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Abstract— The automation of custom hardware design often 

focuses on hardware optimizations for smaller portions of code 
that dominate the design execution. The same presumption can 
be stated for custom processor design. The data path of the 
processor can be well optimized for particular blocks of code that 
are formed during control flow extraction. However, larger 
source codes can have tens of blocks that result from Control 
Flow Graph (CFG). We implemented a global semi-automated 
flow that hierarchically forms the set of blocks which 
contributions are modeled into processor architecture. Resulting 
processor model is translated to RTL description and 
implemented inside FPGA logic. 
Keywords: Custom Processor Design, No-Instruction-Set Computer, 
High-Level Synthesis, Data Path Design, FPGA Implementation 
 

I. INTRODUCTION 
Embedded System Level (ESL) design is an emerging 

methodology for custom digital system design with focus on 
higher level design specification, [1]. With constant rise of 
capability of technology and the growth of software and 
hardware productivity gaps the needs for quality and reliable 
software support increase, Fig. 1. 

Software solutions help in area of Electronic Design 
Automation (EDA) tools development and IP cores 
production. Reusable IP cores contribute in closing of 
hardware productivity gap. 

This work is motivated by this challenges and deals with 
topic of custom processor architecture design from C code 

specification. The specification in C code and its derivatives, 
C++ and SystemC, is dominant in High-Level Synthesis (HLS) 
tools. Such tools usually produce hardware description in RTL 
code that is ready for logic synthesis targeting FPGA device. 
Although gate-level synthesis designs usually have higher 
performance, HLS strengths are shorter design time and 
availability for more users. The research of HLS methodology 
lived its zenith in academic societies in past decades. During 
the time, a number of commercial tools appeared in the 
market, [3,4].  

In this work, we turned to processor architecture model as 
custom product for C code specification. The model of 
architecture is designed according to No-Instruction-Set 
Computer (NISC) concept, [5]. In this concept, the system 
designer can arbitrarily choose data path components having 
in mind the C application code features. On the contrary, in 
this paper the task and methodology of automated data path 
design is presented. The resulting architecture that contains 
such automatically designed data path is in final implemented 
in FPGA device. The methodology assumes no compiler-style 
optimizations, but fully customizes the architecture. Thus, the 
emphasis is on optimizations that are applied on data path 
level. In such way, the optimizations are closer to the 
implementation platform while the concept retains processor 
style of execution familiar to common user. The traditional 
HLS flow is broken into two stages: processor as the 
execution engine, and its mapping to the implementation 
platform. 

In the following subsections, overview of high-level 
synthesis and processor based design are described as the key 
concepts of this paper. The complete custom processor design 
flow is elaborated in Section II. In Section III and Section IV 
the important features and results of several test cases are 
presented. Section V gives final conclusions on the presented 
work. 

A. Traditional High-Level Synthesis 
High-level synthesis is referred in the literature as C 

synthesis, or algorithmic synthesis. It is an automated process 
of hardware design from algorithmic specification. This 
process analyzes the input code and produces RTL schedule 
conducted by the architectural constraints. The logic synthesis 
process finally translates the RTL description into bitstream time
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Fig. 1.  HW and SW productivity gap (source: [2]) 
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for target implementation. Lifting the specification level to 
algorithmic representation means better control over design, 
optimizations and verification at RTL level. The popularity 
and flexibility of C programming language and design flows 
integration capabilities were decisive for its usage in most of 
high-level synthesis flows.  
Traditional HLS flow has a number of common steps, [6]:  

• Lexical processing – usually translates the source code 
to a form of intermediate representation. It has many 
similarities to higher level languages compilers. Some 
of them are used in actual design flows for translation to 
standardized intermediate representations. 

• Algorithm optimizations – also assumes some of the 
higher level compiler functionalities in a sense of code 
optimizations and parallel execution expression. 

• Control and data dependencies analysis – deals with 
operation inputs and outputs recognition and data 
dependencies expression. Operations are analyzed in 
three-address code notation that is generated without 
any timing dependencies. 

• Technology library processing - introduces 
implementation technology description in sense of 
functional, timing and allocation characteristics. 

• Resource allocation – determines implementation sets 
of functional units from components library. 

