustering. As consequence of this count, two 
classification and one clustering algorithms were selected. 
The final criterion for selection was perceived amenability 
to fine-grained parallelization. The seven algorithms were 
analyzed with special attention paid to repeated use of 
same arithmetic and logic operations over multiple data, 
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and possibilities of pipelining the algorithms’ 
implementations. From this analysis classification and 
regression trees, support vector machines, and k-means 
clustering emerged as algorithms with potentially highest 
gains from fine-grained parallelization. 

A. Classification and Regression Trees 

Classification and regression tree (CART) is a decision 
and regression tree learning algorithm. In decision trees 
the output is a prediction on class to which the data item 
belongs. In regression trees the output is a real number, 
and the tree represents an approximation of the function 
that maps input data to predicted outcome. One other well 
known decision tree learning algorithm is C4.5. Decision 
trees are easy to interpret, can readily be converted into a 
set of “if-then” rules, and can work with incomplete data. 

Decision trees consist of nodes and leaves. Nodes 
represent simple attribute test which splits the data and 
determines branching of the tree into two or more 
branches. Leaves represent predicted class labels of the 
input data—the classification of the data. Classification is 
performed passing the data through the tree starting at the 
root node. Attributes are tested at each node and braches 
followed as determined by the test. When a leaf is reached 
its associated class label is the classification output. 

CART algorithm constructs binary trees, and can work 
with categorical and numerical attributes. It works with 
“raw” data, i.e. it doesn’t require preprocessing of data. 
The learning process is based on finding a test that defines 
the best split of the data. Test for categorical attributes is 
defined as “attribute Xi = C”, and for numerical as 
“attribute Xi ≤ C”. Split quality is estimated by some 
information metric. Commonly used metrics are Gini 
impurity, and entropy. Once the attribute test giving the 
best split is found, the data is split according to it and 
procedure repeated recursively on the obtained subsets. To 
prevent overfitting, the splitting process can be stopped 
early by some rule, or pruning process may be run after 
the tree is built. 

B. Support Vector Machines 

Support vector machine (SVM) is one of the most 
popular methods for classification. The main idea of this 
method is finding a classification function that separates 
points from two classes from by finding a hyperplane that 
separates them optimally. For training set {xi, yi}, where 
xi ∈ ℝn, and yi ∈ {-1, 1}, classification function is of form: 
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where: t is point (vector) to be classified, αi are positive 
real constants, b is a real constant, and K(t, xi) is a kernel 
function. Kernel function maps points from original space 
into a space where they become linearly separable. Some 
commonly used kernels are linear, polynomial, and 
Gaussian. 

Hyperplane that optimally separates the sets is the one 
that maximizes the margin, i.e. which maximizes the 
distance from the hyperplane to the nearest vectors from 

both sets. For sets that cannot be completely separated the 
soft margin is introduced, which allows some level of 
misclassification of the training set. The points closest to 
the hyperplane are named support vectors, and they define 
the classifier. Finding classifier parameters αi is a 
quadratic optimization problem. There are several 
algorithms for learning SVMs, e.g. sequential minimal 
optimization, and gradient projection. 

C. K-means Clustering 

K-means clustering is a simple iterative procedure for 
dividing a set of points into a predefined number k of 
clusters. Algorithm is executed on a set of d-dimensional 
vectors {xi, xi,…, xn}, where xi ∈ ℝd. Clusters 
{S1, S2,…, Sk} are represented by their centers µj. 

The algorithm starts by choosing k points from ℝd 
which will be the starting values for centers µj. These 
points can be chosen in several ways, e.g. randomly of 
using some heuristic. After initialization of centers, the 
following two steps are iterated until the algorithm 
converges: (a) clusters are formed by assigning points to 
their closest center, and (b) new centers are found by 
computing the mean of all points in a cluster. Algorithm 
converges when points no longer change clusters. For 
distance metric, Euclidian distance is most common. 

III. LITERATURE SURVEY RESULTS 

A. Classification and Regression Trees 

Survey of literature uncovered only one publication on 
FPGA implementation of decision tree learning. 
Narayanan et al. [3] have used FPGA to implement 
decision tree induction system for binary classification. 

Gini impurity computation was implemented in 
hardware, as computationally most intensive part of 
learning process. One peripheral unit contains 16 Gini 
units working in parallel, as well as additional logic for 
finding the minimum Gini impurity and its associated data 
split. The peripheral unit is connected to the CPU’s local 
bus. The implementation uses 16.16 fixed-point 
arithmetic. Algorithm is executed on a PowerPC CPU 
embedded in the FPGA device. The system is 
implemented on Xilinx Virtex-II Pro platform, with 
100 MHz clock rate. The achieved speedup is 5.58× 
compared to pure software implementation running on the 
same platform. 

