
FPGA implementations of data mining algorithms

P. Škoda*, B. Medved Rogina*, V. Sruk**
* Ruñer Bošković Institute, Zagreb, Croatia

** Faculty of electrical engineering and computing, University of Zagreb, Zagreb, Croatia

Abstract - In recent decades there has been an exponential

growth in quantity of collected data. Various data mining

procedures have been developed to extract information

from such large amounts of data. Handling ever increasing

amount of data generates increasing demand for computing

power. There are several ways of dealing with this demand,

such as multiprocessor systems, and use of graphic

processing units (GPU). Another way is use of field

programmable gate array (FPGA) devices as hardware

accelerators. This paper gives a survey of the application of

FPGAs as hardware accelerators for data mining. Three

data mining algorithms were selected for this survey:

classification and regression trees, support vector machines,

and k-means clustering. A literature review and analysis of

FPGA implementations was conducted for the three selected

algorithms. Conclusions on methods of implementation,

common problems and limitations, and means of

overcoming them were drawn from the analysis.

I. INTRODUCTION

Thanks to development of computer systems and its
applications, the last several decades have been marked by
exponential growth of collected data in all areas of human
activity. To deal with this continuous and increasing
influx of data it was necessary to develop computational
methods for extracting information and discovering
knowledge. Computational process of non-trivial
information extraction is called data mining. Data mining
makes use of methods from closely related fields such as
statistics, artificial intelligence, machine learning, pattern
recognition and databases.

With most data mining methods, the quantity of data
directly impacts computational load. High computational
loads occur because many problems include large
quantities of data and require carrying out complex
computations in many-dimensional space. The issue of
computational load is a significant one. Quantity of
collected data continually increases which implies that
available compute power must increase to keep up with it.

Since CPU clock frequency no longer increases by the
Moore’s law, increase in compute power must be achieved
by other means. One approach to the problem is using
multi-core processors, multiprocessor systems, and
computer clusters, where the program is still executed on
general purpose CPUs. Another approach is using
hardware accelerators, where the compute-intensive parts
are executed on special purpose units. Currently available
accelerator units are graphics processor units (GPU) and
field programmable gate array (FPGA) devices, which are
the focus of this paper. Both platforms have their
advantages and disadvantages, and a review of their

capabilities in compute-intensive applications is presented
in [1].

FPGAs are integrated circuits designed to be
configured by the user after manufacturing. An FPGA
contains a matrix of configurable logic blocks and a
hierarchy of reconfigurable interconnects that allow the
blocks to be connected together. A configurable logic
block contains look-up tables, multiplexers and flip-flops
which together with interconnect allow performance of
complex combinatorial and sequential functions and
implementation of a wide variety of digital systems as
well. Modern FPGAs also contain specialized memory,
arithmetic, and communication blocks which enable more
efficient implementations of digital systems. By allowing
implementation of custom computational architectures
FPGAs provide opportunities for exploitation of
parallelism inherent in implemented algorithm.

This paper gives a review of current development in
FPGA based hardware acceleration of select data mining
algorithms. There are many algorithms developed for, and
being used in data mining. From the multitude of
algorithms Wu et al. in [2] present the top ten identified by
the IEEE International Conference on Data Mining in
December 2006. Of those ten, three have been selected for
this survey: classification and regression trees, support
vector machines, and k-means clustering. For the selected
algorithms a survey of literature had been conducted, and
found implementations have been analyzed.

This paper is organized as follows: Short introduction
to selected algorithms is given in Section II; Results of
literature survey are presented in Section III; Analysis of
characteristics common to most FPGA implementations
are presented in Section IV; Conclusions are given in
section V.

II. SELECTED ALGORITHMS

To limit the scope of this survey, three algorithms
have been selected from the ten identified by Wu et al. [2].
Data mining tasks of primary interest were classification
and clustering as arguably the most common tasks. Of the
top ten algorithms, five—C4.5, classification and
regression trees, support vector machines, k-nearest
neighbors, and naïve Bayes—are used for classification
and two—k-means and expectation maximization—are
used for clustering. As consequence of this count, two
classification and one clustering algorithms were selected.
The final criterion for selection was perceived amenability
to fine-grained parallelization. The seven algorithms were
analyzed with special attention paid to repeated use of
same arithmetic and logic operations over multiple data,

MIPRO 2012/DC-VIS 377

and possibilities of pipelining the algorithms’
implementations. From this analysis classification and
regression trees, support vector machines, and k-means
clustering emerged as algorithms with potentially highest
gains from fine-grained parallelization.

