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Abstract—In this paper a method of realizing seventh-order 
elliptic filter using signal-flow graphs is presented. The 
elliptic filter having a minimum number of capacitors is 
compared with the filter having a higher number of 
capacitors. The version with minimum number of capacitors 
provides area savings in IC form. Both filters (i.e. filter with 
minimum and one with higher number of capacitors) have a 
low sensitivity to component tolerances in the pass band 
according to Orchard’s theorem. The seventh-order elliptic 
filter has three parallel capacitors forming three parallel 
tanks, and therefore has three finite elliptic transfer-
function zeros. The realizations of one and two parallel 
capacitors have already been presented elsewhere. The sfg 
derivations necessary to realize seventh-order filter having 
additional resistive network is presented, which is very 
complicated in the case of three zeros. Transfer function 
magnitudes are simulated using the PSpice program. Monte 
Carlo runs confirm the low sensitivity to component 
tolerances of both circuit types. 

Keywords: Seventh-order elliptic filters, IC design, signal-flow 
graphs, small chip area, low sensitivity.  

I. INTRODUCTION 
This paper presents a method in that signal-flow graph 

(sfg) derivations are applied to the passive-LCR ladder 
filters, in order to derive active-RC filter circuits. In recent 
paper [1] the method was applied to the elliptic filters of 
low order (up to sixth order), whereas in this paper high-
order (i.e. seventh-order) elliptic filter is derived. The 
active-RC filters obtained by this method have a low 
sensitivity to component tolerances according to 
Orchard’s theorem, because they simulate passive-LCR 
ladder filter terminated with equal resistors in both ends 
[2]. When compared to allpole case, elliptic filters have 
additional capacitors to form finite zeros in transfer 
function. These zeros are realized by parallel LC tanks in 
series branches of ladder network. There are two main 
approaches how to realize those additional capacitors in 
the inductorless version of the filter (i.e. which is obtained 
by the simulation of passive-LCR ladder filter using 
signal-flow graphs). Two approaches are: (i) the filter with 
additional capacitive network (common approach), (ii) the 
filter with additional resistive network (new approach 
presented in this paper and in [1]). It will be confirmed by 
Monte Carlo runs using Cadence PSpice 16 [3] that both 
circuit types have low sensitivity to component tolerances. 

Resistors are preferred over capacitors on a chip 
because they use less chip area and are easier to 
manufacture. The design method illustrated in [1] is for 
the case of low-order elliptic filters having one or two 
additional capacitors. In this paper the method is extended 
to the high-order filter having three capacitors. A 
systematic way is presented in which signal-flow graph is 
transformed to construct elliptic filter with canonic 
number of capacitors. 

II. ELLIPTIC FILTERS WITH THREE TANK CAPACITORS 
Consider the doubly terminated seventh-order low-

pass elliptic passive-LCR ladder filter in Fig. 1(a) (as in 
[4][5]).  

With Kirchhoff’s laws and the voltage-current branch 
relations of the passive-LCR ladder filter in Fig. 1(a), we 
obtain the set of equations: 
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Note that: 

 666444222 ,, CLCLCL IIIIIIIII +=+=+= . (2) 

Reformulating the system of equations (1) in order to 
obtain an appropriate sfg representation, we obtain: 
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The sfg in Fig. 1(b) represents the system of equations (3). 

In order to obtain voltage transfer functions for the 
paths of the sfg it is necessary to multiply the current 
nodes [e.g. in Fig. 1(b)] by a resistance, [e.g. R0 [Ω] in 
Fig. 2(a)]. As already shown in [1] and repeated here 
multiplying a node by some factor (the resistor R0 in our 
case) means that all outgoing paths from this node will be 
multiplied by that factor. Thus, all incoming paths to that 
same node must be divided by the same factor. This is 
shown for the sfg in Fig. 1(b), and results in Fig. 2(a) and 
Fig. 2(b). To obtain a one to one relationship between 
currents and voltages, we select a value of R0=1Ω. 

Two possible realizations of elliptic filters having 
three parallel tanks with C2, C4 and C6 can be obtained 
from the system of equations (3); they are shown by sfgs 
in Fig. 2(a) and Fig. 4(a), respectively. In what follows we 
compare the two circuits resulting from these two sfgs 
with regard to complexity (number of resistors, capacitors, 
and chip area), and sensitivity. 

 

(a)  

(b)  

Figure 1.  (a) Seventh-order passive-LCR ladder filter with designated 
voltages and currents. (b) Corresponding signal-flow graph [see (3)].  

Consider a seventh-order elliptic (or Chebyshev-
Cauer) filter with a reflection coefficient ρ=25% 
(corresponding to Amax=0.280287dB), and a normalized 
stop-band edge frequency ωs=1.30541, which corresponds 
to the modular angle Θ=sin–1 (ωc/ωs)=50°. The pass-band 
edge frequency is normalized to unity (ωc=1). Using filter 
tables (e.g. [4]) we obtain Amin=64.3615dB. This filter is 
referred to as CC 07 25 50 in most filter handbooks. 

