Nedjelko Frančula

Novi pristup kartografiji

New Approach to Cartography

UDK 528.91+92:681.14
Novi pristup kartografiji

Sažetak – Nakon uvodnih terminoloških objašnjenja navedene su prednosti i nedostaci digitalne kartografije, vrste i oblici kartografskih podataka te potreban hardver. Opisana je ručna i automatska digitalizacija te obrada vektorskih i rasterskih podataka. Mogućnosti digitalne kartografije prikazane su u određivanju površine hrvatskoga obalnog mora, u kartografskoj generalizaciji obalne linije Istra i gradske jezgre Splita, u izradi tematske karte naselja i županija Hrvatske i perspektivnom prikazu reljefa.

Ključne riječi: digitalna kartografija, određivanje površine, kartografska generalizacija, tematske karte.

New approach to cartography

Summary – Following the introductory terminological explanations, there are also the advantages and disadvantages of the digital cartography, types and forms of cartographic data and the necessary hardware illustrated. The manual and automatic digitizing and the processing of vector and raster data are described as well. The possibilities of digital cartography are presented in determining the area of the Croatian internal waters and territorial sea, in the cartographic generalization of the coastal line in Istria and the town centre of Split, in the production of the thematic map portraying the settlements and county districts in Croatia and in the perspective relief representation.

Key words: digital cartography, area determination, cartographic generalization, thematic maps.

1. Uvod

Introduction

U prvom razdoblju govorilo se o automatizaciji u kartografiji (Štefanović 1973), jer se očekivalo da će se razmjerno brzo moći potpuno automatizirati proces izrade karata.

Clarke (1990) uz termin kompjutorska kartografija upotrebljava i termin analitička kartografija. Analitička kartografija obuhvaća teoretske i matematičke osnove te pravila kojima se kartografi služe u izradi karata. Kompjutorska kartografija sadrži skup metoda i tehnička za izradu karata suvremenom kompjutorskom tehnologijom.

Primjena kompjutorske tehnologije u kartografiji usko je povezana s izumom digitalizatora i plotera početkom 1960. godina. Digitalizator je nužan da se sadržaj karte iz grafičkog oblika pretvori u digitalan, a ploter da se iz digitalnog oblika ponovo prijeđe u grafički oblik. Ploterom se dakle automatizira crtanje.
2. Prednosti i nedostaci digitalne kartografije
Advantages and disadvantages of digital cartography

Primjena kompjutorske tehnologije u kartografiji naročito je važna, jer je proces izrade karata složen i vrlo dug, pa su mnoge karte u trenutku izlaska iz tiska već zastarjele. Osim toga, u današnje vrijeme postoji potreba za sve većim brojem raznovrstan karata koju s današnjim metodama izrade karata nije moguce zadovoljiti. Prema tome, kompjutorska tehnologija nalazi u kartografiji zahvalno područje, a prednosti te neke tehnologije u izradi karata su višestruke:

- ubrzanje izrade,
- ubrzanje osuvremenjivanja,
- pojefinjenje izrade,
- poboljšanje uvjeta rada,
- poboljšanje kvalitete,
- rješavanje zadataka koje do sada uopće nije bilo moguće riješiti ili je njihovo rješavanje bilo povezano s velikim teškoćama (npr. prenošenje sadržaja kartice iz jedne kartografske projekcije u drugu).

Nadalje, stručnjaci drugih struka sve više traže od geodeta i kartografa podatke u digitalnom obliku. To su šumari, agronomi, ekolozi, urbanisti, geolozi, prometni stručnjaci i mnogi drugi, koji rezultate svojih mjerenja i istraživanja žele prostorno definirati.

I na kraju, ne usvoje li kartografske organizacije nove tehnologije, u određenom trenutku neće više biti konkurentne na tržištu.

