
Unified Flow of Custom Processor Design and
FPGA Implementation

Danko Ivoševi�, Vlado Sruk
Faculty of Electrical Engineering and Computing, University of Zagreb

Department of Electronics, Microelectronics, Intelligent and Computer Systems
Unska 3, Zagreb, Croatia
danko.ivosevic@fer.hr

vlado.sruk@fer.hr

Abstract— The automation of custom hardware design often

focuses on hardware optimizations for smaller portions of code
that dominate the design execution. The same presumption can
be stated for custom processor design. The data path of the
processor can be well optimized for particular blocks of code that
are formed during control flow extraction. However, larger
source codes can have tens of blocks that result from Control
Flow Graph (CFG). We implemented a global semi-automated
flow that hierarchically forms the set of blocks which
contributions are modeled into processor architecture. Resulting
processor model is translated to RTL description and
implemented inside FPGA logic.
Keywords: Custom Processor Design, No-Instruction-Set Computer,
High-Level Synthesis, Data Path Design, FPGA Implementation

I. INTRODUCTION
Embedded System Level (ESL) design is an emerging

methodology for custom digital system design with focus on
higher level design specification, [1]. With constant rise of
capability of technology and the growth of software and
hardware productivity gaps the needs for quality and reliable
software support increase, Fig. 1.

Software solutions help in area of Electronic Design
Automation (EDA) tools development and IP cores
production. Reusable IP cores contribute in closing of
hardware productivity gap.

This work is motivated by this challenges and deals with
topic of custom processor architecture design from C code

specification. The specification in C code and its derivatives,
C++ and SystemC, is dominant in High-Level Synthesis (HLS)
tools. Such tools usually produce hardware description in RTL
code that is ready for logic synthesis targeting FPGA device.
Although gate-level synthesis designs usually have higher
performance, HLS strengths are shorter design time and
availability for more users. The research of HLS methodology
lived its zenith in academic societies in past decades. During
the time, a number of commercial tools appeared in the
market, [3,4].

In this work, we turned to processor architecture model as
custom product for C code specification. The model of
architecture is designed according to No-Instruction-Set
Computer (NISC) concept, [5]. In this concept, the system
designer can arbitrarily choose data path components having
in mind the C application code features. On the contrary, in
this paper the task and methodology of automated data path
design is presented. The resulting architecture that contains
such automatically designed data path is in final implemented
in FPGA device. The methodology assumes no compiler-style
optimizations, but fully customizes the architecture. Thus, the
emphasis is on optimizations that are applied on data path
level. In such way, the optimizations are closer to the
implementation platform while the concept retains processor
style of execution familiar to common user. The traditional
HLS flow is broken into two stages: processor as the
execution engine, and its mapping to the implementation
platform.

In the following subsections, overview of high-level
synthesis and processor based design are described as the key
concepts of this paper. The complete custom processor design
flow is elaborated in Section II. In Section III and Section IV
the important features and results of several test cases are
presented. Section V gives final conclusions on the presented
work.

A. Traditional High-Level Synthesis
High-level synthesis is referred in the literature as C

synthesis, or algorithmic synthesis. It is an automated process
of hardware design from algorithmic specification. This
process analyzes the input code and produces RTL schedule
conducted by the architectural constraints. The logic synthesis
process finally translates the RTL description into bitstream time

log

Capability of
Technology

HW Design
Productivity

SW Productivity

Required SW

Average SW+HW
Productivity

1980 1990 2000 2010

System
Design

Gap

Fig. 1. HW and SW productivity gap (source: [2])

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1721978-1-4673-2232-4/13/$31.00 ©2013 IEEE

for target implementation. Lifting the specification level to
algorithmic representation means better control over design,
optimizations and verification at RTL level. The popularity
and flexibility of C programming language and design flows
integration capabilities were decisive for its usage in most of
high-level synthesis flows.
Traditional HLS flow has a number of common steps, [6]:

• Lexical processing – usually translates the source code
to a form of intermediate representation. It has many
similarities to higher level languages compilers. Some
of them are used in actual design flows for translation to
standardized intermediate representations.

