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Abstract - One of the key issues for system level design topic 

is the design time. This paper describes custom processor 

design tool as part of C-to-hardware flow and analyses its 

design time. The flow starts with C code specification and 

ends with FPGA implementation. The way the C code is 

processed has impact on the flow execution time. The 

implemented C code processing results with Control Flow 

Graph (CFG), and large control flow code blocks severely 

prolong the overall design time. Between two possibilities 

for design time improvement, variations in their 

granularities are chosen over tool internal algorithm and 

data structures optimizations. For 32-point DCT test case 

the results show huge design time decrease at the expense on 

the design quality: implementation resource occupation and 

execution time. 

I. INTRODUCTION 

Embedded System Level (ESL) design is an emerging 
methodology for custom digital system design with focus 
on higher level design specification. With constant rise of 
capability of technology and the growth of software and 
hardware productivity gaps the needs for quality and 
reliable software support increase, [1]. 

Software solutions help in area of Electronic Design 
Automation (EDA) tools development and IP cores 
production that helps in closing of hardware productivity 
gap. 

This work is motivated by this challenge and deals 
with the topic of custom processor architecture design 
from C code specification. The specification in C code 
and its derivatives, C++ and SystemC, is dominant in 
High-Level Synthesis (HLS) which usually produces 
hardware description in RTL code that is ready for logic 
synthesis targeting FPGA device. The research of this 
methodology had been the most intensive in academic 
society in past decades, and, during the time, a number of 
commercial tools appeared in the market, [2,3].  

In this work, one of the production targets is a custom 
processor architecture model designed for C code 
specification. The model of architecture is designed 
according to No-Instruction-Set Computer (NISC) 
concept, [4]. In this concept, the system designer can 
arbitrarily choose datapath components having in mind the 
C application code features. On the contrary, in this paper 
the task and methodology of automated datapath design is 
presented. The resulting architecture that contains such 

automatically designed datapath is in final implemented in 
FPGA. The methodology assumes no compiler-style 
optimizations, but fully customizes the architecture. Thus, 
the emphasis is on optimizations that are applied on 
datapath level. In such way, the optimizations are closer to 
the implementation platform while the concept retains 
processor style of execution familiar to common user. The 
traditional HLS flow [5] is broken into two stages: 
processor as the execution engine, and its mapping to the 
implementation platform. 

In previous works custom datapath design for such 
processor model is analyzed through manual datapath 
transformations in several iterations [6] and its automated 
construction [7]. Besides these, we elaborated manual and 
automatic datapath generation for specific BDD 
application with highly recursive nature [8] and DCT 
application code [9].  

In the following sections, Section II and Section III, 
the overview and methodology of implemented design 
flow is presented. Section IV presents the results for 
several test cases, and Section V focuses on design time 
for 32-point DCT case which appeared to be time 
demanding. Section VI concludes on the presented 
methodology and results. 

II. IMPLEMENTED DESIGN FLOW 

Design flow is characterized by several processes, and 
their inputs and outputs. Globally, there are three major 
processing steps in the design flow, Fig. 1: 

1. C code preprocessing. 

Code is analyzed by its procedures and basic 

blocks formed by procedures control flows. 

Resulting notation is Control and Data Flow Graph 

(CDFG), [10]. SPARK parallelizing compiler is 

used for initial transformation of C code to CDFG. 

Further it is altered by our tool to conform the later 

stages of design flow, [11]. 

2. Architecture build. 

As the most complex process of the flow it is 

implemented within our ArkBuilder tool. Three 

separate processes can be identified: 

a. Scheduling of CDFG three-address code 

statements.  
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b. Operand and operations usage analysis. Such 

analysis produces combinations of operands 

and operations grouped within registers and 

functional units. Thus, the simplified (or 

provisional) datapaths consisting only of 

register files, functional units and their 

connections are formed for every basic block. 

c. Design of final datapath. The design is based 

on integrating all basic blocks datapath 

contributions. The result is datapath 

completed with data memory, multiplexers as 

arbitral components instanced at other 

components inputs, and connections 

interfacing the control unit. 

3. Simulation/Implementation. 

Specially designed tools GenCM and ProcSynth 

generate design RTL description and instruction 

memory initialization file for core generation. 