Sa sve savršenijim softverom, lakić za upotrebu, kartografi gube monopol na izradi karata. Da bi išli ukorak s vremenom, morat će svoje aktivnosti proširiti od čisto kartografskih na sastavljanje, upravljanje, kontrolu i eksploataciju kartografskih baza podataka (Frančula, Kovačević 1993).

b) linije
- izolirane linije (npr. ponornice),
- linije u obliku stabla (npr. rječna mreža),
- linije u obliku mreže (npr. cestovna mreža);

3.2. Oblik podataka – Form of data

Podaci se pojavljuju u ova tri oblika: geometrijski, grafički i opisni.

Geometrijski podaci sastoje se od sljedećih elemenata: točaka, linija i površina. Oni mogu biti u vektorskom ili rasterskom obliku.

Vektorski podaci znače opis prostornih objekata pomoću točaka zadanih koordinatama. Točka je nosilac geometrijskih informacija. Linije i površine (poligoni) mogu se promatrati kao nizovi karakterističnih točaka. Linije ćemo dobiti ako točke spojimo vektorma, pa odatle i naziv vektorski podaci (Weber 1982).

Osnovni geometrijski elementi dopunjeni s grafičkim podacima čine vektorsku grafiku. Grafičko oblikovanje rasterskih podataka naziva se rasterska grafika.

Opisne podatke nazivamo i atributi. To su svi ne-geometrijski podaci: tekst, brojke, nazivi, svojstva itd. To su npr. kućni brojevi, brojčevi parcela, vlasnici.

4. Hardver
Hardware

4.1. Računala – Computers

Prema mogućnostima računala i njihovim cijenama možemo ih svrstati u ove grupe: osobna računala (PC), radne stancije, miniračunala i velika računala. U kartografiji se najčešće primijenjuju osobna računala i radne stancije.

Značajka je obrade podataka u kartografiji vrlo velika količina podataka. Zbog toga su kao vanjske me-
morije vrlo važni optički diskovi. Svojstva koja bitno razlikuju optičke diskove od ostalih vrsta diskova jesu:
- gustoća pohrane podataka (kapacitet reda veličine 1 GB),
- trajnost zapisa podataka (10-20 godina),
- izmjenjivost optičkih diskova.

Optički diskovi tipa CD ROM isporučuju se s upisanim podacima, koje korisnik ne može ni mijenjati nibrisati (npr. atlas svijeta). Diskovi tipa WORM na tržište dolaze prazni, a korisnik može na njih samo jednom upisati željene podatke, koje više ne može mijenjati.

4.2. Digitalizatori – Digitizers

Digitalizator (engl. digitizer) je uređaj za pretvaranje grafičkih originala u digitalan oblik. Po načinu rada dijele se u ručne i automatske.

4.2.1. Ručni digitalizatori – Manual digitizers

Za ovu vrstu digitalizatora upotrebljava se i termin vektorski digitalizator. Glavni dijelovi jesu: ploha za digitalizaciju, pokazivač (kursor) i sustav za mjerenje. Većina ručnih digitalizatora radi na induktivnom principu. Sustav za mjerenje sastoji se iz guste mreže međusobno okomitih vodiča u smjeru osi y i x. Navigiranje pokazivača inducira magnetsko polje. Sustav za mjerenje registrira položaj pokazivača u odnosu na mrežu vodiča.

Unutrašnja točnost digitalizatora obično je četiri do pet puta manja od razlučivosti rezolucije digitalizatora. Rezolucija je najmanja mjerljiva udaljenost duž koordinati na osi. Većina kartografskih potreba zadojvoljava rezoluciju od 0,025 mm i unutrašnja točnost od 0,125 mm, jer točnost s kojom operator može pratiti liniju iznosi 0,2 mm.

