
Impact of Control Flow Blocks Granularity on

Custom Processor Design Time

D. Ivošević, V. Sruk

Faculty of Electrical Engineering and Computing,

Department of Electronics, Microelectronics, Computer and Intelligent Systems

Zagreb, Croatia

danko.ivosevic@fer.hr, vlado.sruk@fer.hr

Abstract - One of the key issues for system level design topic

is the design time. This paper describes custom processor

design tool as part of C-to-hardware flow and analyses its

design time. The flow starts with C code specification and

ends with FPGA implementation. The way the C code is

processed has impact on the flow execution time. The

implemented C code processing results with Control Flow

Graph (CFG), and large control flow code blocks severely

prolong the overall design time. Between two possibilities

for design time improvement, variations in their

granularities are chosen over tool internal algorithm and

data structures optimizations. For 32-point DCT test case

the results show huge design time decrease at the expense on

the design quality: implementation resource occupation and

execution time.

I. INTRODUCTION

Embedded System Level (ESL) design is an emerging
methodology for custom digital system design with focus
on higher level design specification. With constant rise of
capability of technology and the growth of software and
hardware productivity gaps the needs for quality and
reliable software support increase, [1].

Software solutions help in area of Electronic Design
Automation (EDA) tools development and IP cores
production that helps in closing of hardware productivity
gap.

This work is motivated by this challenge and deals
with the topic of custom processor architecture design
from C code specification. The specification in C code
and its derivatives, C++ and SystemC, is dominant in
High-Level Synthesis (HLS) which usually produces
hardware description in RTL code that is ready for logic
synthesis targeting FPGA device. The research of this
methodology had been the most intensive in academic
society in past decades, and, during the time, a number of
commercial tools appeared in the market, [2,3].

In this work, one of the production targets is a custom
processor architecture model designed for C code
specification. The model of architecture is designed
according to No-Instruction-Set Computer (NISC)
concept, [4]. In this concept, the system designer can
arbitrarily choose datapath components having in mind the
C application code features. On the contrary, in this paper
the task and methodology of automated datapath design is
presented. The resulting architecture that contains such

automatically designed datapath is in final implemented in
FPGA. The methodology assumes no compiler-style
optimizations, but fully customizes the architecture. Thus,
the emphasis is on optimizations that are applied on
datapath level. In such way, the optimizations are closer to
the implementation platform while the concept retains
processor style of execution familiar to common user. The
traditional HLS flow [5] is broken into two stages:
processor as the execution engine, and its mapping to the
implementation platform.

In previous works custom datapath design for such
processor model is analyzed through manual datapath
transformations in several iterations [6] and its automated
construction [7]. Besides these, we elaborated manual and
automatic datapath generation for specific BDD
application with highly recursive nature [8] and DCT
application code [9].

In the following sections, Section II and Section III,
the overview and methodology of implemented design
flow is presented. Section IV presents the results for
several test cases, and Section V focuses on design time
for 32-point DCT case which appeared to be time
demanding. Section VI concludes on the presented
methodology and results.

II. IMPLEMENTED DESIGN FLOW

Design flow is characterized by several processes, and
their inputs and outputs. Globally, there are three major
processing steps in the design flow, Fig. 1:

1. C code preprocessing.

Code is analyzed by its procedures and basic

blocks formed by procedures control flows.

Resulting notation is Control and Data Flow Graph

(CDFG), [10]. SPARK parallelizing compiler is

used for initial transformation of C code to CDFG.

Further it is altered by our tool to conform the later

stages of design flow, [11].

2. Architecture build.

As the most complex process of the flow it is

implemented within our ArkBuilder tool. Three

separate processes can be identified:

a. Scheduling of CDFG three-address code

statements.

MIPRO 2013/CTS 1101

b. Operand and operations usage analysis. Such

analysis produces combinations of operands

and operations grouped within registers and

functional units. Thus, the simplified (or

provisional) datapaths consisting only of

register files, functional units and their

connections are formed for every basic block.

c. Design of final datapath. The design is based

on integrating all basic blocks datapath

contributions. The result is datapath

completed with data memory, multiplexers as

arbitral components instanced at other

components inputs, and connections

interfacing the control unit.

3. Simulation/Implementation.

Specially designed tools GenCM and ProcSynth

generate design RTL description and instruction

memory initialization file for core generation.

