System-level Synthesis: From Specification to Transaction Level Models

Daniel D. Gajski
Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-2625

gajskil@cecs.uci.edu

Abstract— With design complexities increasing daily, the
multi-core community is entertaining the idea of increasing the
level of abstraction to transaction-level modeling (TLM) and
design. However, the proper definition, style or semantics of
TLM is not clear. Nor is it clear how to synthesize or verify
TLMs. In this paper, we will introduce several TLM models and
define their semantics. This formalism will allow us to define
design decisions and corresponding model transformations that
can be used to transform one model into another. These
transformations and refinements are the enabler for automatic
synthesis and verification on TLM. We will also discuss the
algorithms and flow for model transformation according to the
OSI network layers and show how to build tools with inputs and
outputs at transaction level. We will conclude with preliminary
tools and results that promise a productivity gain of several
orders of magnitude.

I. INTRODUCTION

The complexity of embedded designs has reached a level
beyond what human system designers can produce with tradi-
tional approaches and EDA tools. Our approach summarized
in this paper incorporates more than 15 years of research in
system synthesis to provide a solution that will reduce both
time and effort needed in the system design process. Given a
system specification of the application described graphically
in form of hierarchically composed C code together with a
platform target architecture description, our approach allows
to automatically generate transaction-level models (TLM) [1]
for simulation, analysis and verification, as well as a pin- and
cycle-accurate model (P/CAM) for implementation.

II. TLM ABSTRACTION LEVELS

The standard product design starts with an application
code for which designers envision a multi-core platform
architecture. This application code is then partitioned and
mapped to components in the platform, thus leading to a
system specification. Each component in the architecture
must further be refined to a pin- and cycle-accurate level for
synthesis with standard EDA tools. Similarily, the application
code must be refined to allow communication through the
network on the platform.

In order to automate this refinement, we need to define
proper abstraction levels, design decisions at each level,
and necessary refinement steps for each system model, in
order to generate a new model corresponding to those design
decisions.

978-1-4244-4888-3/09/$25.00 ©2009 |IEEE

In general, three models are necessary,

(a) the system specification, written by application design-
ers

(b) TLM, to validate the system specification on the se-
lected platform, and

(c) P/ICAM, generated by system designers for input to
standard EDA tools.

;
E
{
i |
5 | Application '. Application 1
RS Presentation | oo N TTTToToTTcen-n Presentation |
; Session Session ;
E Transport Transport E
! Network Network |
: Link + Stream Link + Stream :
' Media Access TLM Media Access :
~-- Protocol = Femmmmsii - Protocol =
Physical Physical

Y

Fig. 1: Model abstraction and communication layers.

Figure 1 illustrates the abstraction levels of the models in
the design flow with respect to OSI layers [2]. The input
specification model is a untimed, hierarchical, functional
description of the system, using abstract communication
channels. The timed intermediate TLM is partitioned into
the system’s processing elements, communicating over fast
and timing-accurate TLM channels. The final implementation
model is pin- and cycle-accurate and feeds directly into
standard design tools at lower levels.

III. DESIGN FLOwW

The design flow to the corresponding abstraction lev-
els allows an application designer to capture the system
specification at a higher abstraction level. The specification
is then validated and evaluated to determine its necessary
specifics and required properties using a transaction-level
model (TLM).

The application engineer can then change the platform
components and connections or the application code until
satisfactory results are obtained. Once the platform and the

1134

code satisfy the given requirements, the system designer
generates pin- and cycle-accurate code.

The TLM and P/CAM models can be generated auto-
matically using a decision-based refinement methodology.
Such a methodology associates with each design decision or
design change a corresponding model refinement or change,
resulting in a model transformation that produces a new
model that reflects the selected design decisions.

Specification

Platform
Architecture

Application
Model

System Definition

System Synthesis

U

Implementation

Fig. 2: Embedded system design flow.

Figure 2 shows an overview about the overall design flow
and the system design environment supporting it. Such a
design flow starts with the capture of the application model,
a purely behavioral description of the system functionality.
Independently, the system platform architecture is defined
as a system netlist of major system components, including
processors, dedicated hardware accelerators, memories and
IPs, interconnected by system busses, bridges, and trans-
ducers. Together, the application model and the platform
architecture form the system specification as input to the
design environment.

The system specification can be seen as a combination of
the application model and platform architecture, integrated
with additional information taken from the system compo-
nent database. From the system specification, model gener-
ation tools automatically generate transaction-level models
(TLMs) towards validation and exploration, while system
synthesis tools generate a pin- and cycle-accurate model
(P/CAM) that serves as input to standard EDA tools for the
system implementation.

A. Application model

The input application model is a purely functional, exe-
cutable specification of the intended design. It consists of a
hierarchy of sequential or concurrent functional blocks that

communicate by use of abstract channels reflecting various
types of message-passing communication semantics. In other
words, the model is a hierarchical composition of blocks
defined as ANSI C code.

To enable true design space exploration, the application
model does not contain any implementation details. In par-
ticular, the model is architecture-less, that is, it is void of
any structural information.