A. Classification and Regression Trees

Classification and regression tree (CART) is a decision
and regression tree learning algorithm. In decision trees
the output is a prediction on class to which the data item
belongs. In regression trees the output is a real number,
and the tree represents an approximation of the function
that maps input data to predicted outcome. One other well
known decision tree learning algorithm is C4.5. Decision
trees are easy to interpret, can readily be converted into a
set of “if-then” rules, and can work with incomplete data.

Decision trees consist of nodes and leaves. Nodes
represent simple attribute test which splits the data and
determines branching of the tree into two or more
branches. Leaves represent predicted class labels of the
input data—the classification of the data. Classification is
performed passing the data through the tree starting at the
root node. Attributes are tested at each node and braches
followed as determined by the test. When a leaf is reached
its associated class label is the classification output.

CART algorithm constructs binary trees, and can work
with categorical and numerical attributes. It works with
“raw” data, i.e. it doesn’t require preprocessing of data.
The learning process is based on finding a test that defines
the best split of the data. Test for categorical attributes is
defined as “attribute Xi = C”, and for numerical as
“attribute Xi ≤ C”. Split quality is estimated by some
information metric. Commonly used metrics are Gini
impurity, and entropy. Once the attribute test giving the
best split is found, the data is split according to it and
procedure repeated recursively on the obtained subsets. To
prevent overfitting, the splitting process can be stopped
early by some rule, or pruning process may be run after
the tree is built.

B. Support Vector Machines

Support vector machine (SVM) is one of the most
popular methods for classification. The main idea of this
method is finding a classification function that separates
points from two classes from by finding a hyperplane that
separates them optimally. For training set {xi, yi}, where
xi ∈ ℝn, and yi ∈ {-1, 1}, classification function is of form:

 () 







+= ∑

i

iii byf xtt ,Ksgn)(α (1)

where: t is point (vector) to be classified, αi are positive
real constants, b is a real constant, and K(t, xi) is a kernel
function. Kernel function maps points from original space
into a space where they become linearly separable. Some
commonly used kernels are linear, polynomial, and
Gaussian.

Hyperplane that optimally separates the sets is the one
that maximizes the margin, i.e. which maximizes the
distance from the hyperplane to the nearest vectors from

both sets. For sets that cannot be completely separated the
soft margin is introduced, which allows some level of
misclassification of the training set. The points closest to
the hyperplane are named support vectors, and they define
the classifier. Finding classifier parameters αi is a
quadratic optimization problem. There are several
algorithms for learning SVMs, e.g. sequential minimal
optimization, and gradient projection.

C. K-means Clustering

K-means clustering is a simple iterative procedure for
dividing a set of points into a predefined number k of
clusters. Algorithm is executed on a set of d-dimensional
vectors {xi, xi,…, xn}, where xi ∈ ℝd. Clusters
{S1, S2,…, Sk} are represented by their centers µj.

The algorithm starts by choosing k points from ℝd
which will be the starting values for centers µj. These
points can be chosen in several ways, e.g. randomly of
using some heuristic. After initialization of centers, the
following two steps are iterated until the algorithm
converges: (a) clusters are formed by assigning points to
their closest center, and (b) new centers are found by
computing the mean of all points in a cluster. Algorithm
converges when points no longer change clusters. For
distance metric, Euclidian distance is most common.

III. LITERATURE SURVEY RESULTS

A. Classification and Regression Trees

Survey of literature uncovered only one publication on
FPGA implementation of decision tree learning.
Narayanan et al. [3] have used FPGA to implement
decision tree induction system for binary classification.

Gini impurity computation was implemented in
hardware, as computationally most intensive part of
learning process. One peripheral unit contains 16 Gini
units working in parallel, as well as additional logic for
finding the minimum Gini impurity and its associated data
split. The peripheral unit is connected to the CPU’s local
bus. The implementation uses 16.16 fixed-point
arithmetic. Algorithm is executed on a PowerPC CPU
embedded in the FPGA device. The system is
implemented on Xilinx Virtex-II Pro platform, with
100 MHz clock rate. The achieved speedup is 5.58×
compared to pure software implementation running on the
same platform.