• Algorithm optimizations – also assumes some of the
higher level compiler functionalities in a sense of code
optimizations and parallel execution expression.

• Control and data dependencies analysis – deals with
operation inputs and outputs recognition and data
dependencies expression. Operations are analyzed in
three-address code notation that is generated without
any timing dependencies.

• Technology library processing - introduces
implementation technology description in sense of
functional, timing and allocation characteristics.

• Resource allocation – determines implementation sets
of functional units from components library.

• Operation scheduling – based on data dependencies and
functional unit latencies produces finite state machines.
Principles of scheduling can be time- or resource-
constrained.

• Functional units and register bindings – dedicates
operations to functional units and operand to registers.

• Output processing – generates RTL code that
implements finite state machine ready for logic
synthesis.

B. Processor Based Design
There are several embedded processors that are engaged in

FPGA design flows. Xilinx offers easy-to-use soft-core
MicroBlaze processor within its Embedded Development Kit,
[8]. It is general-purpose 32-bit processor with instruction set
architecture similar to RISC-based DLX architecture, [9].
Customizable aspects of this core are: cache size, pipeline
depth and memory management. Some operations, such as
multiplications, divisions and floating point operations can be
implemented in hardware, and performance tuning is possible
through standard gcc compiler optimizations. Besides that,
there are other soft and hard embedded processor cores such
as Xilinx PowerPC, Altera Nios or Altium TSK 51/52 and
3000A within their well-known integrated development suites.

Concepts of Application-Specific Instruction Processor
(ASIP) with higher grade of customization with instruction set
extensions, such as Xtensa, [10]. In a sense of data path
customization there is NISC toolset. The concept of this
toolset allows full customization of data path and program
words that make up the control unit. There is no predefined
instruction set as it is formed according to data path contents.
The architecture is translated into synthesizable Verilog code
targeted for FPGA implementation. Data path is fully

customized by user or fully determined by algorithmic
specification. In this paper we describe implementation of
automatic data path customization for C algorithm
specification. It is motivated by NISC where the control logic,
that reads the custom instruction memory and issues the
appropriate signals to the data path, is fixed. Related to this,
the previous work for custom co-processor design focuses on
iterative algorithm for resource usage optimization, [11].
Similar concept is Transport Triggered Architecture (TTA)
custom processor which is scalable with respect to instruction-
level parallelism and focused on customizable interconnect
network, [12].

II. DESIGN FLOW
The flow of FPGA implementation from C code with

processor architecture model in-between is supported by
several software tools. In this section, the overview of the
flow and important aspects; code profiling, implementation
platform description and data path design, are presented.

A. Overview
Design flow is characterized by several processes, and their

inputs and outputs. Globally, there are three major processing
steps in the design flow, Fig. 2:

• C code preprocessing. Code is analyzed by its
procedures and basic blocks formed by the control
flows of the procedures. Resulting notation is Control
and Data Flow Graph (CDFG). SPARK tool is used for
initial conversion of C code to CDFG.

• Architecture build. As the most complex process of the
flow it is implemented within standalone ArkBuilder
tool. Three separate processes can be recognized. The
first is scheduling of CDFG three-address code
statements followed by operand and operations usage
analysis. Such analysis produces combinations of
operands and operations encapsulated within registers
and functional units. Thus, the simplified (or
provisional) data paths consisting only of register files,
functional units and their connections are formed for
every basic block. The last step is the design of final
data path. The design is based on integrating all basic
blocks data path contributions. The result is data path
completed with data memory, multiplexers as arbitral
components, and connections interfacing the control
unit.

• Simulation/Implementation. Separate tools GenCM and
ProcSynth generate design RTL description and
instruction memory initialization file for core
generation. With inclusion of appropriate data memory
core the design is synthesized and implemented in
FPGA. The behavioral simulation relying on generated
IP cores is used for verification purposes.