B. Support Vector Machines 

The research in hardware implementations of SVM is 
closely related research in embedded systems. As 
consequence using floating-point arithmetic is usually 
avoided in order to reduce energy consumption, and to 
reduce usage of logic resources in FPGAs. 
Computationally most intensive part of SVM training 
process is the matrix-vector multiplication. 

Anguita et al. propose in [4] what was probably the 
first FPGA implementation of SVM training. In the paper 
they present a concise analysis quantization error and its 
influence on performance of SVM, with emphasis on 
fixed-point arithmetic and its influence. They present a 
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new SVM training algorithm suited for hardware 
implementation using fixed-point arithmetic. Algorithm 
has two phases which are executed alternately. In the first 
phase the quadratic optimization problem of finding 
parameters αi with fixed parameter b is solved. In second 
phase the found parameters αi are fixed and parameter b is 
found using bisection method. The training process is 
executed in hardware only. Calculation of sum ∑i qij αj is 
parallelized using up to 32 processing units. Using fixed-
point arithmetic (8.8 to 16.13 formats), classifiers 
achieved performance comparable to the classifiers with 
floating-point training. The systems was implemented on 
Xilinx Virtex-II platform, with 19 to 35 MHz clock rate, 
depending on word width. 

Pedersen et al. [5] have experimented with speeding 
up classifying with and training SVMs. Their focus was 
on accelerating scalar product computation by introducing 
hardware multiply-accumulate unit (MAC). The program 
was run on a hardware Java virtual machine [6] with the 
MAC unit attached to it. The system was implemented on 
Altera Cyclone platform, with 100 MHz clock rate. 
Speed-up achieved by using MAC unit was up to 59.8 % 
for training, and up to 6.5 % for classification. 

Cadambi et al. in [7] present and advanced architecture 
of SVM training coprocessor. They use fixed-point 
arithmetic in 16.16 format, and on two of the datasets in 
16.4 format. The system consists of a computer that 
executes training algorithm and an FPGA coprocessor for 
scalar product computation. Coprocessor contains 128 
processing elements, which execute multiplication and 
accumulation, organized in 4 clusters, each containing 4 
fields of 8 elements. Coprocessor uses local memory to 
store training set vectors, and uses buffers to enable the 
computation to run simultaneously with data transfer to 
and from the computer. Buffers are used to hide the data 
transfer latency and prevent stalling the coprocessor. The 
system was implemented on Xilinx Vitex-5 platform. 
Training time was compared to scalar and vector software 
implementations running on dual-core 2.2 GHz Opteron 
CPU. Speed-ups were 18.2× compared to scalar, and 6.5× 
compared do vector implementation. 

Cao el al. in [8] present an implementation developed 
for Keerthi’s training algorithm [9]. Keerthi introduces 
error matrix: 

 ( ) j

j
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which is used for correction of parameters αj, and b. To 
find the lower and upper bound of parameter b, a 
comparison is made over all ei. This two parts of the 
algorithm—computation and comparison of ei—are 
parallelized by means of error cache update (ECU) units. 
ECUs implement computation of error matrix elements 
and tracking of upper and lower bound of parameter b. 
ECU contains Gaussian kernel look-up tables, and MAC 
units for ei computation. Additionally, each ECU has its 
own local memory used for storing training vectors and 
temporary parameter values. The authors have 
investigated classifier performance achieved with different 
combinations of word widths and sizes of Gaussian kernel 

look-up table. Classifier with 16-bit arithmetic and table 
size of 1024 values, achieved classification accuracy equal 
to that of reference software classifier with floating-point 
arithmetic. The system was implemented on Xilinx 
Virtex-4 platform, with 75 MHz clock rate. 

Papadonikolakis and Bouganis in [10] present an 
architecture that takes into account attribute data ranges of 
training datasets. They classify datasets as homogenous, in 
which dynamic ranges of attributes are equal, and 
heterogeneous, in which attributes have highly differing 
dynamic range, They identify evaluation of kernel 
functions as the most time consuming part of the 
algorithm and implement this functionality in hypertiles. 
Hypertiles implement scalar product using parallel fixed-
point multipliers and a pipelined adder tree, followed by a 
floating-point kernel processor. For heterogeneous 
datasets each individual multiplier’s arithmetic format is 
adapted to its input data format in order minimize its 
resource usage and to make the hypertile as compact as 
possible. The training vectors are stored in FPGA’s local 
memory. Their approach requires training set analysis 
before implementing the hypertiles in order to extract 
attribute’s data ranges. The system was implemented on 
Altera Straix III platform. 