B. Support Vector Machines

The research in hardware implementations of SVM is
closely related research in embedded systems. As
consequence using floating-point arithmetic is usually
avoided in order to reduce energy consumption, and to
reduce usage of logic resources in FPGAs.
Computationally most intensive part of SVM training
process is the matrix-vector multiplication.

Anguita et al. propose in [4] what was probably the
first FPGA implementation of SVM training. In the paper
they present a concise analysis quantization error and its
influence on performance of SVM, with emphasis on
fixed-point arithmetic and its influence. They present a

378 MIPRO 2012/DC-VIS

new SVM training algorithm suited for hardware
implementation using fixed-point arithmetic. Algorithm
has two phases which are executed alternately. In the first
phase the quadratic optimization problem of finding
parameters αi with fixed parameter b is solved. In second
phase the found parameters αi are fixed and parameter b is
found using bisection method. The training process is
executed in hardware only. Calculation of sum ∑i qij αj is
parallelized using up to 32 processing units. Using fixed-
point arithmetic (8.8 to 16.13 formats), classifiers
achieved performance comparable to the classifiers with
floating-point training. The systems was implemented on
Xilinx Virtex-II platform, with 19 to 35 MHz clock rate,
depending on word width.

Pedersen et al. [5] have experimented with speeding
up classifying with and training SVMs. Their focus was
on accelerating scalar product computation by introducing
hardware multiply-accumulate unit (MAC). The program
was run on a hardware Java virtual machine [6] with the
MAC unit attached to it. The system was implemented on
Altera Cyclone platform, with 100 MHz clock rate.
Speed-up achieved by using MAC unit was up to 59.8 %
for training, and up to 6.5 % for classification.

Cadambi et al. in [7] present and advanced architecture
of SVM training coprocessor. They use fixed-point
arithmetic in 16.16 format, and on two of the datasets in
16.4 format. The system consists of a computer that
executes training algorithm and an FPGA coprocessor for
scalar product computation. Coprocessor contains 128
processing elements, which execute multiplication and
accumulation, organized in 4 clusters, each containing 4
fields of 8 elements. Coprocessor uses local memory to
store training set vectors, and uses buffers to enable the
computation to run simultaneously with data transfer to
and from the computer. Buffers are used to hide the data
transfer latency and prevent stalling the coprocessor. The
system was implemented on Xilinx Vitex-5 platform.
Training time was compared to scalar and vector software
implementations running on dual-core 2.2 GHz Opteron
CPU. Speed-ups were 18.2× compared to scalar, and 6.5×
compared do vector implementation.

Cao el al. in [8] present an implementation developed
for Keerthi’s training algorithm [9]. Keerthi introduces
error matrix:

 () j

j

jijji yyae −=∑ xx ,K (2)

which is used for correction of parameters αj, and b. To
find the lower and upper bound of parameter b, a
comparison is made over all ei. This two parts of the
algorithm—computation and comparison of ei—are
parallelized by means of error cache update (ECU) units.
ECUs implement computation of error matrix elements
and tracking of upper and lower bound of parameter b.
ECU contains Gaussian kernel look-up tables, and MAC
units for ei computation. Additionally, each ECU has its
own local memory used for storing training vectors and
temporary parameter values. The authors have
investigated classifier performance achieved with different
combinations of word widths and sizes of Gaussian kernel

look-up table. Classifier with 16-bit arithmetic and table
size of 1024 values, achieved classification accuracy equal
to that of reference software classifier with floating-point
arithmetic. The system was implemented on Xilinx
Virtex-4 platform, with 75 MHz clock rate.

Papadonikolakis and Bouganis in [10] present an
architecture that takes into account attribute data ranges of
training datasets. They classify datasets as homogenous, in
which dynamic ranges of attributes are equal, and
heterogeneous, in which attributes have highly differing
dynamic range, They identify evaluation of kernel
functions as the most time consuming part of the
algorithm and implement this functionality in hypertiles.
Hypertiles implement scalar product using parallel fixed-
point multipliers and a pipelined adder tree, followed by a
floating-point kernel processor. For heterogeneous
datasets each individual multiplier’s arithmetic format is
adapted to its input data format in order minimize its
resource usage and to make the hypertile as compact as
possible. The training vectors are stored in FPGA’s local
memory. Their approach requires training set analysis
before implementing the hypertiles in order to extract
attribute’s data ranges. The system was implemented on
Altera Straix III platform.