4.2.2. Automatski digitalizatori – Automatic digitizers

Takvo osjetilo građeno je od niza minijaturnih osjetila poredanih u crtu određene duljine. Svako od tih osjetila registrira odbijenu zraku jednog uskog područja predloška i predočuje područje strujom određene jakosti. Slika se tako dijeli u područja ili točke, pri čemu je svaka od točaka predočena jakočinu električne struje koja odgovara intenzitetu odbijene svjetlosti. Slika je to vijenje prenijeta što ima više točaka na jedinicom površini osjetila, tj. što je veća razlučivost skanera. Razlučivost skanera, koja se izražava u broju točaka po jedinici duljine, kreće se od 100 dpi (točaka po inču) do 2500 dpi. Razlučivost se ponekad izražava i brojem linija na milimetar ili veličinom točke, tj. piksela u milimetroima ili mikronima. Tipične vrijednosti razlučivosti skanera dane su u tablici 1.

Tablica 1. Tipične vrijednosti razlučivosti skanera

<table>
<thead>
<tr>
<th>dpi</th>
<th>(\mu \text{mm})</th>
<th>Veličina piksela u mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>12</td>
<td>0,085</td>
</tr>
<tr>
<td>508</td>
<td>20</td>
<td>0,050</td>
</tr>
<tr>
<td>800</td>
<td>32</td>
<td>0,032</td>
</tr>
<tr>
<td>1016</td>
<td>40</td>
<td>0,025</td>
</tr>
<tr>
<td>2540</td>
<td>100</td>
<td>0,010</td>
</tr>
</tbody>
</table>

S obzirom na mogućnost očitavanja boja slike (predloška) postoje skaneri koji mogu očitati: jednoboju sliku u više intenziteta (razina svig) i sliku u boji.

S obzirom na način očitanja slike skaneri se mogu podijeliti u ove glavne skupine: skaneri s nepomičnim papirom (stolni skaneri), skaneri s pomičnim papirom, ručni skaneri, valjkasti rotacijski skaneri i videokamere.
4.3. Ploteri – Plotters
Crtalo ili ploter (engl. plotter) je izlazna jedinica namijenjena izradi grafičkih prikaza na papiru ili filmu. Po načinu rada dijele se na: vektorske i rasterske.

4.3.1. Vektorški ploteri – Vector plotters
Osnovno načelo vektorštih plotera je da crtež nastaje relativnim pomicanjem pera za crtanje u odnosu na medij na kome se crta. Pomak u bilo kojem smjeru ostvaruje se kombinacijom dva nezavisna i međusobno okomita pomaka u smjeru osi y i osi x.

Razlučivost plotera je podatak o najmanjem koraku koji pero plotera može napraviti u smjeru koordinatnih osi (Grundler 1993). Tipične vrijednosti kreću se od 0,1 mm do 0,0025 mm.

Po točnosti plotere dijelimo u precizne i kontrolne. Precizni ploteri imaju razlučivost 0,0025 mm, točnost 0,05 mm. Razlučivost kontrolnih plotera iznosi 0,025 mm, a točnost 0,1% duljine linije (Weber 1991).

Vektorške plotere dijelimo u dvije skupine: – ploteri s nepomičnim papirom, – ploteri s pomičnim papirom.

4.3.2. Rasterski ploteri – Raster plotters
Rasterski ploter ispunjava čitavu površinu slike gustom mrežom točkica (piksela) od kojih nastaju se samo točkasti i površinski veći i liniji elementi. Po načinu rada dijele se u dvije skupine: fotoploteri i elektrostatski ploteri.

Fotoploteri nazivamo i osvjetljivači ili osvjetljivačke jedinice. Slika nastaje na filmu djelovanjem svetlosne ili laserske zrake. Film se stavlja na valjak i prljubljuje uz njega pomoću vakuuma. Valjak rotira velikom brzinom, a slika nastaje uključivanjem i isključivanjem izvora svjetla. Fotoploteri imaju vrlo visoku razlučivost: i preko 2000 dpi. Vrlo su skupi, ali se pomoću njih mogu izraditi kvalitetni reprodukcijski originali.

5. Digitalizacija
Digitizing

Ručna digitalizacija je postupak pretvaranja grafičkih originala u digitalan oblik pomoću ručnih digitalizatora. Uključuje tri aktivnosti: pripremu izvornika, vođenje pokazivača (kursora) i pridruživanje atributa. Priprema izvornika često je potrebna da bi vođenje pokazivača i pridruživanje atributa bilo brže i jednostavnije. Pri digitalizaciji cesta to će biti ako sve magistralne ceste obojimo na izvorniku jednom bojom, regionalne drugom, a lokalne nekom trećom bojom.