With inclusion of appropriate data memory core 

the design is synthesized and implemented in 

FPGA. The behavioral simulation is used for 

verification purposes. The synthesis, 

implementation and simulation steps are 

accomplished with Xilinx ISE toolset, [12]. 
The central point of the flow is the algorithm for final 

datapath design. It forms the complete architecture that 
logically corresponds to CDFG ‘per basic block’ 
schedules. The datapath contributions of all basic blocks 
are integrated into final datapath having in consideration 
basic blocks significance. The significance is defined by 
their execution cycles shares inside whole application run. 
Such shares are estimated by profiling of procedures and 
basic blocks, and basic blocks schedule lengths. Basically, 
the algorithm for final datapath design is provided with 
following input information:  

• CDFG application description 

• Application code profiling information 

• Implementation platform description 

Here introduced aspects of datapath design are 

described in following sections using short example to 

clarify the theoretic information. 

III. PROCESSOR DESIGN METHODOLOGY 

The code profiling is performed at two levels of 
abstraction: procedure level and basic block level. At 
final, it is flattened at basic block level as number of 
procedure calls is multiplied with basic block iteration 
count to get the absolute basic block iteration count.  

The code analysis is thus performed for each basic 

block independently. As the original code is transformed 

in basic block three-address code notation, its mapping to 

architecture datapath is straightforward. Functional units 

with two input ports and one output port correspond to 

the three-address code notation of basic block statements. 

Scheduling, allocation and binding tasks are performed 

on basic block three-address statements. Firstly, the 

scheduling of statements produce finite state machine 

with data (FSMD). The analysis of statement operands 

and operation is performed for every cycle and their non-

overlapping usages are noted to allocate registers and 

functional units, respectively. In such way, the binding of 

statements to registers and functional unit is implicit. 

A. Basic Block Analysis 

As stated in Section II there are three steps in the 
methodology of architecture build. First two steps, 
scheduling and basic blocks analysis with forming of 
simplified datapaths, are performed for every basic block 
of the application CDFG. The last, final datapath design 
combines all basic blocks datapaths into unique one and 
interfaces it to control unit. Here, the methodology is 
going to be elaborated through simple line of code in (1) 
assumed to be only basic block content. It is a simple 
calculation consisting of three multiplications, an addition 
and a division. 

g = ((a × b) + (c × d)) / (e × f);  (1) 

Fig. 2 shows data flow graph of (1) consisting of five 
three-address code statements: ST1 to ST5. Data 
dependencies are properly extracted to ensure the 
regularity of calculation. According to those 
dependencies, the scheduling phase produces finite state 
machine as in Fig. 3a. Usage analysis of operands and 
operators notes operand usages and operation activity per 
state, as in Fig. 3b and 3c. 

If one register per operand and one functional unit per 
operation would be assumes, there would be much 
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 Fig. 1.  Design synthesis flow. 

 

 

Fig. 2.  Data flow graph for expression in (1) 
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redundancies in the datapath. Therefore, minimization of 
registers and functional units allocations is applied using 
compatibility graphs, [13]. For instance, for operands that 
are not used in same states the priority edges are defined 
with i/o priority notes, Fig. 4a. Value i is the number of 
same operation types for which corresponding operands 
are input values, and o is the number of the same 
operation types for which they are outputs. For operand 
used in the same state the incompatibility edges are 
defined, Fig. 4b. By merging operands with priority edges 
between, final compatibility graph is derived having only 
incompatibility edges, Fig. 4c. Operands that are merged 
to the same node share a register. In the same manner, the 
combinations of operations are dedicated to functional 
units. Using this technique, final datapath for expression 
(1) consists of two functional units and four registers 
appropriately connected, Fig. 5. 

B. Final Datapath Design Algorithm 

Algorithm that designs the final datapath integrates 

contributions of all basic blocks provisional datapaths. 

The pseudo code that describes it, is following: 

 
DP = Ø 
FUmaxop = GET_MAX_INSTANCES(CDFG),  

op Є {ADD, SUB, …, ASSIGN} 
for bbcurrent Є CDFG  
      FUsorted = SORT_FU (bbcurrent, desc) 
      for fucurrent Є FUsorted  

Op= GET_OPERATION(fucurrent) 
           if FUinstancesop < FUmaxop 
                 ACCOMPfucurrent = ACCOMP_LOGIC(fucurrent) 
                 DP += fucurrent + ACCOMPfucurrent  
 

It is based on analysis of maximum needed operation 

instances for all basic blocks schedules. The contributions 

of all basic blocks are integrated to the final datapath 

through their functional units and all components that are 

connected to those functional units. When number of 

particular operation instances implemented within 

existing functional units in the final datapath is exceeded, 

those types of functional units are not further instanced.  