With inclusion of appropriate data memory core

the design is synthesized and implemented in

FPGA. The behavioral simulation is used for

verification purposes. The synthesis,

implementation and simulation steps are

accomplished with Xilinx ISE toolset, [12].
The central point of the flow is the algorithm for final

datapath design. It forms the complete architecture that
logically corresponds to CDFG ‘per basic block’
schedules. The datapath contributions of all basic blocks
are integrated into final datapath having in consideration
basic blocks significance. The significance is defined by
their execution cycles shares inside whole application run.
Such shares are estimated by profiling of procedures and
basic blocks, and basic blocks schedule lengths. Basically,
the algorithm for final datapath design is provided with
following input information:

• CDFG application description

• Application code profiling information

• Implementation platform description

Here introduced aspects of datapath design are

described in following sections using short example to

clarify the theoretic information.

III. PROCESSOR DESIGN METHODOLOGY

The code profiling is performed at two levels of
abstraction: procedure level and basic block level. At
final, it is flattened at basic block level as number of
procedure calls is multiplied with basic block iteration
count to get the absolute basic block iteration count.

The code analysis is thus performed for each basic

block independently. As the original code is transformed

in basic block three-address code notation, its mapping to

architecture datapath is straightforward. Functional units

with two input ports and one output port correspond to

the three-address code notation of basic block statements.

Scheduling, allocation and binding tasks are performed

on basic block three-address statements. Firstly, the

scheduling of statements produce finite state machine

with data (FSMD). The analysis of statement operands

and operation is performed for every cycle and their non-

overlapping usages are noted to allocate registers and

functional units, respectively. In such way, the binding of

statements to registers and functional unit is implicit.

A. Basic Block Analysis

As stated in Section II there are three steps in the
methodology of architecture build. First two steps,
scheduling and basic blocks analysis with forming of
simplified datapaths, are performed for every basic block
of the application CDFG. The last, final datapath design
combines all basic blocks datapaths into unique one and
interfaces it to control unit. Here, the methodology is
going to be elaborated through simple line of code in (1)
assumed to be only basic block content. It is a simple
calculation consisting of three multiplications, an addition
and a division.

g = ((a × b) + (c × d)) / (e × f); (1)

Fig. 2 shows data flow graph of (1) consisting of five
three-address code statements: ST1 to ST5. Data
dependencies are properly extracted to ensure the
regularity of calculation. According to those
dependencies, the scheduling phase produces finite state
machine as in Fig. 3a. Usage analysis of operands and
operators notes operand usages and operation activity per
state, as in Fig. 3b and 3c.

If one register per operand and one functional unit per
operation would be assumes, there would be much

C Code

CDFG Profiling

ArchitectureSchedule

RTL CodeControl Memory Data Memory

Code_preprocesing

ArkBuilder

GenCM ProcSynth

Xilinx ISE

Architecture Build

C Code Preprocessing

Simulation/Implementation

a1

1

a2

2

3

a34

a4

b1

b
2

b3

b4

5

6

7

8

V
cc1

0

GN
D

0

FPGA

FPGA Platform

Description

 Fig. 1. Design synthesis flow.

Fig. 2. Data flow graph for expression in (1)

1102 MIPRO 2013/CTS

redundancies in the datapath. Therefore, minimization of
registers and functional units allocations is applied using
compatibility graphs, [13]. For instance, for operands that
are not used in same states the priority edges are defined
with i/o priority notes, Fig. 4a. Value i is the number of
same operation types for which corresponding operands
are input values, and o is the number of the same
operation types for which they are outputs. For operand
used in the same state the incompatibility edges are
defined, Fig. 4b. By merging operands with priority edges
between, final compatibility graph is derived having only
incompatibility edges, Fig. 4c. Operands that are merged
to the same node share a register. In the same manner, the
combinations of operations are dedicated to functional
units. Using this technique, final datapath for expression
(1) consists of two functional units and four registers
appropriately connected, Fig. 5.

B. Final Datapath Design Algorithm

Algorithm that designs the final datapath integrates

contributions of all basic blocks provisional datapaths.

The pseudo code that describes it, is following:

DP = Ø
FUmaxop = GET_MAX_INSTANCES(CDFG),

op Є {ADD, SUB, …, ASSIGN}
for bbcurrent Є CDFG
 FUsorted = SORT_FU (bbcurrent, desc)
 for fucurrent Є FUsorted

Op= GET_OPERATION(fucurrent)
 if FUinstancesop < FUmaxop
 ACCOMPfucurrent = ACCOMP_LOGIC(fucurrent)
 DP += fucurrent + ACCOMPfucurrent

It is based on analysis of maximum needed operation

instances for all basic blocks schedules. The contributions

of all basic blocks are integrated to the final datapath

through their functional units and all components that are

connected to those functional units. When number of

particular operation instances implemented within

existing functional units in the final datapath is exceeded,

those types of functional units are not further instanced.