The central point of the flow is the algorithm for final data
path design. It forms the complete architecture that logically
corresponds to CDFG ‘per basic block’ schedules. The data
path contributions of all basic blocks are thus integrated into
the final data path. The significance of basic blocks are

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1722978-1-4673-2232-4/13/$31.00 ©2013 IEEE

defined by their execution cycles shares inside whole
application run. Such shares are estimated by profiling of
procedures and basic blocks, and basic blocks schedule
lengths. Basically, the algorithm for final data path design is
provided with following input information:

• CDFG application description
• Application code profiling information
• Implementation platform description

Here introduced aspects of data path design are described in
following subsections using short example to clarify the
theoretic information.

B. Two-Level Profiling
The code profiling is performed at two levels of abstraction:
• Procedure level
• Basic block level

However, the profiling is basic block based as the number
of procedure calls is multiplied with basic block iteration
count to get the absolute basic block iteration count.

The code analysis is thus performed for each basic block
independently. As the original code is transformed in basic
block three-address code notation, its mapping to architecture
data path is straightforward. Functional units with two input
ports and one output port correspond to the three-address code
notation of basic block statements. Scheduling, allocation and
binding tasks are performed on basic block three-address
statements. Firstly, the scheduling of statements as output
produce finite state machine with data (FSMD). The analysis
of statement operands and operation is performed by each
cycle and their non-overlapping usages are noted to allocate
registers and functional units, respectively. In such way, the
binding of statements to registers and functional unit is
implicit.

Basic control flow constructs are conditional branch and
loop, Fig. 3. Conditional branch consists of three, and loop
consists of four control flow basic blocks. If code structure in
Fig. 4 is transformed to CDFG, the appropriate profiling
would be as in Table I. The code structure is flattened to basic
block level of abstraction where every basic block gets unique
identifier. The special purposed code annotations help in
generating profiling info for key basic blocks; those
representing bodies of conditional branches and loops. It helps
the user to identify other basic blocks that result from those
constructs. The user fills the correct profiling info for loop
condition test and increment as for these the info is not
generated automatically.

a1
1

a2
2

3
a34

a4

b1

b2

b3

b4

5

6

7

8

Vcc1
0

GND
0

 Fig. 2. Design synthesis flow.

BB
condition_test

BB
if_body

BB
else_body

True False

END

a) b)

Fig. 3. Control flow constructs of: a) conditional branch, and b) loop

proc1 // calls = 5
{
 // no branches or loops
}

proc2 // calls = 4
{
 for (i = 0; i < 10; i++)
 {
 // loop body
 }
}

proc3 // calls = 3
{
 for (i = 0; i < 20; i++)
 {
 if (test_value < cond_value)
 {
 // entered in 40% of cases
 }
 else
 {
 // entered in 60% of cases
 }
 }
}

Fig. 4. Simplified code with branches and loop

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1723978-1-4673-2232-4/13/$31.00 ©2013 IEEE

TABLE I
CODE PROFILING AT TWO LEVELS

Procedure name
(#calls)

Procedure part
(#iterations)

Basic
Block

Total # of
iterations

proc1 (#calls = 5) procedure body
(#iterations = 1)

BB0 5×1 = 5

proc2 (#calls = 4) loop initialization
(#iterations = 1)

BB1 4×1 = 4

loop condition test
(#iterations = 10)

BB2 4×10 = 40

loop body (#iterations =
10)

BB3 4×10 = 40

loop increment
(#iterations = 10)

BB4 4×10 = 40

proc3 (#calls = 3) loop initialization
(#iterations = 1)

BB5 3×1 = 3

loop condition test
(#iterations = 20)

BB6 3×20 = 60

branch condition test
(#iterations = 20)

BB7 3×20 = 60

branch if body
(#iterations = 0.4×20 =
8)

BB8 3×8 = 24

branch else body
(#iterations = 0.6×20 =
12)

BB9 3×12 = 36

loop increment
(#iterations = 1)

BB10 3×20 = 60

C. Platform Description
The description of FPGA platform is provided as set of

libraries for all component types:
• Functional units – adder, subtractor, multiplier, divider,

shifter, logic functions
• Controller logic
• Memory elements – register, register file, data memory
• Other components – multiplexers.