Wang el al. in [11] present a least squares SVM [12]
implementation targeted for online SVM training in
embedded systems. They partition the system into static
and reconfigurable part. The static part contains embedded
CPU, memory controllers and peripherals required for
algorithm execution and communication with the host
computer. They identify two parts of LS-SVM training
algorithm as the most time consuming: the kernel matrix
formulation and the least square problem solution, which
are implemented as the reconfigurable parts of the system.
The reconfigurable parts were loaded into the FPGA when
the algorithm required them. The kernel matrix
formulation is implemented with 8 kernel processing
elements working in parallel. The least squares problem
solver implements Cholesky matrix decomposition using
8 parallel processing elements for computing scalar
product. The algorithm FPGA’s external memory was
used for storing intermediate results. The entire design
uses single precision floating-point arithmetic. The system
was implemented on Xilinx Virtex-5 platform with
150 MHz clock rate. Performance was compared to
2.93 GHz Xeon computer. Achieved speedups were in
range from 6.02× to 218.45× for 512 to 8192 training
samples.

C. K-means clustering

FPGA implementations of k-means clustering are
primarily focused on image and video processing
applications. Research is for the most part focused on
computation of distance metric, which is the most
computationally intensive part of the algorithm.

Estlick et al. [13] considered two modifications of the
algorithm which could increase the available parallelism:
alternative distance metrics, and smaller word width of
input vectors. Alternative metrics were experimentally
evaluated and the Manhattan distance—∑i |xi − µi|—was
found to be the most suitable with respect to quality of

MIPRO 2012/DC-VIS 379

clustering and complexity of implementation.
Experimentally was demonstrated that input data word
width can be significantly decreased without adversely
affecting clustering quality. The implementation used
Manhattan distance metric, without word width decrease.
FPGA uses two private external memories: one for storing
pixel values, and the other for storing clustering results.
The system is organized in a pipeline which executes
distance computation, and finding minimum distance and
associated cluster. Software that runs on host computer
loads the pixels into the FPGA memory, and sets new
cluster center values for each iteration. The system was
implemented on Xilinx Virtex platform, with 50 MHz
clock rate. The achieved speed-up was 200× compared to
software implementation executed on a 500 MHz
Pentium III computer.

Gokhale et al. [14] implemented k-means clustering
for segmenting hyperspectral images. Their system was
implemented on Altera Excalibur platform, which
contains Altera Apex FPGA and an ARM CPU. They
used two implementations: one with ARM CPU, and one
with NIOS soft-core CPU. In the paper they demonstrate
development of the system through several steps which
illustrate influences of communication between CPU and
FPGA, granularity of processing unit, and use of direct
memory access (DMA) while executing the algorithm.
Algorithm was implemented in several iterations, starting
with completely software one and replacing the part of
code that requires the most time to execute with a
hardware unit. The final implementation uses hardware to
execute computation of distances, uses DMA, and writes
clustering results into a buffer where they are kept until
read by the CPU. Distance computation unit contains 32
processing elements which work in parallel. The system
runs on 33 MH clock rate. Speed-up achieved was 11.8×,
compared to a 1 GHz Pentium III computer.

Wang and Leeser [15] experiment with adding a
hardware floating-point division unit into the hardware
implementation of the algorithm. They and a cluster
association structure to the distance calculation and
minimum distance tracking from [13]. They added
accumulators that compute pixel sum for each cluster, and
counters that track number of pixels in each cluster. New
cluster center is computed by dividing accumulator value
with counter value, which gives the mean of the cluster.
Accumulators and cluster centers are working with fixed-
point arithmetic. Hence the divider has fixed-
point/floating-point conversion on its inputs and output.
The system was implemented on Xilinx Virtex-II
platform. Three implementations were compared:
completely software, FPGA with division on CPU, and
FPGA with division on FPGA. The Program was executed
on a 3.2 GHz Pentium 4 computer. Compared to
completely software implementation, for 50 iterations of
algorithm a 11× speed-up was achieved, and for 1000
iterations a 174× speed-up was achieved. Differences in
execution time for FPGA implementations with division
on CPU and division on FPGA were negligible. The
reason is that compared to distance computation, the
division takes up a very small amount of execution time.

