
Realization of Natural Interaction over the Micro

Soot Device Model

Petar Mrazović, Marko Pilipović, Mario Volarević, Željka Mihajlović

Faculty of Electrical Engineering and Computing, Zagreb, Croatia

petar.mrazovic@gmail.com, marko.pilipovich@gmail.com, mario.volarevic@gmail.com, zeljka.mihajlovic@fer.hr

Abstract - Paper explores methods of achieving natural

interaction between the virtual and the real world, along

with their application in industry. Significant emphasis is

given to the Microsoft Kinect device, whose functionality

was introduced in the field of powertrain systems industry.

Collaboration with Austrian company AVL, which is

engaged in development, testing and simulation of

powertrain systems, has contributed with specific problem

that can be solved in augmented reality domain. In order to

facilitate maintenance of special device for continuous

measurement of lowest soot concentration in the diluted

exhaust from internal combustion engines, an interactive

virtual service manual has been developed. The application

uses interaction with the Microsoft Kinect device which

enables users to control and interact with computer world

through a natural user interface using gestures and spoken

commands. The device finds greatest application in

interactive entertainment, but this paper presents and

exploits its great potential in industrial environments.

I. INTRODUCTION

With the rapid development of new technologies we
are constantly searching for new methods which would
affect our experience of interaction with computer world.
Augmented Reality Technology (AR) superimposes a
computer-generated image on a user’s view of the real
world, thus providing a composite experience of human-
computer interaction. AR techniques are used widely in
various spheres of human life, and are especially
interesting and attractive to apply in the advertising and
interactive entertainment. However, the great potential of
AR technology has not yet been sufficiently exploited in
modern production processes, which leads us to the
question of how to use this technology in order to
facilitate work in industrial plants.

AR technology is rather interesting and useful way of
exploiting modern computer technology and high
performance electronics to blur boundaries of real and
virtual world. As explained in [1], AR is a variation of the
more known concept of Virtual Reality Technology (VR)
and it is important to notice the difference between the
two. VR technology creates virtual environment in which
user feels to be moving inside of a computer-generated
world, but at the same time he cannot perceive the real
world which still surrounds him. On the contrary, AR
allows the user to feel the real world, augmenting it with
superimposed virtual objects. Awareness of the real world
allows user to act natural in complex environment, but
also to feel safe at the same time. Precisely this feature is a
great potential for AR application in complex or
dangerous maintenance tasks in industrial environments.

As concluded in [2, 3], maintenance tasks in industrial
environments are excellent domain for AR applications.
However, the great potential has not yet been exploited as
well as in the field of entertainment. The basic idea of AR
is to bring additional information as seamlessly possible
into the view of a user, thus providing new perspective
and better understanding of real-world situation. Another
advantage of AR systems in industrial environments is
fault tolerance which can greatly reduce number of errors
during maintenance tasks. Economical point of view is
also discussed in [1] where authors agree that industries
can use AR to lower processes’ operational costs and thus
sustain their growth and innovation.

There are many available solutions for AR which can
be easily adapted for industrial application. Most AR
systems make use of simple handheld devices such
smartphones, which are usually equipped with compasses,
global position system sensors, gyroscopes and cameras.
These kinds of well equipped devices provide a large
amount of information about real world which can be
easily supplemented with virtual features, thus creating a
simple AR system. This paper will address more complex
AR system which enables user to interact through natural
user interface (NUI) using gestures. NUI is alternative to a
command-line interface (CLI) or graphical user interface
(GUI), but also their possible successor. It allows user to
act and feel more natural in interaction with computer
world, and enhances their experience of using computer
systems. Motion sensing input devices are usually needed
to achieve proper natural interaction, and therefore
Microsoft Kinect will also be introduced in the paper.

II. INTERACTIVE MANUALS

Collaboration with Austrian company AVL, which is
engaged in development, testing and simulation of
powertrain systems with internal combustion engines, has
contributed with specific problem which is solved in AR
domain. The paper follows the process of developing
interactive virtual service manual which facilitates
maintenance of AVL Micro Soot Sensor (Figure 1).