The components are described in aspects of their operation,
inputs, outputs, control signals, latencies and occupation of
FPGA logic (slices, DSPs).

D. Basic Block Analysis and Data Path Design Methodology
As stated in Section II there are three steps in the

methodology of architecture build. First two steps, scheduling
and basic blocks analysis with forming of simplified data
paths, are performed for every basic block of the CDFG. The
last, final data path design unifies all basic blocks data paths
into unique one and interfaces it with the control unit. Here,
the methodology is going to be elaborated through simple line
of code in (1) assumed to be only basic block content. It is a
simple calculation consisting of three multiplications, an
addition and a division.

g = ((a × b) + (c × d)) / (e × f); (1)

Fig. 5 shows data flow graph of (1) consisting of five three-
address code statements: ST1 to ST5. Data dependencies are
properly extracted to ensure the regularity of calculation.
According to those dependencies, the scheduling phase

produces finite state machine as in Table II. Usage analysis
notes operand reads and operation activity per state, as in
Table III and Table IV.

If one register per operand and one functional unit per
operation would be assumed, there would be much
redundancies in the data path. Therefore, minimization of

Fig. 5. Data flow graph for expression in (1)

TABLE II
SCHEDULE FOR EXPRESSION (1)

State Statements Three-Address Code
S1 ST1

ST2
T5 = a × b
T4 = c × d

S2 ST3
ST4

T3 = e × f
T6 = T5 + T4

S3 ST5 res = T6 / T3

TABLE III
OPERAND USAGE ANALYSIS

Operand
� State �

S1 S2 S3

a ×

b ×

T5 ×

c ×

d ×

T4 ×

e ×

f ×

T3 ×

T6 ×

TABLE IV
OPERATION USAGE ANALYSIS

Operation
� State �

S1 S2 S3

ADD 0 1 0

MUL 2 1 0

DIV 0 0 1

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1724978-1-4673-2232-4/13/$31.00 ©2013 IEEE

registers and functional units allocations is applied using
compatibility graphs, [15]. Having in mind operand lifetimes
and operations usages per finite machine states, operands are
appropriately merged to share a register, and combinations of
operations are dedicated to functional units. Using this
methodology, final data path for expression (1) consists of two
functional units and four registers appropriately connected,
Fig. 6.

E. Final Data Path Design Algorithm
Algorithm that designs the final data path integrates

contributions of all basic blocks provisional data paths. It is
also based on analysis of maximum needed operation
instances per scheduled cycles for all basic blocks. The
contributions of all basic blocks are integrated to the final data
path through their functional units and all components that are
connected to those functional units. When number of
particular operation instances implemented within existing
functional units in the final data path is exceeded, those types
of functional units are not further instanced. The pseudo code
describing the algorithm for data path design is following:

DP = Ø
FUmaxop = GET_MAX_INSTANCES(CDFG),

op � {ADD, SUB, …, ASSIGN}
base_logic = {CTRL, DMEM_WRAP}
DP += base_logic
BBsorted = SORT_BB(CDFG, desc)
for bbcurrent � BBsorted
 ACCOMPdmem = ACCOMP_LOGIC(DMEM(bbcurrent))
 UPDATE_DP_RFS(bbcurrent)
 FUsorted = SORT_FU (bbcurrent, desc)
 for fucurrent � FUsorted
 Op= GET_OPERATION(fucurrent)
 if FUinstancesop < FUmaxop
 ACCOMPfucurrent = ACCOMP_LOGIC(fucurrent)
 DP += fucurrent + ACCOMPfucurrent
 else
 UPDATE_DP(bbcurrent)
RF_UPDATE(DP)
UPDATE_CTRL_CONNS(DP, CTRL)

Data path (DP) is built from the scratch. As first,

GET_MAX_INSTANCES() notes all operation types and

analyzes their usage per basic blocks schedules. As result,
maximum numbers of operations per scheduled state is noted
(FUmaxop). Data path is initialized with base logic consisting
of control logic (CTRL) and data memory wrapper logic
(DMEM_WRAP). Basic blocks are sorted by significance
(BBsorted) and traversed in that order. Inside basic block data
path, data memory and functional units accompanying logics
are checked and integrated into final data path. Accompanying
logic of a component is defined as all components connected
with it. There are data memory (ACCOMPdmem) and functional
units (ACCOMPfucurrent) accompanying logic consisting of
registers connected to their inputs and outputs. When more
than one input connection is brought to some input port,
multiplexer is automatically instantiated in the final data path.