As first, function GET_MAX_INSTANCES() analyses 

operation usages per basic blocks schedules. As result, 

maximum numbers of operations per scheduled state is 

noted - FUmaxop. Basic blocks are traversed and 

functional units are sorted by usage frequencies and 

integrated into final datapath along with their 

accompanying logic (ACCOMPfucurrent); register files, 

multiplexers and connections. Data memory is 

instantiated for data arrays used in input C code. Before 

integration of new functional unit to the final datapath DP, 

number of functional unit instances per operation type is 

checked against calculated FUmaxop value. 

IV. PRELIMINARY RESULTS 

Our approach of processor architecture modeling and 
implementation is tested on following C coded algorithms 
used inside NISC toolset, [14]: 

• Discrete Cosine Transform (DCT) on 8×8 

matrices in two versions: original (with three 

nested loops) and unrolled, [6]. 

• 32-point DCT used in MP3 decoder. 

• SHA-1 encryption algorithm, [15,16]. 
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Fig. 4.  Initial priority edges (a), incompatibility edges (b) and final 
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Table I shows characteristics of test cases CDFGs: 

numbers of basic blocks, statements and operands. The 

first two, DCT and Unrolled DCT represent the same 

code written in different styles and elaborated in [6]. 

Table I also shows processor design times and their 

FPGA implementation execution times. While other three 

cases have design times of one second or less, 32-point 

DCT has design time of 25,8 hours. The more detailed 

analysis shows that the most of it, more than 99%, is 

spent in stage of operands usage analysis and 

optimizations, i.e. in handling operand compatibility 

graphs. Therefore, in next section we focus on 

minimization of this case design time.  

When execution times are compared to those of 

NMIPS RISC architecture model, the baseline in [6], the 

execution times are very similar (150,2 µs for DCT 8×8, 

51,6 µs for Unrolled DCT 8×8, 11,5 µs for 32-point DCT 

and 64,3 µs for SHA-1). The implementations of the 

same applications on embedded Microblaze processor [17] 

are much slower (516,2 µs for DCT 8×8, 932,5 µs for 

Unrolled DCT 8×8, 280,4 µs for 32-point DCT and 670,9 

µs for SHA-1), and much faster when designed with 

Vivado HLS tool (9,4 µs for DCT 8×8, 2,0 µs for 

Unrolled DCT 8×8, 0,5 µs for 32-point DCT and 6,5 µs 

for SHA-1), [18]. 

V. CASE STUDY: 32-POINT DCT 

32-point DCT used here is optimized version of such 
transformation, but here it is the largest code without 
control flow dependencies. Inside only one basic block 
there are total of 80 additions, 119 subtractions, 80 
multiplications and 49 shifts, [19, 20].  

There is total of 209 lines of code (LoC) in C code 
specification. There are eight versions of code 
granulations undertaken to check the design time change. 
Starting with original input code (cdfg0), the code is 
granulated from the perspective of the implemented flow 
user. In cdfg1 the code is split in two, in cdfg2 in three 
parts, etc. The extreme situation is when every line of 
code is a separate block (cdfg7). Table II summarizes 
features of all CDFG versions in aspects of three-address 
statements, operands and scheduled cycles per block. 
More detailed view on granulation points in input C code 
is illustrated in Fig. 6 which depicts relations between 
granulation steps. 

The comparison of designed datapath and 
implementation results is presented in Table III. The 
granulation of code to smaller portions significantly 
impacts the design time. After two steps of code 
granulation design time falls to below 20 minutes, and 
after following two it falls below a minute. The side-effect 
of such granulation sequence is architecture datapath and 
FPGA implementation resources occupations growths. 
This is caused by the fact that final datapath algorithm 
limits the functional units instantiation, but it is not the 
case for register files. Therefore, the FPGA resource 
occupations significantly rise and, in the same time, 
performance drops. The size problem escalates for cdfg6 
and cdfg7 for which design could not be synthesize on 
Virtex-5 SX50T device that was targeted. 