Vođenje pokazivača prilično je naporan posao, jer se izvodi u nepovoljnom položaju tijela. Izkustvo pokazuje da praćenjem linije operater može na sat digitalizirati oko 4 m linije.

Pri digitalizaciji sadržaja karte treba pojaviti jednom objektima (vode, prometnice, raslinstvo itd.) pridružiti atribute. Atributi omogućuju izdvajanje pojedinih objekata radi njihove dalje obrade, npr. generalizacije. Atributi se mogu pridružiti geometrijskim podacima (koordinatama) pomoću tastature, izbornika (menija) ili uređaja za govoru komunikaciju s računalom.

Digitalizacija automatskim digitalizatorima tj. skanerima, najčešće se naziva skaniranje. Rezultat skaniranja je slikovna matrica sa usklađenim atributima u točnom redoslijedu (Weber 1982). Količina podataka dobivenih skaniranjem vrlo je velika. Npr. za katastarski plan, 70 - 90 cm, skaniran s razlučivošću 20 mm⁻¹, količina podataka iznosi 31,5 MB. Količina podataka može se komprimiranjem smanjiti na 2 do 3 MB.

6. Obrada vektorskih podataka
Vector data processing

Obrada vektorskih podataka uključuje velik broj algoritama za rješavanje različitih zadataka. Spomenut ćemo samo dva.

6.1. Transformacija koordinata iz lokalnog sustava digitalizatora u sustav kartografske projekcije izvornika – Transformation of coordinates from the local digitizer system into the system of map projection

Ručnom digitalizacijom dobivamo koordinate u lokalnom sustavu digitalizatora. Za dalju obradu tih podataka, npr. njihovo spajanje sa podacima dobivenim iz drugih izvornika, nužno je koordinate iz lokalnog sustava digitalizatora transformirati u neki koordinatni sustav čije parametre poznajemo. To može biti koordinatni sustav kartografske projekcije izvornika.

Transformaciju koordinata iz lokalnog sustava digitalizatora u sustav projekcije izvornika možemo izvršiti na osnovi određenog broja točaka čije koordinate znamo u oba sustava. Takve točke nazivamo identične.
ili vezne točke. Na listovima karata krupnih mjerila najbolje je za vezne točke uzeti presjek linija pravo-
kutne koordinatne mreže. Koordinate tih linija u danoj
takožeraškoj projekciji ispisane su uz rubove karte.
Digitalizacijom tih točaka dobivamo njihove koordi-
nate u lokalnom sustavu digitalizatora. Na osnovi ko-
ordinata veznih točaka u oba koordinatnog sustava mo-
guća se odrediti parametri za transformaciju iz lokalnog
sustava digitalizatora u sustav kartografske projekcije
digitalizirane karte. U tu se svrhu najčešće primjenjuju
Helmertova, afinna i projektna transformacija.

6.2. Računanje površine na elipsoidu iz
digitaliziranih točaka – Area calculation on
the ellipsoid from digitized points

Površina lika proizvoljnog oblika čije su granice
definirane koordinatama prelomnih točaka može se
odrediti na temelju različitih formul. Za računanje u
Gauss-Krugerovoj projekciji pogodan je izraz:

\[A = 0,5 \sum_{i=1}^{n} (x(i+1) - y(i)) \cdot (r(i) + r(i+1)) \]

gde je \(r(i) \) lokalno mjerilo površina (Frančula i dr.

6.2.1. Površina Hrvatske – The area of Croatia

Nakon priznanja Hrvatske kao neovisne države po-
vršina kopnenog dijela bila je poznata, ali ne i površina
hrvatskoga obalnog mora.