Wang el al. in [11] present a least squares SVM [12] 
implementation targeted for online SVM training in 
embedded systems. They partition the system into static 
and reconfigurable part. The static part contains embedded 
CPU, memory controllers and peripherals required for 
algorithm execution and communication with the host 
computer. They identify two parts of LS-SVM training 
algorithm as the most time consuming: the kernel matrix 
formulation and the least square problem solution, which 
are implemented as the reconfigurable parts of the system. 
The reconfigurable parts were loaded into the FPGA when 
the algorithm required them. The kernel matrix 
formulation is implemented with 8 kernel processing 
elements working in parallel. The least squares problem 
solver implements Cholesky matrix decomposition using 
8 parallel processing elements for computing scalar 
product. The algorithm FPGA’s external memory was 
used for storing intermediate results. The entire design 
uses single precision floating-point arithmetic. The system 
was implemented on Xilinx Virtex-5 platform with 
150 MHz clock rate. Performance was compared to 
2.93 GHz Xeon computer. Achieved speedups were in 
range from 6.02× to 218.45× for 512 to 8192 training 
samples. 

C. K-means clustering 

FPGA implementations of k-means clustering are 
primarily focused on image and video processing 
applications. Research is for the most part focused on 
computation of distance metric, which is the most 
computationally intensive part of the algorithm. 

Estlick et al. [13] considered two modifications of the 
algorithm which could increase the available parallelism: 
alternative distance metrics, and smaller word width of 
input vectors. Alternative metrics were experimentally 
evaluated and the Manhattan distance—∑i |xi − µi|—was 
found to be the most suitable with respect to quality of 
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clustering and complexity of implementation. 
Experimentally was demonstrated that input data word 
width can be significantly decreased without adversely 
affecting clustering quality. The implementation used 
Manhattan distance metric, without word width decrease. 
FPGA uses two private external memories: one for storing 
pixel values, and the other for storing clustering results. 
The system is organized in a pipeline which executes 
distance computation, and finding minimum distance and 
associated cluster. Software that runs on host computer 
loads the pixels into the FPGA memory, and sets new 
cluster center values for each iteration. The system was 
implemented on Xilinx Virtex platform, with 50 MHz 
clock rate. The achieved speed-up was 200× compared to 
software implementation executed on a 500 MHz 
Pentium III computer. 

Gokhale et al. [14] implemented k-means clustering 
for segmenting hyperspectral images. Their system was 
implemented on Altera Excalibur platform, which 
contains Altera Apex FPGA and an ARM CPU. They 
used two implementations: one with ARM CPU, and one 
with NIOS soft-core CPU. In the paper they demonstrate 
development of the system through several steps which 
illustrate influences of communication between CPU and 
FPGA, granularity of processing unit, and use of direct 
memory access (DMA) while executing the algorithm. 
Algorithm was implemented in several iterations, starting 
with completely software one and replacing the part of 
code that requires the most time to execute with a 
hardware unit. The final implementation uses hardware to 
execute computation of distances, uses DMA, and writes 
clustering results into a buffer where they are kept until 
read by the CPU. Distance computation unit contains 32 
processing elements which work in parallel. The system 
runs on 33 MH clock rate. Speed-up achieved was 11.8×, 
compared to a 1 GHz Pentium III computer. 

Wang and Leeser [15] experiment with adding a 
hardware floating-point division unit into the hardware 
implementation of the algorithm. They and a cluster 
association structure to the distance calculation and 
minimum distance tracking from [13]. They added 
accumulators that compute pixel sum for each cluster, and 
counters that track number of pixels in each cluster. New 
cluster center is computed by dividing accumulator value 
with counter value, which gives the mean of the cluster. 
Accumulators and cluster centers are working with fixed-
point arithmetic. Hence the divider has fixed-
point/floating-point conversion on its inputs and output. 
The system was implemented on Xilinx Virtex-II 
platform. Three implementations were compared: 
completely software, FPGA with division on CPU, and 
FPGA with division on FPGA. The Program was executed 
on a 3.2 GHz Pentium 4 computer. Compared to 
completely software implementation, for 50 iterations of 
algorithm a 11× speed-up was achieved, and for 1000 
iterations a 174× speed-up was achieved. Differences in 
execution time for FPGA implementations with division 
on CPU and division on FPGA were negligible. The 
reason is that compared to distance computation, the 
division takes up a very small amount of execution time. 