The resulting normalized voltage transfer function is 
given by: 
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and the resulting normalized component values (all of 
which are available from filter design handbooks) are 
given in Table I. 

A. Networks with Additional Capacitors 
The conventional method of deriving elliptic filters 

with additional capacitors is given in [6] and [7]. For our 
example, the obtaining an active-RC filter from its sfg, in 
a conventional way, starts with Fig. 2(a). After 
multiplication by R0 sfg has all voltage nodes as shown in 
Fig. 2(b). Note that some incoming branches, which 
perform addition of signals have gain –1; this will result in 
some negative components. To obtain all positive 
components, we have to further transform the sfg in Fig. 
2(b). Appropriate nodes have to be multiplied, or scaled, 
by –1 [see Fig. 2(b)–(d)] which results in sfg in Fig. 2(e) 
having positive and negative integrators, and all positive 
incoming branches. After “loop reduction” rule was 
applied, final sfg in Fig. 2(f) is obtained.  

TABLE I.  ELEMENT VALUES OF LADDER-LCR FILTER IN FIG. 1(A) 

Type 
RS C1 L2 C2 C3 L4 
1.0 1.38237 1.22404 0.12570 1.85021 0.91785 

CC 07 
25 50 

RL C4 C5 L6 C6 C7 
1.0 0.61906 1.66398 0.96224 0.43348 1.14130 
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(a)  (b)  

(c)  (d)  

(e)  (f)  
Figure 2.  Deriving an active-RC simulation of a seventh-order passive-LCR ladder filter as in Fig. 1. (a) Sfg is obtained from sfg in Fig 1(b) by node 
shifting and scaling current nodes by R0. (b)–(e) Multiply appropriate nodes by –1 in order to obtain only positive components with positive and 
negative integrators. (f) Loop reduction (outer integrators are “lossy” and belong to terminating resistors).  

 

Figure 3.  Final circuit with additional capacitors containing only positive components and positive and negative integrators (sfg is in Fig. 2(f)).  

This results in the active RC circuit of Fig. 3, which is 
an inductorless active-RC simulation of the passive-LCR 
ladder network in Fig. 1(a). It is important to note that the 
low sensitivity to component tolerances, which are a 
characteristic of LCR ladder filters (see [2]), are carried 
over to their active-RC equivalents.  

In this paper, all derivations will be carried out on 
single-ended designs; the conversion to a fully differential 
balanced version is straightforward and presented in [1]. 
B. Networks with Additional Resistors and Fewer 

Capacitors 
As shown in [1], a third- to sixth-order elliptic filter 

has one or two parallel LC tank(s), which means one or 
two additional capacitor(s) C2 (and C4) when compared to 
the allpole filter of the same order. Seventh-order elliptic 
filter presented in this paper has three additional 
capacitors C2, C4 and C6. According to the initial sfg in 
Fig. 4(a) [it is the same sfg as in Fig. 1(b)], which is 
shown again in Fig 4(c) (with only voltage nodes) the 
simulation of these capacitors resulted in six additional 
branches in the sfg with transmissions C2/C1’ (from V3 to 
V1), C2/C3’ (from V1 to V3), C4/C3’ (from V5 to V3), C4/C5’ 
(from V3 to V5), and C6/C5’ (from V7 to V5), C6/C7’ (from 
V5 to V7). 

In order to derive the new circuit with additional 
resistors and fewer capacitors, we note that V1, V3, V5 and 
V7, are output nodes (because they are voltage outputs of 
opamps), therefore signal addition at these nodes is not 
possible. Thus, a sfg transformation must be performed in 
order to bring those signals to input nodes of opamps, 
where addition is possible. The sfg derivations necessary 
to do this are shown in consecutive steps in Fig. 4. These 
are the main contributions of this paper. The steps in Fig. 
4(d)–(h) are typical sfg transformations i.e., node splitting, 
shifting a transmittance (shifting the termination point of 
an internal branch), and loop reduction (e.g. see [8] and 
[9]). In Fig. 4(i) a sfg with only negative integrator paths 
and adders having some incoming branches with negative 
gain is obtained. However, the corresponding active 
circuit would have some passive negative components. To 
eliminate these, additional nodes have to be multiplied by 
–1 as shown in Fig. 4(j)–(l), resulting in positive and 
negative integrators, and all-positive incoming branches. 
The final filter is shown in Fig. 5. Capacitor vales readily 
follow from (6), whereas resistor values are simply 
calculated as reciprocals of path transmission values in 
(7); both capacitor and resistor values are shown in Fig. 5 
in normalized form. 
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(a)  (b)  

(c)  (d)  

(e)  (f)  

(g)  (h)  

(i)  (j)  

(k)  (l)  