Sageusa and Maruyama [16], [17] implement real time
k-means clustering for color images. The standard

clustering procedure with Euclidian distance metric is
augmented with kd-tree [18] filter which is used for
finding cluster centers candidates for each pixel. Distance
computation is then carried out only for this small set of
centers. Kd-tree is implemented using memory banks. It’s
capable of finding centers for 4 pixels in parallel, and
outputs 24 center candidates for each pixel. The system is
realized as a three-stage pipeline. First stage contains the
kd-tree, second stage implements square-of-distance
computation, and third stage the cluster center for each
pixel is found. Square-of-distance computation units are
also used for kd-tree construction, which is carried out at
the every iteration. The system was implemented on
Xilinx Virtex-II platform, with 66 MHz clock rate.
Performance was evaluated by clustering color image
pixels into 256 clusters. Achieved performance for
512×512 and 640×480 images was at least 30 fps, and 20
to 30 fps for 768×512 images.

Covington et al. [19] use k-means clustering for
document clustering. Documents are represented by
vectors, where each dimension represents number of word
occurrences in the document. Similar words are counted in
the same dimension. Distance metric used is “cosine-
theta” distance:

µx

µx ⋅
=θcos (3)

Words are translated into a 4000-dimension feature space
using a hash based method. Document vectors and cluster
centers are stored in external memory attached to the
FPGA. The system contains three key modules. First
module realizes distance computation, and consists of a
square root, a scalar product, and a division unit. The
module is complex and outputs one result every 294 clock
cycles. One distance computation module is instantiated
for each cluster center. Second module compares
distances and assigns input vector to cluster with nearest
center. Third module computes new cluster centers. The
system performance was compared to a 3.6 GHz Xeon
CPU. On Xilinx Virtex-E platform the system works with
80 MHz clock rate and achieves a 26× speed-up. On
Xilinx Virtex-4 platform the system works with 250 MHz
clock and achieves a 328× speed-up.

Nagarajan et al. [20] are taking a more general
approach with intention to define patterns and models
common to many algorithms, i.e. design patterns. The idea
is that knowing and using these patterns will aid in system
design. In their work they present a review of common
communication and computing patterns. They begin
hardware development with probability density function
(PDF) approximation problem. By using structural
similarities between algorithms they adapt the PDF
approximation hardware to implement correlation
computation, and k-means clustering, instead of
implementing them from scratch. Implemented k-means
clustering hardware is a three-stage pipeline consisting of:
(a) square of distance computation, (b) finding minimum
distance, and (c) cluster center update. The first two stages
are similar to Saegusa and Maruyama’s [17]
implementation. The system was implemented and tested
on Xilinx Virtex-4 platform. Achieved speed-up was 3.2×,

380 MIPRO 2012/DC-VIS

compared to a 3.2 GHz Xeon computer. The authors find
the cause of small speed-up in low communication
bandwidth between CPU and FPGA.

Hussain et al. [21] present an FPGA k-means
clustering implementation for clustering microarray data.
All parts of the algorithm are implemented in hardware,
and distance computation is parallelized. Their
implementation uses fixed-point arithmetic adapted to
microarray data ranges. They use 5.10 format for
distances, and 15.10 format for accumulators. The number
of clusters is fixed to 8, hence 8 cluster distance units are
used in parallel. Input data is stored in on-chip RAM.
Several cores can be fit on single FPGA to perform
clustering on different datasets in parallel. The system was
implemented on Xilinx Virtex-4 platform, with 126 MHz
clock rate for single core, and 124 MHz clock rate for five
cores implementation. Achieved speed-ups were 10.3× for
single core, and 51.7× for five cores implementation,
compared to 3 GHz Core 2 Duo computer.

Singaraju and Chandy [22] implement k-means
clustering on FPGA based network switches. The
architecture allows data processing to be performed on the
data as it flows through tha network in form of Ethernet
packets. They implement all parts of the algorithms on the
FPGA, and use floating point arithmetic for all
computation. They parallelize distance computation, and
finding minimum distance. Since used arithmetic
operators are heavily pipelined, they use data element
interleaving to hide the latencies. For single FPGA their
system supports cluster parallelism, distances from
multiple cluster centers are computed simultaneously for
single data input. For multiple FPGAs, in addition to
cluster parallelism, the system also supports data
parallelism, where each FPGA operate on separate data
points. Single FPGA is limited to up to 8 clusters in
parallel. The system was implemented on Xilinx Virtex-II
platform. For single FPGA, achieved speedups were up to
10× compared to Opteron 1.8 GHz computer. For multiple
FPGAs performance was compared to parallel software
implementation with equivalent number of nodes.
Achieved speed-ups were up to 9×.