Functional units are sorted by number of three-address
statements assigned to them. Before integration of new
functional unit to the final data path, number of functional unit
instances per operation type is checked against to previously
calculated FUmaxop value. If operation count exceeds this
value, new functional units of same operation type are not
further added to the final data path. In that case, statements
assigned to functional unit that is currently processed are
assigned to final data path functional unit of appropriate type.
The final steps of the algorithm are data path updates denoted
as RF_UPDATE() and UPDATE_CTRL_CONNS(). Function
RF_UPDATE() assumes removing multiple appearances of
the same operand identifiers what is common case when
writing code in more than one procedure. Function
UPDATE_CTRL_CONNS() interfaces the data path to
control unit with connections for bringing constant value to
data path and status signals to control unit.

F. Summary
The approach of our processor architecture design

compared to traditional high-level synthesis shows several
differences, Table V. There are no algorithm optimizations
applied, but optimization is undertaken at architectural level
during basic blocks data paths designs. Scheduling phase
starts immediately after data dependencies analysis and is base
for operation and operand usage analyses. Those analyses are
base for the joint task of resource allocation and binding.
Platform file is used during scheduling phase as it provides
information on components latencies and during final data
path design as it provides components occupation data.

III. TEST CASES
Our approach of processor architecture modeling and

implementation is tested on following C coded algorithms
used inside NISC toolset:

• Discrete cosine transform (DCT) on 8×8 matrices in
two versions: original (with three nested loops) and
unrolled, [16].

• 32-point DCT used in MP3 decoder.
• SHA-1 encryption algorithm, [17,18].

Table VI shows characteristics of test cases CDFGs:
numbers of basic blocks, statements, operands and different
operation types.

Fig. 6. Final data path for expression in (1).

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1725978-1-4673-2232-4/13/$31.00 ©2013 IEEE

The first two, DCT and Unrolled DCT represent the same
code written in different styles and elaborated in [16]. 32-
point DCT is optimized version of such transformation, but
here it is the largest code without control flow dependencies.
Inside only one basic block there are total of 80 additions, 119
subtractions, 80 multiplications and 49 shifts. SHA-1 has the
most complex control flow and the most diverse operations:
additions, subtractions, logical AND, OR, XOR and NOT,
assignment, comparisons, left and right shifts, and memory
reads and writes.

The analysis of maximum needed operation instances is
shown in Table VII. During final data path design those
values are tested as top values of operation instances allowed.
As they express the top values of operation instances found
across all basic blocks data paths those values can be
considered as a kind of parallelizing potential measure.

IV. RESULTS

A. Comparison against other Custom Design Approaches
Custom architectures are built and their implementations

are compared for respective test cases with three other
implementation approaches:

• NISC style MIPS architecture as one of the referent
architecture used inside NISC toolset, Fig. 7, [19].

• Xilinx MicroBlaze processor.
• Xilinx Vivado HLS tool, [20].

For all of them, the target platform was FPGA Virtex-5
XC5VSX50T device (package FF1136 speed grade -1), and
performance was noted from tools reports, simulation or logic
analyzer output waveforms. The referent Xilinx Design Suite
used was version 12.3.
Our flow implements designs with performances range at the
same level or better than other processor based designs, Table
VIII. With capabilities for parallelizing execution and
instantiation of more functional units it is better in cycle count
measure than other processors. In achieved work frequencies
it is below other processors. HLS tool is far ahead all
implementations as it has fully custom control logic.