• Operation scheduling – based on data dependencies and 
functional unit latencies produces finite state machines. 
Principles of scheduling can be time- or resource- 
constrained.  

• Functional units and register bindings – dedicates 
operations to functional units and operand to registers. 

• Output processing – generates RTL code that 
implements finite state machine ready for logic 
synthesis. 

B. Processor Based Design 
There are several embedded processors that are engaged in 

FPGA design flows. Xilinx offers easy-to-use soft-core 
MicroBlaze processor within its Embedded Development Kit, 
[8]. It is general-purpose 32-bit processor with instruction set 
architecture similar to RISC-based DLX architecture, [9]. 
Customizable aspects of this core are: cache size, pipeline 
depth and memory management. Some operations, such as 
multiplications, divisions and floating point operations can be 
implemented in hardware, and performance tuning is possible 
through standard gcc compiler optimizations. Besides that, 
there are other soft and hard embedded processor cores such 
as Xilinx PowerPC, Altera Nios or Altium TSK 51/52 and 
3000A within their well-known integrated development suites. 

Concepts of Application-Specific Instruction Processor 
(ASIP) with higher grade of customization with instruction set 
extensions, such as Xtensa, [10]. In a sense of data path 
customization there is NISC toolset. The concept of this 
toolset allows full customization of data path and program 
words that make up the control unit. There is no predefined 
instruction set as it is formed according to data path contents. 
The architecture is translated into synthesizable Verilog code 
targeted for FPGA implementation. Data path is fully 

customized by user or fully determined by algorithmic 
specification. In this paper we describe implementation of 
automatic data path customization for C algorithm 
specification. It is motivated by NISC where the control logic, 
that reads the custom instruction memory and issues the 
appropriate signals to the data path, is fixed. Related to this, 
the previous work for custom co-processor design focuses on 
iterative algorithm for resource usage optimization, [11]. 
Similar concept is Transport Triggered Architecture (TTA) 
custom processor which is scalable with respect to instruction-
level parallelism and focused on customizable interconnect 
network, [12]. 

II. DESIGN FLOW 
The flow of FPGA implementation from C code with 

processor architecture model in-between is supported by 
several software tools. In this section, the overview of the 
flow and important aspects; code profiling, implementation 
platform description and data path design, are presented. 

A. Overview 
Design flow is characterized by several processes, and their 

inputs and outputs. Globally, there are three major processing 
steps in the design flow, Fig. 2:  

• C code preprocessing. Code is analyzed by its 
procedures and basic blocks formed by the control 
flows of the procedures. Resulting notation is Control 
and Data Flow Graph (CDFG). SPARK tool is used for 
initial conversion of C code to CDFG. 

• Architecture build. As the most complex process of the 
flow it is implemented within standalone ArkBuilder 
tool. Three separate processes can be recognized. The 
first is scheduling of CDFG three-address code 
statements followed by operand and operations usage 
analysis. Such analysis produces combinations of 
operands and operations encapsulated within registers 
and functional units. Thus, the simplified (or 
provisional) data paths consisting only of register files, 
functional units and their connections are formed for 
every basic block. The last step is the design of final 
data path. The design is based on integrating all basic 
blocks data path contributions. The result is data path 
completed with data memory, multiplexers as arbitral 
components, and connections interfacing the control 
unit. 

• Simulation/Implementation. Separate tools GenCM and 
ProcSynth generate design RTL description and 
instruction memory initialization file for core 
generation. With inclusion of appropriate data memory 
core the design is synthesized and implemented in 
FPGA. The behavioral simulation relying on generated 
IP cores is used for verification purposes. 

The central point of the flow is the algorithm for final data 
path design. It forms the complete architecture that logically 
corresponds to CDFG ‘per basic block’ schedules. The data 
path contributions of all basic blocks are thus integrated into 
the final data path. The significance of basic blocks are 
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defined by their execution cycles shares inside whole 
application run. Such shares are estimated by profiling of 
procedures and basic blocks, and basic blocks schedule 
lengths. Basically, the algorithm for final data path design is 
provided with following input information:  

• CDFG application description 
• Application code profiling information 
• Implementation platform description 

Here introduced aspects of data path design are described in 
following subsections using short example to clarify the 
theoretic information. 