Sageusa and Maruyama [16], [17] implement real time 
k-means clustering for color images. The standard 

clustering procedure with Euclidian distance metric is 
augmented with kd-tree [18] filter which is used for 
finding cluster centers candidates for each pixel. Distance 
computation is then carried out only for this small set of 
centers. Kd-tree is implemented using memory banks. It’s 
capable of finding centers for 4 pixels in parallel, and 
outputs 24 center candidates for each pixel. The system is 
realized as a three-stage pipeline. First stage contains the 
kd-tree, second stage implements square-of-distance 
computation, and third stage the cluster center for each 
pixel is found. Square-of-distance computation units are 
also used for kd-tree construction, which is carried out at 
the every iteration. The system was implemented on 
Xilinx Virtex-II platform, with 66 MHz clock rate. 
Performance was evaluated by clustering color image 
pixels into 256 clusters. Achieved performance for 
512×512 and 640×480 images was at least 30 fps, and 20 
to 30 fps for 768×512 images. 

Covington et al. [19] use k-means clustering for 
document clustering. Documents are represented by 
vectors, where each dimension represents number of word 
occurrences in the document. Similar words are counted in 
the same dimension. Distance metric used is “cosine-
theta” distance: 

 
µx

µx ⋅
=θcos  (3) 

Words are translated into a 4000-dimension feature space 
using a hash based method. Document vectors and cluster 
centers are stored in external memory attached to the 
FPGA. The system contains three key modules. First 
module realizes distance computation, and consists of a 
square root, a scalar product, and a division unit. The 
module is complex and outputs one result every 294 clock 
cycles. One distance computation module is instantiated 
for each cluster center. Second module compares 
distances and assigns input vector to cluster with nearest 
center. Third module computes new cluster centers. The 
system performance was compared to a 3.6 GHz Xeon 
CPU. On Xilinx Virtex-E platform the system works with 
80 MHz clock rate and achieves a 26× speed-up. On 
Xilinx Virtex-4 platform the system works with 250 MHz 
clock and achieves a 328× speed-up. 

Nagarajan et al. [20] are taking a more general 
approach with intention to define patterns and models 
common to many algorithms, i.e. design patterns. The idea 
is that knowing and using these patterns will aid in system 
design. In their work they present a review of common 
communication and computing patterns. They begin 
hardware development with probability density function 
(PDF) approximation problem. By using structural 
similarities between algorithms they adapt the PDF 
approximation hardware to implement correlation 
computation, and k-means clustering, instead of 
implementing them from scratch. Implemented k-means 
clustering hardware is a three-stage pipeline consisting of: 
(a) square of distance computation, (b) finding minimum 
distance, and (c) cluster center update. The first two stages 
are similar to Saegusa and Maruyama’s [17] 
implementation. The system was implemented and tested 
on Xilinx Virtex-4 platform. Achieved speed-up was 3.2×, 
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compared to a 3.2 GHz Xeon computer. The authors find 
the cause of small speed-up in low communication 
bandwidth between CPU and FPGA. 

Hussain et al. [21] present an FPGA k-means 
clustering implementation for clustering microarray data. 
All parts of the algorithm are implemented in hardware, 
and distance computation is parallelized. Their 
implementation uses fixed-point arithmetic adapted to 
microarray data ranges. They use 5.10 format for 
distances, and 15.10 format for accumulators. The number 
of clusters is fixed to 8, hence 8 cluster distance units are 
used in parallel. Input data is stored in on-chip RAM. 
Several cores can be fit on single FPGA to perform 
clustering on different datasets in parallel. The system was 
implemented on Xilinx Virtex-4 platform, with 126 MHz 
clock rate for single core, and 124 MHz clock rate for five 
cores implementation. Achieved speed-ups were 10.3× for 
single core, and 51.7× for five cores implementation, 
compared to 3 GHz Core 2 Duo computer. 

Singaraju and Chandy [22] implement k-means 
clustering on FPGA based network switches. The 
architecture allows data processing to be performed on the 
data as it flows through tha network in form of Ethernet 
packets. They implement all parts of the algorithms on the 
FPGA, and use floating point arithmetic for all 
computation. They parallelize distance computation, and 
finding minimum distance. Since used arithmetic 
operators are heavily pipelined, they use data element 
interleaving to hide the latencies. For single FPGA their 
system supports cluster parallelism, distances from 
multiple cluster centers are computed simultaneously for 
single data input. For multiple FPGAs, in addition to 
cluster parallelism, the system also supports data 
parallelism, where each FPGA operate on separate data 
points. Single FPGA is limited to up to 8 clusters in 
parallel. The system was implemented on Xilinx Virtex-II 
platform. For single FPGA, achieved speedups were up to 
10× compared to Opteron 1.8 GHz computer. For multiple 
FPGAs performance was compared to parallel software 
implementation with equivalent number of nodes. 
Achieved speed-ups were up to 9×. 