B. Data Path Designs Characteristics
Table IX presents data path characteristics of all custom

built data paths. According to Table VI and Table VII
expectations, SHA-1 has the most functional units instanced.
There are seven functional unit in its data path, but, as one

TABLE V
RELATION OF CUSTOM PROCESSOR DESIGN FLOW TO HIGH-LEVEL

SYNTHESIS

High-Level Synthesis
Steps

Our Approach
Yes/
No

No. in
Order

Comment

Lexical Analysis Yes 1. Code preprocessing:
transformation to
CDFG

Algorithm Optimizations No - Optimizations are
performed only at
architectural level

Control/Data
Dependencies Analysis

Yes 2. Only data
dependencies are
analyzed

Technology Library
Processing

Yes 3. Platform file that
describes mapping to
FPGA

Resource Allocation Yes 5. Joint process with
‘Functional Units &
Register Binding’

Operation Scheduling Yes 4. Three-address
statements within
control flow basic
block

Functional Units &
Register Binding

Yes 5. Joint process with
‘Resource Allocation’

Output: RTL Code Yes 6. Synthesizable Verilog
code

TABLE VI
TEST CASES CDFG CHARACTERISTICS

Test
Cases

Basic
Blocks

#State-
ments

#Ope-
rands

#Opera-
tions

DCT 8×8 15 28 29 6
Unrolled
DCT 8×8

5 161 191 8

32-point
DCT

1 791 890 6

SHA-1 31 158 150 12

TABLE VII
TOP OPERATION INSTANCES COUNTS

Test
Cases

A
D

D

SU
B

M
U

L

SH
IF

T

A
N

D

O
R

X
O

R

N
O

T

C
O

M
P

A
SS

IG
N

DCT 8×8 1 1 1 1
Unrolled
DCT 8×8

2 1 1 1 1 2

32-point
DCT

3 2 1 1 4

SHA-1 1 1 1 2 2 1 1 1 3

Fig. 7. NISC style MIPS architecture (source: [19])

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1726978-1-4673-2232-4/13/$31.00 ©2013 IEEE

functional unit can implement combinations of operations, the
actual number of operations is higher (i.e. 12). Instantiation of
functional units is controlled by checking the maximum
allowed numbers per operation types. Therefore, the numbers
of functional units instances are moderate for all test cases. On
the other hand, the numbers of register files and registers is
higher than expected as their instantiations are not controlled.
These increase connections and multiplexers insertions which
cause inaccuracy in resource occupation estimation.

V. CONCLUSION
In this paper, we elaborated the global flow of C code

specification implementation to FPGA. The idea was in
handling complex code examples and production of custom
architectures for them. The methodology includes:

• code hierarchical division through procedures and their
control flow blocks,

• control flow blocks profiling, producing provisional
optimized data paths for all basic blocks,

• unifying basic blocks demands for components into
final data path.

The results of FPGA implementation produced from such
semi-automated flow were presented in aspects of execution
clock cycles and work frequencies and compared against three
other implementations.

Design time for final data path design with presented
algorithm was within few seconds, except for 32-point DCT.
32-point DCT compatibility graphs analysis was much more
costly because of huge number of statements.

Further work will include efforts on better control and
optimization of all components; especially register files, and
accurate resource occupation estimation. Also, the mechanisms

of pipelining, on structural and functional unit level, are not
still considered seriously. In all, there is a space for
improvement in user impact during system design. More
detailed analysis of functional units and registers utilization
would allow testing of trade-off between cycle count
performance and design minimization.

ACKNOWLEDGMENT
This work was supported by research grant No. 036-

0362980-1929 from the Ministry of Science, Education and
Sports of the Republic of Croatia. Special thanks we give to
Center for Embedded Computer Systems (CECS) at University
of Irvine California as the key support was based on prof.
Daniel Gajski’s team research and experience.

REFERENCES
[1] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski,

J. Teich, “Electronic System-Level Synthesis Methodologies,” in IEEE
Transactions of Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 10, pp. 1517-1530, October 2009.

[2] W. Ecker, W. Muller, R. Dömer, Hardware-dependent Software:
Principles and Practice, Springer, 2009.

[3] G. Martin, G. Smith, “High-Level Synthesis: Past, Present, and
Future,” in IEEE Design & Test of Computers, vol. 26, no. 4, pp. 18-25,
July-August 2009.