As first, function GET_MAX_INSTANCES() analyses

operation usages per basic blocks schedules. As result,

maximum numbers of operations per scheduled state is

noted - FUmaxop. Basic blocks are traversed and

functional units are sorted by usage frequencies and

integrated into final datapath along with their

accompanying logic (ACCOMPfucurrent); register files,

multiplexers and connections. Data memory is

instantiated for data arrays used in input C code. Before

integration of new functional unit to the final datapath DP,

number of functional unit instances per operation type is

checked against calculated FUmaxop value.

IV. PRELIMINARY RESULTS

Our approach of processor architecture modeling and
implementation is tested on following C coded algorithms
used inside NISC toolset, [14]:

• Discrete Cosine Transform (DCT) on 8×8

matrices in two versions: original (with three

nested loops) and unrolled, [6].

• 32-point DCT used in MP3 decoder.

• SHA-1 encryption algorithm, [15,16].

a)

a b

c d

e f

T4 T5

b)

c)

Fig. 4. Initial priority edges (a), incompatibility edges (b) and final

compatibility graph (c) for operands

State Statements Three-

Address

Code

S1 ST1

ST2

T5 = a ×

b

T4 = c ×

d

S2 ST3

ST4

T3 = e ×

f

T6 = T5

+ T4

S3 ST5 res = T6

/ T3

a)

Operation S1 S2 S3

ADD 0 1 0

MUL 2 1 0

DIV 0 0 1

b)

Ope-

rand

S1 S2 S3

a ×

b ×

T5 ×

c ×

d ×

T4 ×

e ×

f ×

T3 ×

T6 ×

c)

Fig. 3. Scheduling (a), and operation (b) and operand usage analysis

(c) for (1)

MIPRO 2013/CTS 1103

Table I shows characteristics of test cases CDFGs:

numbers of basic blocks, statements and operands. The

first two, DCT and Unrolled DCT represent the same

code written in different styles and elaborated in [6].

Table I also shows processor design times and their

FPGA implementation execution times. While other three

cases have design times of one second or less, 32-point

DCT has design time of 25,8 hours. The more detailed

analysis shows that the most of it, more than 99%, is

spent in stage of operands usage analysis and

optimizations, i.e. in handling operand compatibility

graphs. Therefore, in next section we focus on

minimization of this case design time.

When execution times are compared to those of

NMIPS RISC architecture model, the baseline in [6], the

execution times are very similar (150,2 µs for DCT 8×8,

51,6 µs for Unrolled DCT 8×8, 11,5 µs for 32-point DCT

and 64,3 µs for SHA-1). The implementations of the

same applications on embedded Microblaze processor [17]

are much slower (516,2 µs for DCT 8×8, 932,5 µs for

Unrolled DCT 8×8, 280,4 µs for 32-point DCT and 670,9

µs for SHA-1), and much faster when designed with

Vivado HLS tool (9,4 µs for DCT 8×8, 2,0 µs for

Unrolled DCT 8×8, 0,5 µs for 32-point DCT and 6,5 µs

for SHA-1), [18].

V. CASE STUDY: 32-POINT DCT

32-point DCT used here is optimized version of such
transformation, but here it is the largest code without
control flow dependencies. Inside only one basic block
there are total of 80 additions, 119 subtractions, 80
multiplications and 49 shifts, [19, 20].

There is total of 209 lines of code (LoC) in C code
specification. There are eight versions of code
granulations undertaken to check the design time change.
Starting with original input code (cdfg0), the code is
granulated from the perspective of the implemented flow
user. In cdfg1 the code is split in two, in cdfg2 in three
parts, etc. The extreme situation is when every line of
code is a separate block (cdfg7). Table II summarizes
features of all CDFG versions in aspects of three-address
statements, operands and scheduled cycles per block.
More detailed view on granulation points in input C code
is illustrated in Fig. 6 which depicts relations between
granulation steps.

The comparison of designed datapath and
implementation results is presented in Table III. The
granulation of code to smaller portions significantly
impacts the design time. After two steps of code
granulation design time falls to below 20 minutes, and
after following two it falls below a minute. The side-effect
of such granulation sequence is architecture datapath and
FPGA implementation resources occupations growths.
This is caused by the fact that final datapath algorithm
limits the functional units instantiation, but it is not the
case for register files. Therefore, the FPGA resource
occupations significantly rise and, in the same time,
performance drops. The size problem escalates for cdfg6
and cdfg7 for which design could not be synthesize on
Virtex-5 SX50T device that was targeted.

