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 ABSTRACT  

The paper offers a simple and reliable algorithm for conversions of angular quantities 

between various forms of their representation. 

INTRODUCTION 

When performing geodetic calculations by computers, it is no wonder that the 

same angular quantity often appears represented in several different forms. For 

instance, such data may be given and entered in degrees, minutes and seconds, but 

to calculate trigonometric functions (in FORTRAN or BASIC) one has to convert them 

to radians. At first, such conversions might seem simple and easy. However, as 

pointed out for example in [1] the algorithms which look completely reasonable 

may fail in some cases, and result in unacceptable errors. Further, the subprogram 

for the conversion of radians to degrees, minutes and seconds, published in [2], 

gives for example 36° ˗ l' 59" in place of 35° 59' 59", which is obviously not a very 

suitable form for printing the results of computations. We offer the following alternative 

simple, but reliable solution (implemented in FORTRAN). 
 

CONVERSIONS 

Let us consider the following forms of angular quantities: 

1. The representation of degrees, minutes and seconds (e.g. 39° 23' 43.67") as a 

single number (39.234367), symbolised by DD.MMSS in the following text. 

2. Decimal degrees (39° 23' 43.67" represented as 39.3954639), denoted by D. 

3. Degrees, minutes and seconds as 3 separate numbers (39, 23, 43.67), denoted 

by D, M, S; 

4. Radians (0.687580555), denoted by R. 

The scheme of the possible necessary conversions is: 

 

We restrict our discussion to the case of positive angles. Namely, the negative 

sign should be taken into account separately (for example, assigning it to degrees 

when using the D, M, S form, would result in the identification of 0° 15' 10" with 

— 0° 15' 10", which is obviously not acceptable). The conversions 2, 3, 4 and 6 are 

now straightforward translations of well known mathematical relationships, and 

cause no difficulties. The problems connected with the remaining two are the 

consequence of two facts: the binary representation of numbers in computers, and  



 

 

the finite number of (binary) digits used for that representation. The solution lies 

in an unusual application of the rounding-up technique, which reverts the order of 

operations. Namely, the quantity needed in order to ensure the correct rounding 

of the seconds (or their decimal fractions) is added first, while stripping off degrees 

and minutes follows only after that. 

On the basis of those principles, the conversion 1 (DD.MMSS → D, M, S) can 

be performed by the following FORTRAN subroutine: 

C CONVERT DD. MMSS TO DEG, MIN, SEC 

SUBROUTINE DEMISE(ROU, X, ID, IM, SE) 

DOUBLE PRECISION ROU, X, HLP, DM, SE 

INTEGER*4 ID, IM,IHLP 

HLP = X + IDO / (20000D0*ROU) 

ID = HLP 

DM= (HLP —ID) *100D0 

IM = DM 

IHLP = (DM—IM) *100D0*ROU 

SE = IHLP/ROU 

RETURN 

END 

Here we use the FORTRAN built-in conversions between double precision reals 

and long integers. The starting value of the form DD.MMSS should be transferred 

to the variable X, while the resulting 3 separate values for degrees, minutes and 

seconds are ID, IM and SE. The factor 20000 reflects the fact that 0.5" is in the 

form DD.MMSS represented as 0.00005 = 1/20000. 

 

The rounding factor ROU should be chosen in accordance with the precision 

offered by the computer’s internal representation of numbers. Suppose that we use 

standard 8-byte double precision reals with 4-byte long integers, the guaranteed 

precision amounts to 1/10000000" in the whole range from 0° to 360°. It means 

that the largest permissible value for ROU is 10000000. Since, in practice, one 

usually does not calculate with such a precision, a smaller value of ROU can be 

applied as well. For instance, to achieve 1/10", we can choose any of the values 10, 

100, 1000,..., 10000000. If we have no doubt which is the maximal permissible 

value of ROU, it is natural to chose that value. A less experienced user, wanting 

to implement our subprogram on a machine having a different length of internal 

number representation, will be more safe to use ROU = 10 when all of his data are 

accurate and given up to 1/10". Similarly, ROU = 100 will guarantee 1/100", and 

so on, assuming, of course, that it is possible to achieve that precision with the 

given number of internally used (binary) digits.  

 

When we wish to use the standard FORTRAN 4-byte single precision reals and 2- 

byte integers, we simply have to change the variables type declarations in the 

proposed subroutine. This guarantees no more than a l" resolution in the whole 

range from 0° to 360°, and ROU should be set equal to 1. 

 

We have tested the proposed algorithm practically for the single precision case 



 

 

from 0° 0' 0" to 359° 59' 59" with a 1" step, both in FORTRAN 77 under MS DOS and 

FORTRAN 80 under CP/M. We could not make such detailed tests for the 

various double precision cases (1/10", 1/100",...), as it would take too long.However, we 

have checked what we consider to be the most critical cases. The 

proposed algorithm did not fail on any example. 

It should be noticed that the same subroutine solves the problem of the 

conversion 5 (D → D, M, S). One only needs to replace every 100 by 60, and 20000 

by 7200. 

CONCLUSION 

The proposed algorithm for the conversion of angular quantities proved to be 

simple and reliable. The FORTRAN version is included in the present paper, and the 

translation to other programming languages should not cause any special 

difficulties. It may only require the explicit use of some form of INT function. A 

ready for use BASIC version of the algorithm can be found in our former, more 

detailed paper [3], which dealt also with other fundamental algorithms relating to 

geodetic calculations. 
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