[4] (2013) Gary Smith EDA. [Online]. Available: http://
http://garysmitheda.com/

[5] M. Reshadi, B. Gorjiara, D. D. Gajski, “NISC Technology and
Preliminary Results,” Technical Report, University of California,
Center for Embedded Computer Systems, Irvine, August 2005.

[6] P. Coussy, D. D. Gajski, M. Meredith, A. Takach, “An Introduction to
High-Level Synthesis,” in IEEE Design & Test of Computers, vol. 26,
no. 4, pp. 8-17, July-August 2009.

[7] D. D. Gajski, N. D. Dutt, A. C-H Wu, S. Y-L Lin, “High-Level
Synthesis: Introduction to Chip and System Design,” Springer, 1992.

[8] (2013) Platform Studio and the Embedded Development Kit (EDK).
[Online]. Available: http://www.xilinx.com/tools/platform.htm

[9] (2013) MicroBlaze Soft Processor. [Online]. Available:
http://www.xilinx.com/tools/microblaze.htm

[10] R. E. Gonzalez, “Xtensa: A Configurable and Extensible Processor,” in
IEEE Micro, vol. 20, no. 2, pp. 60-70, March-April 2000.

[11] J. Trajkovic, D. D. Gajski, “Custom Processor Core Construction from
C Code,” in Proceedings of Sixth IEEE Symposium on Application
Specific Processors, Anaheim, California, June 2008.

[12] A. Orailoglu, D. D. Gajski, “Flow graph representation,” in
Proceedings of the 23rd ACM/IEEE Design Automation Conference,
pp. 503 - 509, 1986.

[13] (2013) SPARK: A Parallelizing Approach to the High-Level Synthesis
of Digital Circuits. [Online]. Available: http://mesl.ucsd.edu/spark

[14] O. Esko, P. Jääskelainen, P. Huerta, C. S. De la Lama, J. Takala, J. I.
Martinez, "Customized Exposed Datapath Soft-Core Design Flow with
Compiler Support," in Proceedings of International Conference of
Field Programmable Logic and Applications (FPL), Milano, Italy,
August-September 2010.

[15] D. D. Gajski, A. Gerstlauer, S. Abdi, G. Schirner, Embedded System
Design, Springer, 2009, pp. 199-254.

[16] B. Gorjiara, D. D. Gajski, “Custom Processor Design Using NISC: A
Case-Study on DCT algorithm,” in Workshop on Embedded Systems
for Real-Time Multimedia, pp. 55-60, 2005.

[17] (2013) Secure Hash Standards (SHS). [Online]. Available:
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[18] (2013) C to Verilog. [Online]. Available: http://c-to-
verilog.com/howtos.html

[19] (2013) NISC Technology – Toolset online demo. [Online]. Available:
http://www.ics.uci.edu/~nisc/demo/

[20] (2013) C-based Design: High-Level Synthesis with Vivado HLS.
[Online]. Available: http://www.xilinx.com/training/dsp/high-level-
synthesis-with-vivado-hls.htm

TABLE VIII
COMPARISON OF CUSTOM DESIGNS IN CYCLE COUNTS

Test
Cases

NMIPS
(67–69
MHz)

Microblaz
e (100
MHz)

Vivado
HLS (>
400 MHz)

ArkBuild
er (57-61
MHz)

DCT 8×8 10382 51616 3929 10830
Unrolled
DCT 8×8

3566 93248 832 3333

32-point
DCT

788 28318 199 426

SHA-1 4327 67087 2726 3830

TABLE IX
CUSTOM DATA PATHS CHARACTERISTICS

Test
Cases

Data path components
Functiona
l units

Register
Files

Multiplex
ers

Connectio
ns

DCT 8×8 3 14 13 80
Unrolled
DCT 8×8

5 25 24 164

32-point
DCT

5 29 32 343

SHA-1 7 30 37 264

EuroCon 2013 • 1-4 July 2013 • Zagreb, Croatia

1727978-1-4673-2232-4/13/$31.00 ©2013 IEEE