IV. ANALYSIS OF IMPLEMENTATIONS 

Following features common to most implementations 
can be highlighted from this survey of FPGA based 
hardware accelerators. 

For all implementations, the design process begins 
with algorithm analysis. Algorithm’s hotspots are 
identified, and evaluated for possible gains in speed or 
execution time from implementing them in hardware. 
Most often, the hotspots are a short sequence of 
instructions that are looped through many times. 

FPGA’s clock rate is much lower than CPU’s, usually 
one to two orders of magnitude lower. This is offset by 
exploiting available parallelism. FPGA can 
simultaneously execute several hundred to several 
thousand operations, depending on type of operation and 
its implementation. 

FPGA implementations are usually pipelined. Apart 
from the additional “depth” parallelism provided by 

pipelining, separating the process into several smaller 
steps enables faster clock rate, and faster execution of 
algorithm. The algorithm is often rearranged or modified 
to enable more efficient pipelining. 

Use of floating-point arithmetic is usually avoided. 
Floating-point arithmetic units are more complex and 
consume more FPGA resources than fixed-point 
arithmetic units. Higher per-unit resource consumption 
means less available parallelism because fewer units can 
be implemented in a single FPGA device. This is the main 
reason for using fixed-point arithmetic. Due to this 
constraint, a numerical analysis of algorithm is required to 
find sufficient range and precision of fixed-point number 
representation which will ensure correct results. 

Only a few implementations perform the entire 
algorithm in hardware. In general, implementations are 
carefully partitioned into software and hardware part, and 
systems completely implemented in FPGA usually use a 
soft core CPU which runs the main program. This is a 
consequence of following factors: (a) control of algorithm 
flow is much easier to implement in software than by 
designing a hardware finite state machine for this 
function, and (b) parts of algorithm that execute 
infrequently can be left in software without adverse 
impact on overall performance. 

A frequent problem in hardware implementations is 
communication with CPU and memory. In some cases, 
using hardware acceleration can actually decrease 
performance because the cost of moving data can be larger 
than the gain from faster hardware execution [14]. This 
problem can be tackled in several ways. First, by using 
direct memory access (DMA) where the CPU is taken out 
of the data transfer loop. The CPU then controls the data 
flow only by issuing commands for data transfer. 
Additional performance is gained by providing significant 
amount of private local memory to the FPGA, which then 
eliminates the need for frequent communication with 
shared main memory. And finally, data transfer latency 
can be hidden by using buffers, which enable processing 
of one block of data while the next block is being 
transferred. 

Earlier implementations rarely used multiplication in 
FPGA since it was fairly expensive in terms of resources. 
Newer FPGAs families targeted for DSP applications 
include high-speed hardware multipliers and MAC units. 
Thanks to this development, later implementations benefit 
from using multiplication in FPGA hardware. 

V. CONCLUSION 

FPGA platform can be used as accelerator in data 
mining processes. It has great potential for use in data 
mining applications and computing in general, and 
especially in embedded systems. FPGA’s flexibility and 
programmability enables implementation of optimal 
computer architecture for each specific task. From this 
literature survey we conclude that FPGA platform 
performs well as a hardware accelerator. 

Results in this research area are significant, but we 
also noticed some important issues that prevent wider use 
of FPGAs in general purpose computing. First and most 
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significant is lack of mature high-level development tools. 
It is still very difficult to develop a hardware accelerator 
without knowledge of low-level details of hardware 
development, especially if full potential of FPGA is to be 
utilized. Second issue is a high cost of advanced FPGA 
platforms suitable for implementing data mining 
application. These issues currently limit the use of FPGA 
platforms to applications in which development effort and 
cost can be justified with gains in performance. 

With development of high-level languages and 
synthesis tools, and development of hardware-software 
co-design methodology, designing for FPGAs could 
become much easier. Together with advancements in 
FPGA technology making the devices larger in terms of 
logic resources and providing more high-performance 
arithmetic blocks, the FPGA platform is expected to 
become more frequently used in data mining applications, 
as well as in computing in general. 
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