VI. CONCLUSION

This paper presents C-to-hardware design flow where
processor architecture abstraction level is kept as
important abstraction in design representation. The
processor is modeled as No-Instruction-Set Computer
with fully custom datapath. The datapath is customized
according to scheduled three-address code, operand and
operation usage analysis and their optimized binding to
register files and functional units.

The preliminary results show successful FPGA
implementation with performance in a range or better than
processor based system design, but worse than high-level
synthesis tool. The design time as the key strength in
system level design appeared to be too high for test case
without control flow dependencies and large number of
lines. The processing of such code, 32-point DCT, took

TABLE II. 32-POINT DCT CDFGS FEATURES

Case #blocks
#statements

/block

#operands

/block

#cycles

/block

cdfg0 1 791 890 418

cdfg1 2 352, 459 445 177, 242

cdfg2 3 256-269 269-355 129-150

cdfg3 5 96-269 100-269 50-150

cdfg4 11 24-159 24-159 14-90

cdfg5 19 24-87 24-159 14-50

cdfg6 46 7-47 7–53 5-26

cdfg7 209 1-20 3–21 1-15

Fig. 5. Final datapath for expression in (1).

TABLE I. TEST CASES CDFG CHARACTERISTICS

Case
CDFG Characteristics

Design

Time

Exec.

Time

/ µs #blocks #statements #operands

DCT

8×8
15 28 29 < 1 s 190,0

Unrolled

DCT

8×8

5 161 191 1 s 54,9

32-point
DCT

1 791 890 25,8 h 8,2

SHA-1 31 158 150 1 s 67,6

1104 MIPRO 2013/CTS

hours of time. There were two options to shorten the
design time: improvements in data structures and
algorithms implemented inside tool or reorganization of
input C code by breaking it into smaller portions. From
the perspective of system designer that uses the
implemented flow the latter, i.e. the specification
alteration, is only possible impact on design time.

The changes in input code granulation significantly
shorted the design time. As the code was granulated to
smaller portions, the design time rapidly decreased until
the level of only few seconds. The side-effect of such code
granulation was in the growth of resulting datapaths and,
consequently, the target FPGA device occupation. Also,
the performance dropped twice.

Therefore, the future work in sense of shortening
design time has following options: better algorithmic

manipulation and usage of more appropriate data
structures for storing compatibility graphs, and more
intelligent C code preprocessing when large CDFGs are
produced. Also, the consequential design size growth
demands the control over register files datapath
instantiations.

ACKNOWLEDGMENT

This work was supported by research grant No. 036-
0362980-1929 from the Ministry of Science, Education
and Sports of the Republic of Croatia. Special thanks we
give to Center for Embedded Computer Systems (CECS)
at University of Irvine California as the key support was
based on prof. Daniel Gajski’s team research and
experience.

TABLE III. 32-POINT DCT DESIGNS CHARACTERISTICS

Case

Datapath

Features Design

Time

FPGA Resource

Occupation
Performance

#FUs #RFs #Slices #DSPs #Cycles
Frequency /

MHz

cdfg0 5 29 25,8 h 1577 3 426 52,018

cdfg1 30 98 1,3 h 3353 3 433 46,517

cdfg2 29 117 17,2 min. 4107 3 439 45,486

cdfg3 26 107 6,3 min. 4780 3 454 41,075

cdfg4 14 106 41 s 5052 3 501 40,098

cdfg5 12 104 5 s 5681 3 559 35,088

cdfg6 17 147 2 s N/A N/A N/A N/A

cdfg7 4 149 5 s N/A N/A N/A N/A

BB0

#LoC = 209

BB0

#LoC = 96

BB1

#LoC = 113

BB0

#LoC = 64

BB1

#LoC = 95

BB2

#LoC = 50

BB0

#LoC = 32

BB1

#LoC = 32

BB2

#LoC = 32

BB3

#LoC = 63

BB4

#LoC = 50

BB0

#LoC = 16

BB1

#LoC = 16

BB2

#LoC = 16

BB3

#LoC = 16

BB4

#LoC = 16

BB5 #LoC = 8

BB6 #LoC = 8

BB7

#LoC = 31

BB8

#LoC = 32

BB9

#LoC = 32

BB10

#LoC = 18

#Basic

Blocks = 46,

#LoC Є

[2 – 16]