VI. CONCLUSION 

This paper presents C-to-hardware design flow where 
processor architecture abstraction level is kept as 
important abstraction in design representation. The 
processor is modeled as No-Instruction-Set Computer 
with fully custom datapath. The datapath is customized 
according to scheduled three-address code, operand and 
operation usage analysis and their optimized binding to 
register files and functional units. 

The preliminary results show successful FPGA 
implementation with performance in a range or better than 
processor based system design, but worse than high-level 
synthesis tool. The design time as the key strength in 
system level design appeared to be too high for test case 
without control flow dependencies and large number of 
lines. The processing of such code, 32-point DCT, took 

TABLE II.         32-POINT DCT CDFGS FEATURES 

Case #blocks 
#statements 

/block 

#operands 

/block 

#cycles 

/block 

cdfg0 1 791 890 418 

cdfg1 2 352, 459 445 177, 242 

cdfg2 3 256-269 269-355 129-150 

cdfg3 5 96-269 100-269 50-150 

cdfg4 11 24-159 24-159 14-90 

cdfg5 19 24-87 24-159 14-50 

cdfg6 46 7-47 7–53 5-26 

cdfg7 209 1-20 3–21 1-15 

Fig. 5.  Final datapath for expression in (1). 

 

TABLE I.  TEST CASES CDFG CHARACTERISTICS 

Case 
CDFG Characteristics 

Design 

Time 

Exec. 

Time 

/ µs #blocks #statements #operands 

DCT 

8×8 
15 28 29 < 1 s 190,0 

Unrolled 

DCT 

8×8 

5 161 191 1 s 54,9 

32-point 
DCT 

1 791 890 25,8 h 8,2 

SHA-1 31 158 150 1 s 67,6 
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hours of time. There were two options to shorten the 
design time: improvements in data structures and 
algorithms implemented inside tool or reorganization of 
input C code by breaking it into smaller portions. From 
the perspective of system designer that uses the 
implemented flow the latter, i.e. the specification 
alteration, is only possible impact on design time. 

The changes in input code granulation significantly 
shorted the design time. As the code was granulated to 
smaller portions, the design time rapidly decreased until 
the level of only few seconds. The side-effect of such code 
granulation was in the growth of resulting datapaths and, 
consequently, the target FPGA device occupation. Also, 
the performance dropped twice. 

Therefore, the future work in sense of shortening 
design time has following options: better algorithmic 

manipulation and usage of more appropriate data 
structures for storing compatibility graphs, and more 
intelligent C code preprocessing when large CDFGs are 
produced. Also, the consequential design size growth 
demands the control over register files datapath 
instantiations. 
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TABLE III.  32-POINT DCT DESIGNS CHARACTERISTICS 

Case 

Datapath 

Features Design 

Time 

FPGA Resource 

Occupation 
Performance 

#FUs #RFs #Slices #DSPs #Cycles 
Frequency / 

MHz 

cdfg0 5 29 25,8 h 1577 3 426 52,018 

cdfg1 30 98 1,3 h 3353 3 433 46,517 

cdfg2 29 117 17,2 min. 4107 3 439 45,486 

cdfg3 26 107 6,3 min. 4780 3 454 41,075 

cdfg4 14 106 41 s 5052 3 501 40,098 

cdfg5 12 104 5 s 5681 3 559 35,088 

cdfg6 17 147 2 s N/A N/A N/A N/A 

cdfg7 4 149 5 s N/A N/A N/A N/A 

BB0

#LoC = 209

BB0

#LoC = 96

BB1

#LoC = 113

BB0

#LoC = 64

BB1

#LoC = 95

BB2

#LoC = 50

BB0

#LoC = 32

BB1

#LoC = 32

BB2

#LoC = 32

BB3

#LoC = 63

BB4

#LoC = 50

BB0

#LoC = 16

BB1

#LoC = 16

BB2

#LoC = 16

BB3

#LoC = 16

BB4

#LoC = 16

BB5  #LoC = 8

BB6  #LoC = 8

BB7

#LoC = 31

BB8

#LoC = 32

BB9

#LoC = 32

BB10

#LoC = 18

#Basic

Blocks = 46,

#LoC Є

[2 – 16]