Figure 4.  Deriving an active-RC simulation of a seventh-order passive-LCR ladder filter. (a) Initial graph (repeated graph from Fig. 1(b)). (b)–(c) 
Producing all voltage nodes; multiplication of current nodes by R0. The reduction rules that apply follow: (d) Shifting the termination point of internal 
branches C2/C3’ (the same is done with branches C4/C5’ and C6/C7’). (e) Shifting the termination point of internal branches C2/C1’ (and of C4/C3’ and 
C6/C5’ in the same way). The result of (d) and (e) is in (f). (g) Removal of self-loops and reduction of parallel branches. (h) Shifting the termination 
point of branches C2C4/(C1’’C3’), C2C4/(C3’C5’’), C4C6/(C3’’C5’), and C4C6/(C5’C7’’). (i) Removal of self-loops and reduction of parallel branches. 
(j)–(l) Multiply appropriate nodes by –1 in order to obtain only positive components with positive and negative integrators.  

Capacitors in Fig. 4(l) are calculated from [use also (4)]: 
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Figure 5.  Final seventh-order active-RC ladder filter simulation with minimum capacitors (sfg is in Fig. 4(l)). 

(a)  (b)  

(c)  (d)  
Figure 6.  (a) Amplitude characteristics of a CC 07 25 50 filter. Monte Carlo runs of various realizations: (b) Passive ladder-LCR filter (Fig. 1(a)). 
(c) Active-RC simulation with additional capacitors (Fig. 3). (d) Active-RC simulation with additional resistors (Fig. 5). 

Transmissions of paths in Fig. 4(l) are calculated from: 
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The conventional realization of the filter, with a 
capacitive network realizing the three tank capacitors as 
presented in Fig. 3, is not new (see [6] and [7]). The 
branches realizing the tank capacitors are obtained in the 
same way for all filter orders. On the other hand, the 
realization of finite zeros with resistive networks as 
presented in Fig. 5 is new, and requires a complicated sfg 
transformation leading to additional signal paths. Note 
also that new circuit has more opamps and resistors than 
the conventional one. This difference in complexity, i.e. in 
total number of passive and active components (but with 
canonic number of capacitors), increase with increasing 
order. In the latter circuit, large resistors such as R20–R31 
can be replaced by resistive T-networks with small values 
as shown in [1].  

III. SENSITIVITY ANALYSIS 
In what follows, we examine the sensitivity to 

tolerances of passive component values of the original 
elliptic passive-LCR CC 07 25 50 filter whose amplitude 
characteristics are shown in Fig. 6(a) with that of the two 
active, simulated filters discussed above. Using the 
OrCAD PSpice 16 program [3] with Monte Carlo runs, we 
assume a zero-mean uniform distribution, and a 5% 

80 MIPRO 2013/MEET



standard deviation for all components. The obtained 
spread of responses for each filter is an indication of that 
filter's sensitivity to component tolerances. It is also an 
indication of the number of components in a given circuit; 
the fewer this number, the smaller will be the spread of 
responses resulting from the accumulated component 
tolerances. 

The sensitivity of the passive-LCR filter (see Fig. 1(a)) 
is shown in Fig. 6(b). That of the active-RC simulation 
with a capacitive network (see Fig. 3) is shown in Fig. 
6(c), and that of the active-RC simulation with a resistive 
network (see Fig. 5) in Fig. 6(d). Both active-RC filters 
have similarly low sensitivity, but larger sensitivity than 
the original passive-LCR filter (Fig. 6(b)). This is because 
they contain a larger number of components. As expected 
from Orchard's theorem [2], all three filters have low 
sensitivity in the pass band. 

In this paper (as well as in [1]) the main contribution 
has been the derivation of low-sensitivity elliptic filters 
having canonic number of capacitors. Therefore, in all 
simulations using PSpice instead of real opamp models, 
ideal voltage-controlled-voltage sources (VCVS) denoted 
by “E” with frequency-independent gain set to 106 have 
been used. 

IV. CONLUSION 
In this paper (and in the companion paper [1]) we 

compare two realizations of active-RC elliptic ladder 
filters which are the inductorless equivalent of a given 
passive-LCR ladder filter. One is classical and well 
known; it features an additional capacitive network that 
realizes the series capacitors required to form parallel 
tanks. The second, which is new, uses additional resistive 
networks to replace the additional series capacitors of the 
first circuit. This reduces the total number of capacitors in 
the circuit. This reduction increases with the filter order.  

In this paper it is shown that the realization of the 
newly proposed circuit becomes more complicated when 
the order is increased in terms of the increasing 
complexity of the sfg transformation. Consequently, the 

additional resistive network also becomes more 
complicated (see also [1]).  

The sensitivity of the two circuits is compared, and it 
is concluded that no noticeable difference exists between 
them. Nevertheless, since the resistive network saves 
capacitors (which are generally more difficult to 
manufacture especially on-chip), the elliptic filter, with a 
resistive network for the realization of finite zeros, may be 
a very useful alternative to the conventional circuit. 
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