Površina se države obično određuje mjerenjem s
karata krupnih mjerila, npr. 1: 25 000. To je, međutim,
zbog velikog broja listova dugotrajan i skup posao.
Istraživanja koja smo proveli (Frančula i dr. 1993,
Lapaine i dr. 1993, 1994) pokazala su da se takva mjere-
nja mogu s visokom točnošću izvršiti i na kartama sit-
nijih mjerila. Mi smo hrvatske granice digitalizirali s
karte mjerila 1 : 1 000 000 izražene u Gauss-Krugerovoj
projekciji sa srednjim meridijanom 16° 30’. Linearno
mjerilo na srednjem meridijanu iznosi m = 0,9997.

| Tablica 2. Površina otoka Cresa i Krka
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mjerilo karte</td>
<td>Cres km²</td>
<td>Krk km²</td>
</tr>
<tr>
<td>1 : 5 000</td>
<td>405,78</td>
<td>405,78</td>
</tr>
<tr>
<td>1 : 20 000</td>
<td>405,24</td>
<td>405,24</td>
</tr>
<tr>
<td>1 : 25 000</td>
<td>406,63</td>
<td>406,27</td>
</tr>
<tr>
<td>1 : 50 000</td>
<td>406,27</td>
<td>406,27</td>
</tr>
<tr>
<td>1 : 100 000</td>
<td>406,26</td>
<td>406,26</td>
</tr>
<tr>
<td>1 : 200 000</td>
<td>406,13</td>
<td>406,13</td>
</tr>
<tr>
<td>1 : 1 000 000</td>
<td>405,7</td>
<td>405,5</td>
</tr>
</tbody>
</table>

Ploština hrvatskoga obalnog mora (unutrašnje mor-
ske vode i teritorijalno more bez otoka) iznosi, prema
našem određivanju, 31 479 km². Za ploštinu kopnenog
dijela Hrvatske dobili smo 56 488 km², što se od služ-
benog podatka 56 538 km² razlikuje za 50 km², tj. 0,1%.
Krivičić (1993) iznosi podatke plošine otoka
Cresa i Krka s karata krupnih mjerila (tablica 2). U
zadnjim retku te tablice dane su ploštine koje smo do-
bili s karte mjerila 1 : 1 000 000 (Lapaine i dr. 1994).
Usporedba površina pokazuje da je Cres, najvjerojat-
nije veći od Krka, iako je u svim udžbenicima i stati-
sičkim godišnjacima do sada pisalo da je Krk najveći
otok u Jadranu.

7. Obrada rasterskih podataka
Raster data processing

Obrada rasterskih podataka zasnovana je na spoza-
njama iz digitalne obrade slike. Osnovne operacije s
rasterskim podacima uključuju radiometrijsku trans-
formaciju, paralelnu pomicanje, aritmetičke i logičke
operacije. Složene operacije uključuju zadebljavanje,
stanjivanje, filtriranje, geometrijsku transformaciju i
vektorizaciju. Osvrnut će se ukratko samo na vektori-
zaciju.

7.1. Vektorizacija – Raster-to-vector conversion

Proces pretvaranja podataka iz rasterskog u vektorski
oblik nazivamo vektorizacija. Vektorizacija je nuž-
na iz više razloga. Navode se nemi:
• smanjenje količine podataka,
• crtanje vektorskim ploterima,
• većina geoinformacijskih sustava (GIS) zasniva
se na vektorskim podacima.

Vektorizacija može biti: ručna, poluautomatska i
automatska.

Ručna vektorizacija provodi se na ekranu monitora
na podlozi skaniranog predloška. Na liniji koju treba
vektorizirati biraju se korosom karakteristične točke i
iz rasterskih koordinata transformacijom dobivaju vek-
torske (projekcijske) koordinate. To je proces analogan
digitalizaciji ručnim digitalizatorom. To je razlog da
se taj proces u literaturi vrlo često naziva i ekranskom
digitalizacijom. To, međutim, terminološki nije isprav-
no, jer je slika na ekranu monitora već u digitalnom
obliku, pa je nije potrebno digitalizirati već vektorizi-
rati. Prednost ručne vektorizacije u odnosu na ručnu
digitalizaciju je u mnogo udobnijem načinu rada, jer
se izvodi sjedeći pred ekranom monitora.