To allow functional validation, the application model also
contains stimulus and monitor behaviors that build a test-
bench for the design model.

FE

[vt I

B3 |
_J

Ef]

Figure 3 shows an example of a simple application model.
Four concurrent functional blocks B1 through B4 communi-
cate via shared variables (v1) and abstract channels C1 and
c2.

Fig. 3: Application model example.

B. Platform architecture

As outlined above, the platform architecture is the second
input to our design flow. The platform model describes a
system netlist of the major components, such as software
processors, dedicated hardware blocks, memories and in-
tellectual property (IP) components. Following a general
block diagram paradigm, the system components are inter-
connected by system busses which in turn can be connected
by bus bridges and transducers.

CPU Mem
k3 &
8 » T >
< o

HW IP

Fig. 4: Platform architecture example.

Figure 4 shows a platform architecture suitable for the
example shown in Figure 3. This simple example system

1135

consists of a general-purpose processor CPU, a hardware
accellerator HW, a shared memory Mem, and a third-party
block IP. The four components are connected by the main
processor bus and a bridge to the IP bus.

C. System specification

CPU Mem

Arbiter
v
Bridge
v

=
B

B3 |
_J

HW IP

Fig. 5: System specification example.

Figure 5 shows the system specification of the example
design as a model that combines the functional aspects of
the application model with the structural information of the
platform architecture. Note that the two aspects, behavior and
structure, are fully complementary (i.e. non-overlapping).
This is highlighted in Figure 5 which simply is an overlay
of Figure 3 and Figure 4.

D. TLM generation

From the system specification model, our envisioned de-
sign environment can then automatically generate a corre-
sponding transaction-level model (TLM).

IP

Fig. 6: Generated transaction-level model (TLM).

Figure 6 shows the generated TLM for the simple example
defined in Figure 5. In the model, transaction-level commu-
nication layers have been inserted to reflect the transactions
on the system busses between the components. The busses
themselves are represented by TLM channels CPU Bus

and IP Bus. In the software component CPU, additional
layers of hierarchy have been inserted to accurately reflect
the hardware abstraction layer (HAL) of the processor.
Also, the functional blocks B1 and B2 are now modeled
as tasks, being scheduled by an abstract operating system
OS channel and communicating via integrated Drivers.
The inserted components stem from template models in
the system database which are customized according to the
actual design decisions applied by the system designer.

E. Pin- and cycle-accurate model generation

System synthesis tools allow to automatically generate
a pin- and cycle-accurate model (P/CAM) that reflects the
intended implementation of the system accurately down to
the interconnecting pins and wires.

CPU

Bridge

| Arbiter |

HW IP

Fig. 7: Generated pin- and cycle-accurate model (P/CAM).

Figure 7 shows the generated P/CAM for the TLM shown
in Figure 6. The lower-level communication layers, that were
abstracted away in the TLM channels, are now properly
modeled as an inner layer that samples and drives the explicit
bus wires according to the selected communication protocol
and timing.

IV. SYSTEM ENVIRONMENT

The above described models and design flow can be
united in a system environment for automatic generation of
TLMs. Such an environment includes extensive simulation
and analysis engines for detailed feedback about design
model behavior and quality metrics. Apart from capturing the
system specification and later design decisions, it’s graphical
user interface (GUI) supports a wide variety of visualizations
for simulation and analysis results. This allows the system
designer to focus her/his efforts on the critical aspects in
the system design flow and exploration, thus arriving at an
optimal design implementation in a short amount of time.

Figure 8 shows the main components of the environment,
all driven and visualized by an easy-to-use GUI [3]. The
heart of the environment is the model refinement engine that
combines the application model and platform architecture to

1136

(System Spec)

v [}
Y
Estimation
tool
Model Ymaton/
refinement tool il GELT
tool
Component
library
A 4
TLM

Fig. 8: System design environment.

a system specification model and allows it to be further re-
fined down to a transaction-level or pin-accurate model. The
refinement engine is supported by a component library with
models and property annotations for processor, hardware, and
IP components.

Validation of both input and output models is performed
by integrated simulation and verification tools. An estimation
tool is also included, allowing early and rapid feedback about
the quality metrics of the design at hand.

Such an environment offers the following features:

o Graphical entry of platform target architecture as a
netlist of components and busses.

o Graphical entry of system specification as application
code consisting of communicating processes.

o Automatic generation of platform transaction-level
models (TLMs) for simulation, analysis and verification.

« Extensive platform simulation and analysis through fast
and accurate transaction-level simulation.

o Evaluation and exploration of platform quality and
behavior through large set of profiling and analysis
tools.

A. Experiments

In the rest of the paper, we demonstrate and describe the
design flow using an example of a MP3 decoder using a
prototype tool called Embedded System Environment (ESE)
[4]. ESE is a tool that simplifies and automates the genera-
tion of Transaction Level Models (TLM). Automatic model
generation allows designers to move from idea to an exe-
cutable model in less than one hour. Furthermore, it enables
extensive exploration and validation of the computation and
communication design space.