IV. ANALYSIS OF IMPLEMENTATIONS

Following features common to most implementations
can be highlighted from this survey of FPGA based
hardware accelerators.

For all implementations, the design process begins
with algorithm analysis. Algorithm’s hotspots are
identified, and evaluated for possible gains in speed or
execution time from implementing them in hardware.
Most often, the hotspots are a short sequence of
instructions that are looped through many times.

FPGA’s clock rate is much lower than CPU’s, usually
one to two orders of magnitude lower. This is offset by
exploiting available parallelism. FPGA can
simultaneously execute several hundred to several
thousand operations, depending on type of operation and
its implementation.

FPGA implementations are usually pipelined. Apart
from the additional “depth” parallelism provided by

pipelining, separating the process into several smaller
steps enables faster clock rate, and faster execution of
algorithm. The algorithm is often rearranged or modified
to enable more efficient pipelining.

Use of floating-point arithmetic is usually avoided.
Floating-point arithmetic units are more complex and
consume more FPGA resources than fixed-point
arithmetic units. Higher per-unit resource consumption
means less available parallelism because fewer units can
be implemented in a single FPGA device. This is the main
reason for using fixed-point arithmetic. Due to this
constraint, a numerical analysis of algorithm is required to
find sufficient range and precision of fixed-point number
representation which will ensure correct results.

Only a few implementations perform the entire
algorithm in hardware. In general, implementations are
carefully partitioned into software and hardware part, and
systems completely implemented in FPGA usually use a
soft core CPU which runs the main program. This is a
consequence of following factors: (a) control of algorithm
flow is much easier to implement in software than by
designing a hardware finite state machine for this
function, and (b) parts of algorithm that execute
infrequently can be left in software without adverse
impact on overall performance.

A frequent problem in hardware implementations is
communication with CPU and memory. In some cases,
using hardware acceleration can actually decrease
performance because the cost of moving data can be larger
than the gain from faster hardware execution [14]. This
problem can be tackled in several ways. First, by using
direct memory access (DMA) where the CPU is taken out
of the data transfer loop. The CPU then controls the data
flow only by issuing commands for data transfer.
Additional performance is gained by providing significant
amount of private local memory to the FPGA, which then
eliminates the need for frequent communication with
shared main memory. And finally, data transfer latency
can be hidden by using buffers, which enable processing
of one block of data while the next block is being
transferred.

Earlier implementations rarely used multiplication in
FPGA since it was fairly expensive in terms of resources.
Newer FPGAs families targeted for DSP applications
include high-speed hardware multipliers and MAC units.
Thanks to this development, later implementations benefit
from using multiplication in FPGA hardware.

V. CONCLUSION

FPGA platform can be used as accelerator in data
mining processes. It has great potential for use in data
mining applications and computing in general, and
especially in embedded systems. FPGA’s flexibility and
programmability enables implementation of optimal
computer architecture for each specific task. From this
literature survey we conclude that FPGA platform
performs well as a hardware accelerator.

Results in this research area are significant, but we
also noticed some important issues that prevent wider use
of FPGAs in general purpose computing. First and most

MIPRO 2012/DC-VIS 381

significant is lack of mature high-level development tools.
It is still very difficult to develop a hardware accelerator
without knowledge of low-level details of hardware
development, especially if full potential of FPGA is to be
utilized. Second issue is a high cost of advanced FPGA
platforms suitable for implementing data mining
application. These issues currently limit the use of FPGA
platforms to applications in which development effort and
cost can be justified with gains in performance.

With development of high-level languages and
synthesis tools, and development of hardware-software
co-design methodology, designing for FPGAs could
become much easier. Together with advancements in
FPGA technology making the devices larger in terms of
logic resources and providing more high-performance
arithmetic blocks, the FPGA platform is expected to
become more frequently used in data mining applications,
as well as in computing in general.

REFERENCES
[1] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach,

“Accelerating compute-intensive applications with GPUs and
FPGAs,” in Proc. SASP, 2008, pp. 101-107.