Poluautomatska se vektorizacija također izvodi na
ekranu monitora na skaniran predlošku. Operater
dovodi kursor na liniju koju treba vektorizirati. Linija
se potom automatski vektorizira do prve zapreke, npr.
križanja s drugom linijom. Operater mora ručno prevesti kursor preko križanja na liniju koja se vektorisira.

8. Crtanje
Drawing

Osim hardvera, za crtanje je potreban i odgovarajući softver. Imamo dvije mogućnosti: pisanje vlastitih programa i upotrebu programskih paketa za crtanje. Problemi s kojima se susrećemo u pisanju vlastitih programa u nekom od programskih jezika povezani su s nepostojećom normacijom na tom području. Drugim riječima, svaka izlazna jedinica razumije svoj grafički jezik, a to onda otežava ili čak onemogućava korištenje istog softvera na nekoj drugoj izlaznoj jedinići. Veće mogućnosti u takvim slučajevima pružaju programski paketi za projektiranje i crtanje. Vrlo široku primjenu u nas imaju AutoCAD, MicroStation i CorelDRAW.

9. Kartografska generalizacija
Cartographic generalization

Kartografska generalizacija je uopćavanje sadržaja karte prilagođeno mjerilu i (ili) svrši karte. Čimbenici koji utječu na generalizaciju jesu: mjerilo karte, minimalne veličine, značajke krajolika i namjena karte.

Mjerilo karte ima presudu utjecaj na stupanj generalizacije, jer se smanjivanjem mjerila smanjuje prostor za prikaz određenog dijela Zemlje površine, a time i mogućnost točnoga i detaljnog unošenja sadržaja. Na primjer, za prikaz jednoga kvadratnog kilometra u mjerilu 1 : 1 000 na raspolagaju je jedan kvadratni metar, a u mjerilu 1 : 100 000 jedan kvadratni centimeter.

Kartografska generalizacija obuhvaća ove procese: izbor, pojednostavljivanje, sažimanje, pomicanje i pretvorbu metode prikaza.

Izbor je najvažniji proces generalizacije, jer se u njemu odlučuje da li će neki objekt biti prikazan na karti ili ne. Izbor objekata možemo provoditi:
- prema minimalnim veličinama,
- prema broju objekata i
- prema važnosti objekata.

Izbor prema minimalnim veličinama objekata najjednostavniji je oblik generalizacije. Svi objekti koji su u mjerilu karte manji od minimalnih veličina izostavljaju se. Npr., ne prikazuju se rijeke kraće od jednog centimetra u mjerilu karte.

Sažimanje je grafičko spajanje susjednih istovrsnih objekata kad je razmak između njih manji od minimalnih veličina.

Mnogi objekti na karti prikazuju se zbog njihove važnosti mnogo veći od točnog prikaza u mjerilu karte.

Slika 1. a) negeneralizirani prikaz, b) metoda minimalnih veličina \((v = 0.4 \text{ mm}, d = 0.8 \text{ mm}) \); c) i d) metoda aritmetičke sredine: c) \(n = 2 \), d) \(n = 4 \)

Fig. 1. a) non-generalized representation, b) method of minimum sizes \((v = 0.4 \text{ mm}, d = 0.8 \text{ mm}) \); c) and d) method of weighted arithmetic mean: c) \(n = 2 \), d) \(n = 4 \)
Takvi su objekti npr. ceste. Uzmimo za primjer cestu široku u prirodi 4 m prikazanu na karti s dvije paralelene crte na razmaku 0,6 mm. Širina takve ceste preračunata s karte mjerila 1 : 200 000 u prirodi, umjesto 4 m iznosi 120 m. Jasno je da su zbog toga svi objekti uz cestu, npr. kuće, pomaknuti iz svoga prvog položaja.