AVL Micro Soot Sensor is device for continuous
measurement of lowest soot concentration in the diluted
exhaust from internal combustion engines. Its
maintenance presents an extremely demanding and
responsible job which is carried out as a series of careful
tasks. These tasks are animated using supplied 3D model
of the Micro Soot device, and present the main feature of
the developed interactive software. Software also enables
user to manipulate with the model, e.g. rotate, zoom,
disassemble device model and explore all of its parts.

MIPRO 2013/DC-VIS 297

mailto:petar.mrazovic@gmail.com
mailto:marko.pilipovich@gmail.com
mailto:mario.volarevic@gmail.com
mailto:zeljka.mihajlovic@fer.hr

Figure 1 AR system as an interactive virtual service manual

Entire human-computer interaction is implemented using
Microsoft Kinect as a motion sensing input device, i.e.
user can interact with the device through NUI using
gestures. The most of successful Kinect application
concern the field of entertainment [1, 4], but this AR
system introduces Microsoft Kinect to an entirely new
field of application – maintenance in industrial
environments.

III. TECHNICAL IMPLEMENTATION DETAILS

During planning and development of this project
several problems and lack of features in the standard SDK
were encountered, so for this program to function
correctly they had to be implemented. Some of the notable
examples of these problems and how they were solved
will be presented in this segment. The biggest issues were
creating an augmented reality environment that uses real
3D graphics engine as a backbone and creating a system
that enables intuitive interaction and use of natural user
interface.

A. Creating Augmented Reality

To create an augmented reality view where real and
virtual world are interconnected, rendering engine and live
video feed have to be somehow connected. Since various
3D models (Micro Soot sensor and its parts) and
animations (service manual steps) had to be loaded,
standard WPF interface couldn’t be used because these
features aren’t supported there so 3D rendering engine has
to be used. As it was mentioned before, technologies and
SDKs that were used are official Microsoft technologies,
and were chosen because of compatibility, portability and
their ease of use, and for that reason XNA Game Studio
was chosen as a 3D rendering engine. But creating AR
view isn’t straightforward. Although Kinect SDK enables
the user to get frames from various video feeds (color,
depth, infrared) that are retrieved from the Kinect sensor
they come in the form of pixel arrays and first have to be
converted to a compatible format. For example, bytes
from color video frames come in the BGRA format (blue,
green, red and alpha channel) and XNA uses RGBA
format, so the order of red and blue bytes has to be
swapped. When using standard WPF framework color
format can be specified as a parameter and conversion
takes place automatically but in XNA it has to be done
manually and for that purpose small HLSL program was
written (since it’s a shader everything is done on the GPU
so the performance hit is negligible). After the image is

converted it has to be drawn to the screen, and to do that
first the array of pixels has to be transferred to a 2D
texture and then this texture is drawn as a sprite over the
full screen. After that, models and GUI (graphical user
interface) can also be rendered. Since XNA has an
unusual way of deciding what is rendered in which order
in the graphical pipeline, special attention has to be given
to manual tweaking of rendering order so that the video
image is always in the background, models in front of it
and GUI on top or problems like drawing invisible or
semi-transparent models and GUI may arise.

B. Natural user interface and Graphical user interface

Opposed to classical user interfaces where some kind
of hardware has to be used (mouse, keyboard, joystick
etc.) in combination with various buttons, menus and
images to perform a certain action, natural interfaces
allow use of voice or intuitive gestures like waving,
reaching or grabbing to interact with program with the
same purpose like they are used in real world. For
example waving might be interpreted as “Hello” or
“Goodbye” and could be used to start or stop a program.