B. Two-Level Profiling 
The code profiling is performed at two levels of abstraction: 
• Procedure level 
• Basic block level 

However, the profiling is basic block based as the number 
of procedure calls is multiplied with basic block iteration 
count to get the absolute basic block iteration count.  

The code analysis is thus performed for each basic block 
independently. As the original code is transformed in basic 
block three-address code notation, its mapping to architecture 
data path is straightforward. Functional units with two input 
ports and one output port correspond to the three-address code 
notation of basic block statements. Scheduling, allocation and 
binding tasks are performed on basic block three-address 
statements. Firstly, the scheduling of statements as output 
produce finite state machine with data (FSMD). The analysis 
of statement operands and operation is performed by each 
cycle and their non-overlapping usages are noted to allocate 
registers and functional units, respectively. In such way, the 
binding of statements to registers and functional unit is 
implicit. 

Basic control flow constructs are conditional branch and 
loop, Fig. 3. Conditional branch consists of three, and loop 
consists of four control flow basic blocks. If code structure in 
Fig. 4 is transformed to CDFG, the appropriate profiling 
would be as in Table I. The code structure is flattened to basic 
block level of abstraction where every basic block gets unique 
identifier. The special purposed code annotations help in 
generating profiling info for key basic blocks; those 
representing bodies of conditional branches and loops. It helps 
the user to identify other basic blocks that result from those 
constructs. The user fills the correct profiling info for loop 
condition test and increment as for these the info is not 
generated automatically. 

a1
1

a2
2

3
a34

a4

b1

b2

b3

b4

5

6

7

8

Vcc1
0

GND
0

 Fig. 2.  Design synthesis flow. 
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Fig. 3.  Control flow constructs of: a) conditional branch, and b) loop 

 
proc1     // calls = 5 
{ 
    // no branches or loops 
} 
 
proc2    // calls = 4 
{ 
    for (i = 0; i < 10; i++) 
    { 
        // loop body 
    } 
} 
 
proc3    // calls = 3 
{ 
    for (i = 0; i < 20; i++) 
    { 
        if (test_value < cond_value) 
        { 
            // entered in 40% of cases 
        } 
        else 
        { 
            // entered in 60% of cases 
        } 
    } 
}  

Fig. 4.  Simplified code with branches and loop 
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TABLE I 
CODE PROFILING AT TWO LEVELS 

Procedure name 
(#calls) 

Procedure part 
(#iterations) 

Basic 
Block 

Total # of 
iterations 

proc1 (#calls = 5) procedure body 
(#iterations = 1) 

BB0 5×1 = 5 

proc2 (#calls = 4) loop initialization 
(#iterations = 1) 

BB1 4×1 = 4 

loop condition test 
(#iterations = 10) 

BB2 4×10 = 40 

loop body (#iterations = 
10) 

BB3 4×10 = 40 

loop increment 
(#iterations = 10) 

BB4 4×10 = 40 

proc3 (#calls = 3) loop initialization 
(#iterations = 1) 

BB5 3×1 = 3 

loop condition test 
(#iterations = 20) 

BB6 3×20 = 60 

branch condition test 
(#iterations = 20) 

BB7 3×20 = 60 

branch if body 
(#iterations = 0.4×20 = 
8) 

BB8 3×8 = 24 

branch else body 
(#iterations = 0.6×20 = 
12) 

BB9 3×12 = 36 

loop increment 
(#iterations = 1) 

BB10 3×20 = 60 

 

C. Platform Description 
The description of FPGA platform is provided as set of 

libraries for all component types: 
• Functional units – adder, subtractor, multiplier, divider, 

shifter, logic functions 
• Controller logic 
• Memory elements – register, register file, data memory 
• Other components – multiplexers. 

The components are described in aspects of their operation, 
inputs, outputs, control signals, latencies and occupation of 
FPGA logic (slices, DSPs). 