#Basic

Blocks = 

209,

#LoC = 1

BB0  #LoC = 8

BB1  #LoC = 8

BB2  #LoC = 8

BB3  #LoC = 8

BB4  #LoC = 8

BB5  #LoC = 8

BB6  #LoC = 8

BB7  #LoC = 8

BB8

#LoC = 16

BB9  #LoC = 8

BB10  #LoC = 8

BB13

#LoC = 16

BB14

#LoC = 16

BB15

#LoC = 16

BB16

#LoC = 16

BB17  #LoC = 8

BB18  #LoC = 8

BB11  #LoC = 12

BB12

#LoC = 19

cdfg0 cdfg1 cdfg2 cdfg3 cdfg4 cdfg5 cdfg6 cdfg7

 

Fig. 6. Overview of 32-point DCT code granulation 

MIPRO 2013/CTS 1105



REFERENCES 

[1] W. Ecker, W. Muller, R. Dömer, Hardware-dependent Software: 
Principles and Practice, Springer, 2009. 

[2] (2013) C to HDL. [Online]. Available: 
http://en.wikipedia.org/wiki/C_to_HDL/ 

[3] (2013) Gary Smith EDA. [Online]. Available: http:// 
http://garysmitheda.com/ 

[4] M. Reshadi, B. Gorjiara, D. D. Gajski, “NISC Technology and 
Preliminary Results,” Technical Report, University of California, 
Center for Embedded Computer Systems, Irvine, August 2005. 

[5] P. Coussy, D. D. Gajski, M. Meredith, A. Takach, “An 
Introduction to High-Level Synthesis,” in IEEE Design & Test of 
Computers, vol. 26, no. 4, pp. 8-17, July-August 2009. 

[6] B. Gorjiara, D. D. Gajski, “Custom Processor Design Using NISC: 
A Case-Study on DCT algorithm,” in Workshop on Embedded 
Systems for Real-Time Multimedia, pp. 55-60, 2005. 

[7] J. Trajkovic, D. D. Gajski, “Custom Processor Core Construction 
from C Code,” in Proceedings of Sixth IEEE Symposium on 
Application Specific Processors, Anaheim, California, June 2008. 

[8] D. Ivosevic, V. Sruk, “Evaluation of embedded processor based 
BDD implementation,” in Proceedings of the 33rd International 
Convention MIPRO, pp. 619-623, 2010. 

[9] D. Ivosevic, V. Sruk, “Automated modeling of custom processors 
for DCT algorithm,” in Proceedings of the 34th International 
Convention MIPRO, pp. 762-767, 2011. 

[10] A. Orailoglu, D. D. Gajski, “Flow graph representation,” in 
Proceedings of the 23rd ACM/IEEE Design Automation 
Conference, pp. 503 - 509, 1986. 

[11] (2013) SPARK: A Parallelizing Approach to the High-Level 
Synthesis of Digital Circuits. [Online]. Available: 
http://mesl.ucsd.edu/spark 

[12] (2013) ISE WebPACK Design Software. [Online]. Available: 
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-
webpack.htm 

[13] D. D. Gajski, A. Gerstlauer, S. Abdi, G. Schirner, Embedded 
System Design, Springer, 2009, pp. 199-254. 

[14] (2013) NISC Technology – Toolset online demo. [Online]. 
Available: http://www.ics.uci.edu/~nisc/toolset/ 

[15] (2013) National Institute of Standards and Technology (NIST), 
"Secure Hash Standards (SHS)". [Online]. Available: 
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf 

[16] (2013) C to Verilog. [Online]. Available: http://c-to-
verilog.com/howtos.html 

[17] (2013) MicroBlaze Soft Processor. [Online]. Available: 
http://www.xilinx.com/tools/microblaze.htm 

[18] (2013) C-based Design: High-Level Synthesis with Vivado HLS. 
[Online]. Available: http://www.xilinx.com/training/dsp/high-
level-synthesis-with-vivado-hls.htm 

[19] (2013) mbed: i2s_audio_madplayer. [Online]. Available: 
http://mbed.org/users/okini3939/code/i2s_audio_madplayer/docs/3
0b2cf4a8ee2/synth_8cpp_source.html 

[20] (2013) libmad - MPEG  audio decoder library. [Online]. 
Available: 
ftp://ftp.icsi.berkeley.edu/global/pub/speech/software/praatlib-
0.3/src/mp3/mad_synth.c 

 

1106 MIPRO 2013/CTS