In this case grabbing was used as a way to rotate,
zoom or disassemble the model. For zooming both hands
have to be used and it works in a similar way like a “pinch
to zoom” gesture on modern multi-touch smartphones.
Problem with using the grabbing gesture is that Kinect
doesn’t support most gestures “out of the box” so a
method to detect whether the fist is open or closed had to
be developed [5, 6, 7]. Data that Kinect does provide and
which helps in accomplishing this task were skeleton info
(contains positions of 20 major joints in the body) and
depth image (for each camera pixel its distance from the
Kinect is given). First the joint position of each hand is
acquired and then using this position as center, rectangular
region approximately the size of the open hand is
extracted from the depth image. This was done to
minimize the amount of scanning (lowers performance
costs a lot, instead of checking 640x480 pixels only
around 30x30 pixels have to be used). In the next step
horizontal and vertical scanning of each line is performed
where depth information is used to isolate hand from
background objects (no complex computer vision
algorithms are needed for edge detection like with
conventional 2D cameras). Scanning is used to determine
the amount of gaps between fingers (Figure 2) and this
information is then used to conclude whether the fist is
open or closed (when it is closed there should be no gaps
detected). This primitive method works well for a

298 MIPRO 2013/DC-VIS

Figure 2 Scanning for gaps

Figure 3 Part moved, hand released

Figure 4 Button selection and activation

prototype application where false positives can be
tolerated but later versions will use some of the more
robust algorithms (probably “blob detection” from
OpenCV library).

After the status of the hand has been detected it can be
used for grabbing virtual objects. In the case of model
disassembly, grabbing is combined with mesh collision
features of the XNA Framework. Usually invisible
spheres or boxes are used to approximate the model
because of performance reasons. Regarding the box based
methods XNA only supports axis aligned bounding boxes
and using them would give very bad results when the parts
are rotated. Other box based collision method is called
object oriented bounding boxes and it is much more
precise because it does rotate itself with the model but it is
also more computationally expensive and difficult to
implement and for our purposes it wouldn’t be cost
effective to implement it by ourselves. Since the model
and parts are rotated a lot, spheres were chosen because
they are always the same, regardless of rotation. Minor
annoyance is that XNA doesn’t automatically calculate the
dimensions and positions of the collision spheres
depending on the model part but they have to be created
manually. Collision detection is activated only if the user
has closed his hand and then one sphere is assigned to the
position of the hand. The sphere is then checked in a loop
with all generated spheres of all parts in the scene. If they
intersect then while moving the closed hand grabbed part
also moves in the same direction and by the same amount
(just like grabbing and moving an object would happen in
real world). (Figure 3)

The other two gestures, zoom and rotate, were used in
a more 2D way: we take note of the hands vertical and
horizontal movement, and ignore the forward/backward
movement. The reasoning behind this reduction in
dimensions is user oriented – the user is viewing his
actions on a 2D surface, it’s not intuitive and it’s hard to
see your hands position in 3D relation to the virtual
model. Because of tracking errors we had to include a
threshold to our movement detection, and we also had to
use fixed values for frame-to-frame scale and rotation
updates as to avoid jagged movements of the model. One
more point that distinguishes tracking hands with Kinect
from tracking with a webcam is that Kinect preserves
spatial distances. For example, Kinect will detect that you

moved your hands 10cm apart if you’re standing 2, 3 or
5m away from the device, while a webcam would detect
different distances depending how far away you are form
the camera.

Since the program has rich functionality not every
action can be performed by gestures. Some of the actions
wouldn't be intuitive and would be easily forgettable. this
way the meaning of using NUI for its simplicity would be
lost, so a classic GUI also had to be created, but it can be
used with Kinect and with a mouse. Selection of buttons is
performed by placing the hand or mouse on top of it and
actions are confirmed, with the mouse by clicking, or
hovering for a second over the button with a hand (Figure

4). Hovering was chosen because it is one of the methods
described in [8] that can be used with classic GUI. It is
also stated that a clear visual feedback of what is
happening has to be provided. Therefore the buttons get
highlighted when they are selected and while activating
the button, the status indicator for the hand is getting more
transparent while time passes, which indicates that
something is happening.