D. Basic Block Analysis and Data Path Design Methodology 
As stated in Section II there are three steps in the 

methodology of architecture build. First two steps, scheduling 
and basic blocks analysis with forming of simplified data 
paths, are performed for every basic block of the CDFG. The 
last, final data path design unifies all basic blocks data paths 
into unique one and interfaces it with the control unit. Here, 
the methodology is going to be elaborated through simple line 
of code in (1) assumed to be only basic block content. It is a 
simple calculation consisting of three multiplications, an 
addition and a division. 

 
g = ((a × b) + (c × d)) / (e × f);  (1) 

Fig. 5 shows data flow graph of (1) consisting of five three-
address code statements: ST1 to ST5. Data dependencies are 
properly extracted to ensure the regularity of calculation. 
According to those dependencies, the scheduling phase 

produces finite state machine as in Table II. Usage analysis 
notes operand reads and operation activity per state, as in 
Table III and Table IV. 

If one register per operand and one functional unit per 
operation would be assumed, there would be much 
redundancies in the data path. Therefore, minimization of 

 
Fig. 5.  Data flow graph for expression in (1) 

 

TABLE II 
SCHEDULE FOR EXPRESSION (1) 

State Statements Three-Address Code 
S1 ST1 

ST2 
T5 = a × b 
T4 = c × d 

S2  ST3 
ST4 

T3 = e × f 
T6 = T5 + T4 

S3 ST5 res = T6 / T3 

 

TABLE III 
OPERAND USAGE ANALYSIS 

Operand 
�    State � 

S1 S2 S3 

a ×   

b ×   

T5  ×  

c ×   

d ×   

T4  ×  

e  ×  

f  ×  

T3   × 

T6   × 

 

TABLE IV 
OPERATION USAGE ANALYSIS 

Operation 
�    State � 

S1 S2 S3 

ADD 0 1 0 

MUL 2 1 0 

DIV 0 0 1 
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registers and functional units allocations is applied using 
compatibility graphs, [15]. Having in mind operand lifetimes 
and operations usages per finite machine states, operands are 
appropriately merged to share a register, and combinations of 
operations are dedicated to functional units. Using this 
methodology, final data path for expression (1) consists of two 
functional units and four registers appropriately connected, 
Fig. 6. 

E. Final Data Path Design Algorithm 
Algorithm that designs the final data path integrates 

contributions of all basic blocks provisional data paths. It is 
also based on analysis of maximum needed operation 
instances per scheduled cycles for all basic blocks. The 
contributions of all basic blocks are integrated to the final data 
path through their functional units and all components that are 
connected to those functional units. When number of 
particular operation instances implemented within existing 
functional units in the final data path is exceeded, those types 
of functional units are not further instanced. The pseudo code 
describing the algorithm for data path design is following: 

 
DP = Ø 
FUmaxop = GET_MAX_INSTANCES(CDFG),  

op � {ADD, SUB, …, ASSIGN} 
base_logic = {CTRL, DMEM_WRAP} 
DP += base_logic 
BBsorted = SORT_BB(CDFG, desc) 
for bbcurrent � BBsorted  
      ACCOMPdmem = ACCOMP_LOGIC(DMEM(bbcurrent)) 
       UPDATE_DP_RFS(bbcurrent) 
      FUsorted = SORT_FU (bbcurrent, desc) 
      for fucurrent � FUsorted  
 Op= GET_OPERATION(fucurrent) 
          if FUinstancesop < FUmaxop 
             ACCOMPfucurrent = ACCOMP_LOGIC(fucurrent) 
              DP += fucurrent + ACCOMPfucurrent  
          else 
             UPDATE_DP(bbcurrent) 
RF_UPDATE(DP) 
UPDATE_CTRL_CONNS(DP, CTRL) 

 
Data path (DP) is built from the scratch. As first, 

GET_MAX_INSTANCES() notes all operation types and 

analyzes their usage per basic blocks schedules. As result, 
maximum numbers of operations per scheduled state is noted 
(FUmaxop). Data path is initialized with base logic consisting 
of control logic (CTRL) and data memory wrapper logic 
(DMEM_WRAP). Basic blocks are sorted by significance 
(BBsorted) and traversed in that order. Inside basic block data 
path, data memory and functional units accompanying logics 
are checked and integrated into final data path. Accompanying 
logic of a component is defined as all components connected 
with it. There are data memory (ACCOMPdmem) and functional 
units (ACCOMPfucurrent) accompanying logic consisting of 
registers connected to their inputs and outputs. When more 
than one input connection is brought to some input port, 
multiplexer is automatically instantiated in the final data path.  