Based on a reference C code, we have captured the
functionality of the MP3 decoder in ESE. Our application
model reflects the major functional blocks in the decoder
pipeline, as shown in Figure 9. In addition, the application
model contains smaller control blocks that handle the input
and output of the byte streams, as well as a testbench

2 granules

AliasRed [—*{ IMDCT [—>|FilterCore
/ Left channel

— HuffDec PCM [—>
mp3 \ pcm
—*{ IMDCT

AliasRed | FilterCore

Right channel

Fig. 9: MP3 decoder example, functional block diagram.

wrapped around the design such that the functionaly can be
validated through simulation.

FSFi- MP3DECoder,eset

ew Project Simulation _Synthesis

DoubleHdshk

® @ 3 c_semaphore

Fig. 10: Screenshot of ESE Frontend.

Next, we have captured an initial platform architecture that
maps the entire MP3 decoder functionality on an embedded
ARM7TDMI processor. Only the PCM output is performed
by a dedicated hardware unit that emits the decoded PCM
sound samples according to the timing specified in the MP3
stream. The ARM processor and the PCM output unit both
have their own local bus, connected together by a bridge unit.
Figure 10 shows this platform architecture in a screenshot of
ESE.

ARM

e

Drivers@@os)

Fig. 11: MP3 decoder example, generated TLM 1.

1137

To evaluate this architecture of the MP3 decoder, we used
ESE to generate a TLM (Figure 11) and simulated the model.
The simulation results showed that the ARM processor alone
cannot meet the required frame speed of 26.12ms.

ARM

Fig. 12: MP3 decoder example, generated TLM 2.

To speed up the design, we extended our platform archi-
tecture by introducing two additional hardware accelerators
dedicated to the FilterCore blocks for the left and right
audio channel, respectively. The improved model (Figure 12)
showed a significant speed improvement, but the frame
deadline could still not be met due to high bus contention
on the AMBA main bus.

ARM

et

Mem

orvers BQOS)

HW1

FilterCore FilterCore

Fig. 13: MP3 decoder example, generated TLM 3.

Again, we adjusted the target platform. We connected the
FilterCore units directly to the PCM output unit, eliminating
the need for the bus bridge, as shown in Figure 13. This
design successfully met the frame delay.

Figure 14 shows some simulation and estimation results
obtained for each of the TLM alternatives. The graphs clearly
show that only the third design alternative meets the frame
delay deadline.

We would like to emphasize that the entire design ex-
ploration for this example can be performed in less than

Deadline: 26.12 0.4
03[
02
"l

TLM1 TLM2 TLM3 TLM1 TLM2 TLM3

(a) Frame delay (ms) (b) Main bus utilization (%)

Fig. 14: Estimation results for the generated TLM alterna-
tives.

one hour of time. This is possible due to an intuitive GUI
that allows easy capturing and modifying of design models,
and in particular due to the automatic model generator
that creates TLMs within seconds for the selected platform
architecture.

In summary, the MP3 design study clearly shows that ESE
enables rapid design space exploration.

V. CONCLUSION

In summary, ESE offers a true system-level design flow

with the following benefits:

o Design decisions and models can be easily exchanged
in electronic form, providing simplified globally-
distributed design.

o Designs can be easily modified and prototyped, provid-
ing better market penetration through customization.

e Models and design decisions can be reused, providing
easier change and version management.

o Models are automatically generated, providing shorter
time to market.

e No need for manual model development, providing
1000x productivity gains.

ACKNOWLEDGMENT

The author would like to thank the members of the
System-on-Chip Environment group in the Center for Em-
bedded Computer Systems at UC Irvine who contributed to
this work, especially Andreas Gerstlauer, Samar Abdi, Gunar
Schirner, Yonghyun Hwang, Lochi Yu, and Rainer Domer.

REFERENCES

[11 T. Grotker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Kluwer Academic Publishers, 2002.

[2] ISO, Reference Model of Open System Interconnection (OSI), 2nd ed.,
Internation Organization for Standardization (ISO), 1994, iSO/IEC
7498 Standard.

[3] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded
System Design. Springer, 2009.

[4] “Embedded system environment,” http://www.cecs.uci.edu/ ese/.

[5] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Design Methodology. Kluwer Academic
Publishers, 2000.

[6] A. Gerstlauer, R. Domer, J. Peng, and D. D. Gajski, System Design:
A Practical Guide with SpecC. Kluwer Academic Publishers, 2001.

[7] “SpecC Technology Open Consortium,” http://www.specc.org.

[8] “Open SystemC Initiative,” http://www.systemc.org.

[9] D. D. Gajski, A. Gerstlaver, R. Domer, S. Abdi, J. Peng, and
D. Shin, “TL Environment,” Center for Embedded Computer Systems,
University of California, Irvine, Tech. Rep. CECS-TR-05-10, July
2005.

[10] R. Domer and D. D. Gajski, “System-level synthesis from transaction-
level models: Algorithms and tools,” in Design and Verification
Conference, San Jose, California, February 2007.

1138