C. Animations

In order to provide illustrative maintenance
instructions, each task was animated in Autodesk 3D
Studio Max, and then loaded into XNA program. This
way the user is enabled to walk through animated service
steps using intuitive navigation buttons.

MIPRO 2013/DC-VIS 299

Seven animations were created and exported into
separate FBX files. These files contain only animations
and no geometry. Model meshes were culled down to one
triangle reducing the size of the files. These “naked” files
are loaded into program where transform information is
extracted from them and applied to a preloaded
unanimated model with complete meshes, i.e. reference
model. The principle is described by Dr. Charles Owen in
[9]. Owen developed this solution for loading pre-
animated models into XNA programs. The solution
extends Content Pipeline, which is responsible for loading
assets into an object that can be used in XNA code. A
custom made content processor class processes imported
models and extracts animation data. Special animation
data classes were used by the animated model processor to
store the animation data and by the software application to
load this data at runtime [10].

IV. CONLUSION

The most successful AR applications concern the field
of entertainment. However, its ability to provide new
perspective and better understanding of real-world
situations guarantees wider future application in any kind
of industry. Particularly promising areas of application are
maintenance tasks in industrial environments. AR
technology has proved to be highly suitable for
development of interactive service manuals which can
greatly facilitate complex maintenance tasks.

Introducing Microsoft Kinect to a new field of
application has provided new exciting features in
interactive manuals such as NUI. NUI implementation has
proved to be very attractive, highly useful and profitable.
It allows the user to act and feel more natural in
interacting with computer world, and enhances his
experience of using interactive manuals. The user can
explore task problems more deeply, while feeling extra
safe in a fault-tolerant environment. Both users’ hands are
free while interacting with manual which is sometimes of
utmost importance in harsh environments of industrial

plants. In the near future NUI will most certainly find
greater use in industrial environments, while today its
potential is still limited to the field of entertainment.

ACKNOWLEDGMENT

Special thanks are due to all partners from AVL
Company, especially to Croatian representatives in
Zagreb.

REFERENCES

[1] M. Hincapie, A. Caponio, H. Rios and E.G. Mendivil, "An
introduction to Augmented Reality with applications in
aeronautical maintenance," Transparent Optical Networks
(ICTON), 2011 13th International Conference on , vol., no., pp.1-
4, 26-30 June 2011.

[2] S. Bernd and L. De Blandine, "An augmented reality system for
training and assistance to maintenance in the industrial context,"
Journal of Winter School of Computer Graphics, vol. 11, pp. 101-
110, 2003.

[3] N. Zenati, N. Zerhouni and K. Achour, "Assistance to
maintenance in industrial process using an augmented reality
system," Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE
International Conference on , vol.2, no., pp. 848- 852 Vol. 2, 8-10
Dec. 2004.

[4] T. Leyvand, C. Meekhof, Yi-Chen Wei, Jian Sun and Baining
Guo, "Kinect Identity: Technology and Experience," Computer ,
vol.44, no.4, pp.94-96, April 2011.

[5] M. Tang, “Recognizing Hand Gestures with Microsoft’s Kinect,”
Stanford University, Department of Electrical Engineering,
Technical Report, March 16, 2011., unpublished

[6] A. Drake, “Kinect Hand Recognition and Tracking,” Washington
University in St. Louis, Kinect Hand Recognition and Tracking,
Project Report, May 1, 2012., unpublished

[7] F.T. Cerezo, “3D Hand and Finger Recognition using Kinect,”
University of Granada, Project Report, 2011., unpublished

[8] Human Interface Guidelines for Kinect for Windows, Vers. 1.5.0.,
2012.

[9] C. Owen, “A Better XNA Skinned Sample,”
http://metlab.cse.msu.edu/betterskinned.html, October 24, 2012.

[10] A. S. Lobao, B. Evangelista, J. A. Leal de Farias and R. Grootjans,
Beginning XNA 3.0 Game Programming: From Novice to
Professional, New York: Springer-Verlag, 2009

300 MIPRO 2013/DC-VIS