Functional units are sorted by number of three-address 
statements assigned to them. Before integration of new 
functional unit to the final data path, number of functional unit 
instances per operation type is checked against to previously 
calculated FUmaxop value. If operation count exceeds this 
value, new functional units of same operation type are not 
further added to the final data path. In that case, statements 
assigned to functional unit that is currently processed are 
assigned to final data path functional unit of appropriate type. 
The final steps of the algorithm are data path updates denoted 
as RF_UPDATE() and UPDATE_CTRL_CONNS(). Function 
RF_UPDATE() assumes removing multiple appearances of 
the same operand identifiers what is common case when 
writing code in more than one procedure. Function 
UPDATE_CTRL_CONNS() interfaces the data path to 
control unit with connections for bringing constant value to 
data path and status signals to control unit. 

F. Summary 
The approach of our processor architecture design 

compared to traditional high-level synthesis shows several 
differences, Table V. There are no algorithm optimizations 
applied, but optimization is undertaken at architectural level 
during basic blocks data paths designs. Scheduling phase 
starts immediately after data dependencies analysis and is base 
for operation and operand usage analyses. Those analyses are 
base for the joint task of resource allocation and binding. 
Platform file is used during scheduling phase as it provides 
information on components latencies and during final data 
path design as it provides components occupation data. 

III. TEST CASES 
Our approach of processor architecture modeling and 

implementation is tested on following C coded algorithms 
used inside NISC toolset: 

• Discrete cosine transform (DCT) on 8×8 matrices in 
two versions: original (with three nested loops) and 
unrolled, [16]. 

• 32-point DCT used in MP3 decoder. 
• SHA-1 encryption algorithm, [17,18]. 

Table VI shows characteristics of test cases CDFGs: 
numbers of basic blocks, statements, operands and different 
operation types.  

Fig. 6.  Final data path for expression in (1). 
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The first two, DCT and Unrolled DCT represent the same 
code written in different styles and elaborated in [16]. 32-
point DCT is optimized version of such transformation, but 
here it is the largest code without control flow dependencies. 
Inside only one basic block there are total of 80 additions, 119 
subtractions, 80 multiplications and 49 shifts. SHA-1 has the 
most complex control flow and the most diverse operations: 
additions, subtractions, logical AND, OR, XOR and NOT, 
assignment, comparisons, left and right shifts, and memory 
reads and writes. 

The analysis of maximum needed operation instances is 
shown in Table VII. During final data path design those 
values are tested as top values of operation instances allowed. 
As they express the top values of operation instances found 
across all basic blocks data paths those values can be 
considered as a kind of parallelizing potential measure. 

IV. RESULTS 

A. Comparison against other Custom Design Approaches 
Custom architectures are built and their implementations 

are compared for respective test cases with three other 
implementation approaches: 

• NISC style MIPS architecture as one of the referent 
architecture used inside NISC toolset, Fig. 7, [19]. 

• Xilinx MicroBlaze processor. 
• Xilinx Vivado HLS tool, [20]. 

For all of them, the target platform was FPGA Virtex-5 
XC5VSX50T device (package FF1136 speed grade -1), and 
performance was noted from tools reports, simulation or logic 
analyzer output waveforms. The referent Xilinx Design Suite 
used was version 12.3. 
Our flow implements designs with performances range at the 
same level or better than other processor based designs, Table 
VIII. With capabilities for parallelizing execution and 
instantiation of more functional units it is better in cycle count 
measure than other processors. In achieved work frequencies 
it is below other processors. HLS tool is far ahead all 
implementations as it has fully custom control logic. 