[2] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
G. J. McLachlan, A. Ng, B. Liu, P. S. Yu, Z. H. Zhou, M.
Steinbach, D. J. Hand, and D. Steinberg, “Top 10 algorithms in
data mining,” Knowl. Inf. Syst., vol. 14, no. 1, pp. 1-37, 2008.

[3] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J.
Zambreno, “An FPGA implementation of decision tree
classification,” in Proc. DATE, 2007.

[4] D. Anguita, A. Boni, and S. Ridella, “A digital architecture for
support vector machines: theory, algorithm and FPGA
imlementation,” IEEE Tras. Neural Netw., vol. 14, no. 5, Sept.
2003.

[5] R. Pedersen and M. Schoeberl, “An embedded support vector
machine,” in Proc. WISES, 2006

[6] M. Schoeberl, JOP: A java optimized processor for embedded

real-time systems, PhD thesis, Vienna University of Technology,
2005.

[7] S. Cadambi, I. Durdanovic, V. Jakkula, M. Sankaradass, E.
Cosatto, S. Chakradhar, and H. P. Graf, “A massively parallel
FPGA-based coprocessor for support vector machines,” in Proc.

FCCM, 2009, pp. 115-122.

[8] K. Cao, H. Shen, and H. Chen, “A parallel and scalable digital
architecture for training support vector machines,” Journal of

Zhejiang University - Science C, vol. 11, no. 8, pp. 620-628, 2010.

[9] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K.
Murthy, “Improvements to Platt's SMO algorithm for SVM
classifier design,” Neural Computation, vol. 13, no. 3, pp. 637-
649, 2001.

[10] M. Papadonikolakis and C.-S. Bouganis, “A Heterogeneous FPGA
Architecture for Support Vector Machine Training,” in Proc.

FCCM, 2010, pp. 211-214.

[11] S. Wang, Y. Peng, G. Zhao, and X. Peng, “Accelerating on-line
training of LS-SVM with run-time reconfiguration,” in Proc.

ICFPT, 2011, pp. 1-6.

[12] J. A. K. Suykens and J. Vandewalle, “Least Squares Support
Vector Machine Classifiers,” Neural Processing Letters, vol. 9,
no. 3, pp. 293-300, 1999.

[13] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski,
“Algorithmic transformations in the implementation of k-means
clustering on reconfigurable hardware”, in Proc. ACM FPGA,
2001, pp. 103-110.

[14] M. Gokhale, J. Frigo, K. McCabe, J. Theiler, C. Wolinski, and D.
Lavenier, “Experience with a hybrid processor: K-means
clustering,” J. Supercomputing, vol. 26, no. 2, pp. 131-148, 2003.

[15] X. Wang and M. Leeser, “K-means clustering for multispectral
images using floating-point divide,” in Proc. FCCM, 2007, pp.
151-159.

[16] T. Maruyama, “Real-time k-means clustering for color images on
reconfigurable hardware,” in Proc. ICPR, 2006, pp. 816-819.

[17] T. Saegusa and T. Maruyama, “An implementation of real-time k-
means clustering for color images,” J. Real-Time Image Proc, vol.
2, no 4, pp. 309-318, 2007.

[18] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R.
Silverman, and A. Y. Wu, “An efficient k-means clustering
algorithm: analysis and implementation,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 24, no. 7, pp. 881–892, 2002.

[19] G. A. Covington, C. L. G. Comstock, A. A. Levine, J. W.
Lockwood, and Y. H. Cho, “High speed document clustering in
reconfigurable hardware,” in Proc. FPL, 2006, pp. 411-417.

[20] K. Nagarajan, B. Holland, A. D. George, K. C. Slatton, and H.
Lam, (2009, Jan.). Accelerating machine-learning algorithms on
FPGAs using pattern-based decomposition. J. Sign. Process. Syst.
[Online] Available: http://dx.doi.org/10.1007/s11265-008-0337-9

[21] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan, “FPGA
implementation of K-means algorithm for bioinformatics
application: An accelerated approach to clustering Microarray
data,” in Proc. AHS, 2011, pp. 248-255.

[22] J. Singaraju and J. A. Chandy, “Active Storage Networks for
Accelerating K-Means Data Clustering,” In Proc. ARC, 2011, pp.
102-109.

382 MIPRO 2012/DC-VIS