Smanjivanjem mjerila u prikazu objekata na karti dolazi u određenom trenutku i do promjene metode prikaza. Pretvorba od tlocrtnog prikaza na prikaz znakom nastupa onda kad je tlocrt objekta zbog redukcije površine smanjivanjem mjerila premali za čitak prikaz obras.

9.1. Generalizacija prikaza naselja pomoću programskog paketa PC ARC/INFO –

Generalization of settlement by means of PC ARC/INFO

U sklopu jednog diplomskog rada (Savin 1992) ispitivane su mogućnosti programskog paketa PC ARC/INFO u generalizaciji prikaza naselja. U tu svrhu digitaliziran je prikaz gradske jezgre Splita s osnovne državne karte u mjerilu 1 : 5 000 (slika 2).

Generalizaciju treba izvršiti za prikaz u mjerilu 1 : 10 000. Postupak generalizacije obavljen je u nekoliko koraka. Dodatno su digitalizirane i osi ulica i pomoću naredbe BUFFER proširene u glavne i sporedne ulice. S naredbama ERASECOV i CLIP izbrisan je dio prikaza unutar proširenenih ulica. Svi poligoni površine manje od 1 mm² u mjerilu 1:10 000 uklonjeni su pomoću naredbe ELIMINATE. Naredbom DISOLVE sažeti su svi bliski susjedni istovrsni poligoni, npr. dvorišta. Uz još neke međukorake dobiven je tako prikaz na slici 3.b. Konačan prikaz na slici 3.c dobiven je interaktivnom doradom u modulu ARCEDIT.

![Slika 2. Gradsko jezgro Splita u mjerilu 1 : 5000](https://via.placeholder.com/150)

Fig. 2. Town centre of Split at the scale 1 : 5000

![Slika 3. Prikazi u mjerilu 1 : 10 000: a) negeneralizirani prikaz; b) prikaz dobiven pomoću naredbi PC ARC/INFO-a; c) interaktivno doraden prikaz](https://via.placeholder.com/150)

Fig. 3. Representation at the scale 1 : 10 000: a) non-generalized; b) obtained by means of PC ARC/INFO statements; c) interactive finished representation
10. Tematske karte
Thematic maps

Tematske su karte kartografski prikazi najrazličitijih tema iz prirodnoga i društvenog područja, koje su neposredno vezane za prostor. Kao okosnica za prikaz služi pravila pojednostavljenja topografska karta, tzv. temeljna karta (Lovrić 1988).

Velik broj tematskih karata može se grupirati po raznim osnovama (Lovrić 1988):
• po svojstvima prikaza,
• po metodama istraživanja,
• po oblicima i sredstvima prikaza i
• po tematskim područjima.

Od velikog broja tematskih karata osvrnut će se na mogućnost kompjutorski podržane izrade samo jedne takve karte.

10.1. Karte točaka – Dot maps

Raštrkanost ili zbivenost objekata, npr. naselja nekog područja, najbolje se može prikazati ako se sva kom naselju dodijeli jedinična točkasta signatura (Lovrić 1988). Radi izrade karte naselja Hrvatske tom metodom (Lapaine, Frančula 1994) (slika 4), studenti Geodetskog fakulteta Sveučilišta u Zagrebu Bajić, Husak, Kosina, Savin (1992), digitalizirali su centre svih 6665 naselja Hrvatske s karte u mjerilu 1 : 50 000.
11. Perspektivni prikazi reljefa
Perspective representation of relief

Preduvjet za kompjutorski podržane prikaze reljefa jesu digitalni modeli reljefa (DMR). DMR je skup točaka na površini Zemlje čije su prostorne koordinatne pohranjene na nosiće pogodne za kompjutorsku obradu.

Slika 5. Dio Medvednice s učitanim vodotocima (Lapaine i dr. 1992)
Fig. 5. Part of Medvednica with water streams
Literatura

References

Adresa:
Prof. dr. sc. Nedjeljko Frančula
Geodetski fakultet Sveučilišta u Zagrebu
Kožidra 26
HR-10 000 Zagreb, Hrvatska