B. Data Path Designs Characteristics 
Table IX presents data path characteristics of all custom 

built data paths. According to Table VI and Table VII 
expectations, SHA-1 has the most functional units instanced. 
There are seven functional unit in its data path, but, as one 

TABLE V 
RELATION OF CUSTOM PROCESSOR DESIGN FLOW TO HIGH-LEVEL 

SYNTHESIS 

High-Level Synthesis 
Steps 

Our Approach 
Yes/
No 

No. in 
Order 

Comment 

Lexical Analysis Yes 1. Code preprocessing: 
transformation to 
CDFG 

Algorithm Optimizations No - Optimizations are 
performed only at 
architectural level 

Control/Data 
Dependencies Analysis 

Yes 2. Only data 
dependencies are 
analyzed 

Technology Library 
Processing 

Yes 3. Platform file that 
describes mapping to 
FPGA 

Resource Allocation Yes 5. Joint process with 
‘Functional Units & 
Register Binding’ 

Operation Scheduling Yes 4. Three-address 
statements within 
control flow basic 
block 

Functional Units & 
Register Binding 

Yes 5. Joint process with 
‘Resource Allocation’ 

Output: RTL Code Yes 6. Synthesizable Verilog 
code 

 

TABLE VI 
TEST CASES CDFG CHARACTERISTICS 

Test 
Cases 

# Basic 
Blocks 

#State-
ments 

#Ope-
rands 

#Opera-
tions 

DCT 8×8 15 28 29 6 
Unrolled 
DCT 8×8  

5 161 191 8 

32-point 
DCT 

1 791 890 6 

SHA-1 31 158 150 12 
 

TABLE VII 
TOP OPERATION INSTANCES COUNTS 

Test 
Cases 

A
D

D
 

SU
B

 

M
U

L
 

SH
IF

T
 

A
N

D
 

O
R

 

X
O

R
 

N
O

T
 

C
O

M
P 

A
SS

IG
N

 

DCT 8×8 1  1      1 1 
Unrolled 
DCT 8×8  

2  1  1 1   1 2 

32-point 
DCT 

3 2 1 1      4 

SHA-1 1 1  1 2 2 1 1 1 3 
 

 
Fig. 7.  NISC style MIPS architecture (source: [19]) 
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functional unit can implement combinations of operations, the 
actual number of operations is higher (i.e. 12). Instantiation of 
functional units is controlled by checking the maximum 
allowed numbers per operation types. Therefore, the numbers 
of functional units instances are moderate for all test cases. On 
the other hand, the numbers of register files and registers is 
higher than expected as their instantiations are not controlled. 
These increase connections and multiplexers insertions which 
cause inaccuracy in resource occupation estimation. 

V. CONCLUSION 
In this paper, we elaborated the global flow of C code 

specification implementation to FPGA. The idea was in 
handling complex code examples and production of custom 
architectures for them. The methodology includes: 

• code hierarchical division through procedures and their 
control flow blocks, 

• control flow blocks profiling, producing provisional 
optimized data paths for all basic blocks, 

• unifying basic blocks demands for components into 
final data path. 

The results of FPGA implementation produced from such 
semi-automated flow were presented in aspects of execution 
clock cycles and work frequencies and compared against three 
other implementations. 

Design time for final data path design with presented 
algorithm was within few seconds, except for 32-point DCT. 
32-point DCT compatibility graphs analysis was much more 
costly because of huge number of statements. 

Further work will include efforts on better control and 
optimization of all components; especially register files, and 
accurate resource occupation estimation. Also, the mechanisms 

of pipelining, on structural and functional unit level, are not 
still considered seriously. In all, there is a space for 
improvement in user impact during system design. More 
detailed analysis of functional units and registers utilization 
would allow testing of trade-off between cycle count 
performance and design minimization. 
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TABLE VIII 
COMPARISON OF CUSTOM DESIGNS IN CYCLE COUNTS 

Test 
Cases 

NMIPS 
(67–69 
MHz) 

Microblaz
e (100 
MHz) 

Vivado 
HLS (> 
400 MHz) 

ArkBuild
er (57-61 
MHz) 

DCT 8×8 10382 51616 3929 10830 
Unrolled 
DCT 8×8  

3566 93248 832 3333 

32-point 
DCT 

788 28318 199 426 

SHA-1 4327 67087 2726 3830 
 

TABLE IX 
CUSTOM DATA PATHS CHARACTERISTICS 

Test 
Cases 

Data path components 
Functiona
l units 

Register 
Files 

Multiplex
ers 

Connectio
ns 

DCT 8×8 3 14 13 80 
Unrolled 
DCT 8×8  

5 25 24 164 

32-point 
DCT 

5 29 32 343 

SHA-1 7 30 37 264 
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