#Basic

Blocks =

209,

#LoC = 1

BB0 #LoC = 8

BB1 #LoC = 8

BB2 #LoC = 8

BB3 #LoC = 8

BB4 #LoC = 8

BB5 #LoC = 8

BB6 #LoC = 8

BB7 #LoC = 8

BB8

#LoC = 16

BB9 #LoC = 8

BB10 #LoC = 8

BB13

#LoC = 16

BB14

#LoC = 16

BB15

#LoC = 16

BB16

#LoC = 16

BB17 #LoC = 8

BB18 #LoC = 8

BB11 #LoC = 12

BB12

#LoC = 19

cdfg0 cdfg1 cdfg2 cdfg3 cdfg4 cdfg5 cdfg6 cdfg7

Fig. 6. Overview of 32-point DCT code granulation

MIPRO 2013/CTS 1105

REFERENCES

[1] W. Ecker, W. Muller, R. Dömer, Hardware-dependent Software:
Principles and Practice, Springer, 2009.

[2] (2013) C to HDL. [Online]. Available:
http://en.wikipedia.org/wiki/C_to_HDL/

[3] (2013) Gary Smith EDA. [Online]. Available: http://
http://garysmitheda.com/

[4] M. Reshadi, B. Gorjiara, D. D. Gajski, “NISC Technology and
Preliminary Results,” Technical Report, University of California,
Center for Embedded Computer Systems, Irvine, August 2005.

[5] P. Coussy, D. D. Gajski, M. Meredith, A. Takach, “An
Introduction to High-Level Synthesis,” in IEEE Design & Test of
Computers, vol. 26, no. 4, pp. 8-17, July-August 2009.

[6] B. Gorjiara, D. D. Gajski, “Custom Processor Design Using NISC:
A Case-Study on DCT algorithm,” in Workshop on Embedded
Systems for Real-Time Multimedia, pp. 55-60, 2005.

[7] J. Trajkovic, D. D. Gajski, “Custom Processor Core Construction
from C Code,” in Proceedings of Sixth IEEE Symposium on
Application Specific Processors, Anaheim, California, June 2008.

[8] D. Ivosevic, V. Sruk, “Evaluation of embedded processor based
BDD implementation,” in Proceedings of the 33rd International
Convention MIPRO, pp. 619-623, 2010.

[9] D. Ivosevic, V. Sruk, “Automated modeling of custom processors
for DCT algorithm,” in Proceedings of the 34th International
Convention MIPRO, pp. 762-767, 2011.

[10] A. Orailoglu, D. D. Gajski, “Flow graph representation,” in
Proceedings of the 23rd ACM/IEEE Design Automation
Conference, pp. 503 - 509, 1986.

[11] (2013) SPARK: A Parallelizing Approach to the High-Level
Synthesis of Digital Circuits. [Online]. Available:
http://mesl.ucsd.edu/spark

[12] (2013) ISE WebPACK Design Software. [Online]. Available:
http://www.xilinx.com/products/design-tools/ise-design-suite/ise-
webpack.htm

[13] D. D. Gajski, A. Gerstlauer, S. Abdi, G. Schirner, Embedded
System Design, Springer, 2009, pp. 199-254.

[14] (2013) NISC Technology – Toolset online demo. [Online].
Available: http://www.ics.uci.edu/~nisc/toolset/

[15] (2013) National Institute of Standards and Technology (NIST),
"Secure Hash Standards (SHS)". [Online]. Available:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[16] (2013) C to Verilog. [Online]. Available: http://c-to-
verilog.com/howtos.html

[17] (2013) MicroBlaze Soft Processor. [Online]. Available:
http://www.xilinx.com/tools/microblaze.htm

[18] (2013) C-based Design: High-Level Synthesis with Vivado HLS.
[Online]. Available: http://www.xilinx.com/training/dsp/high-
level-synthesis-with-vivado-hls.htm

[19] (2013) mbed: i2s_audio_madplayer. [Online]. Available:
http://mbed.org/users/okini3939/code/i2s_audio_madplayer/docs/3
0b2cf4a8ee2/synth_8cpp_source.html

[20] (2013) libmad - MPEG audio decoder library. [Online].
Available:
ftp://ftp.icsi.berkeley.edu/global/pub/speech/software/praatlib-
0.3/src/mp3/mad_synth.c

1106 MIPRO 2013/CTS

