
Hardware-dependent Software Synthesis for Many-Core Embedded Systems

Samar Abdi, Gunar Schirner, Ines Viskic, Hansu Cho, Yonghyun Hwang, Lochi Yu, Daniel Gajski

Center for Embedded Computer Systems

University of California, Irvine

Irvine, CA 92617

Abstract— This paper presents synthesis of Hardware Depen-
dent Software (HdS) for multicore and many-core designs using
Embedded System Environment (ESE). ESE is a tool set, devel-
oped at UC Irvine, for transaction level design of multicore em-
bedded systems. HdS synthesis is a key component of ESE back-
end design flow. We follow a design process that starts with
an application model consisting of C processes communicating
via abstract message passing channels. The application model is
mapped to a platform net-list of SW and HW cores, buses and
buffers. A high speed transaction level model (TLM) is generated
to validate abstract communication between processes mapped to
different cores. The TLM is further refined into a Pin-Cycle Ac-
curate Model (PCAM) for board implementation. The PCAM in-
cludes C code for all the HdS layers including routing, packeting,
synchronization and bus transfer. The generated HdS methods
provide a library of application level services to the C processes
on individual SW cores. Therefore, the application developer does
not need to write low level HdS for board implementation. Syn-
thesis results for an multi-core MP3 decoder design, using ESE,
show that the HdS is generated in order of seconds, compared to
hours of manual coding. The quality of synthesized code is compa-
rable to manually written code in terms of performance and code
size.

I. INTRODUCTION

Multi-core and many-core embedded systems are being in-

creasingly used to meet the complexity and performance re-

quirements of modern applications. Embedded application de-

velopers for multi-core systems need a library of communi-

cation services to validate and debug their distributed multi-

process code. On the other hand, system designers need to

provide board prototypes and system SW for application de-

velopment.

Transaction level modeling (TLM) is widely seen as an en-

abler for early application development before the system pro-

totype is ready. This is because TLMs execute much faster

than traditional pin-cycle accurate models (PCAMs). However,

with higher abstraction in TLMs, there are fewer design de-

tails to allow realistic estimation of design metrics. Pin-cycle

accurate models (PCAMs) provide much more accurate esti-

mation of performance, design cost and power consumption.

They are also neccessary for prototyping systems with exist-

ing EDA tools and methodologies. However, PCAMs require

an implementation of core, platform and application-specific
system SW services on top of the SW core’s instruction set.

Some of these services are available directly in an RTOS for

single processor systems with standard peripherals. Others,

such as Hardware-dependent-Software (HdS), must be de-
veloped speficically for the given cores, platform, application

and mapping. In a complex multi-core or many-core system,

manual HdS development may become very time consuming.

This is not only due to code size, but also due the complex

interaction of processes in concurrent applications mapped to

multi-core platforms.

Integrated design environments, such as ESE [3], are needed

to transform application level models into platform specific

TLMs for validation and PCAMs for implementation. In this

paper we will discuss the model based design methodology

of ESE, with focus on HdS synthesis. Our methodology and

synthesis technique allows automatic transformation of appli-

cation level models with abstract message passing communi-

cation into PCAMs with an HdS stack of communication ser-

vices. The automation not only cuts design time, but results in

modular HdS code that is consistent with the application level

communication requirements.

II. RELATED WORK

There has been significant research in model based design

for embedded systems in the recent years. Standardization ap-

proaches such as AUTOSAR [2] and OSEK [4] provide com-

mon API and middleware for automotive SW development. On

the other hand, system level design languages such as SystemC

[5] and SpecC [9] allow multi-core system modeling with sim-

ulation speeds suitable for SW development. Such efforts have

provided the groundwork for developing and deploying model

automation tools such as the one presented in this paper.

There has also been much work in embedded system mod-

eling frameworks and SW code generation from specific in-

put languages. POLIS [7] (Co-Design Finite State Machine),

DESCARTES [19] (ADF and an extended SDF), Cortadella

[8] (petri nets) and SCE [10] (SpecC) provide some automa-

tion for SW generation from certain languages and models of

computation. Our approach, in ESE, provides a C based input

with multi-core support and has been demonstrated with actual

board implementation.

Modular communication modeling has been proposed for

application domains such as real-time systems and platforms

such as heterogeneous multi-core systems. Kopetz [13] pro-

poses component model for dependable automotive systems.

Sangiovanni-vincentelli [21] has proposed a three phase sim-

ulation model for platform based design. These approaches

tackle security, dependability and heterogeneity at the system

level, but require underlying SW services and tools to im-

plement the models. Communication optimization techniques

978-1-4244-2749-9/09/$25.00 ©2009 IEEE

3D-4

304

[18, 20, 17] on the other hand have dealt primarily with plat-

form and application transformations using simulation models.

In contrast, HdS synthesis in ESE focuses on code genera-

tion for accurate optimization feedback and is fast and flexible

enough to incorporate application and platform modifications

on the fly.

HdS [15] itself has been a topic of active research lately

and our work contributes to it. Commercial vendors provide a

board support package (BSP) [6, 1] with their board IDEs, but

such software is customized for the limited set of IP cores avail-

able or synthesizable on the board. Most academic approaches

so far have dealt with porting of simulation models on RTOS,

discounting external communication. Herrara [12] proposes

overloading SystemC library elements to reuse the same model

for specification and target execution, but partly replicates the

simulation engine on the host and thereby imposes strict in-

put requirements. Krause [14] proposes generation of source

code from SystemC mapped onto an RTOS, while Gauthier’s

method [11] provides generation of application-specific RTOS

and the corresponding application SW. Both techniques cannot

be extended to muti-core platforms with inter-core communi-

cation synthesis. Yu [23] shows generation of application C

code from concurrent SpecC, which requires the initial system

modeling to be done in SpecC. The Phantom Serializing Com-

piler [16] translates multi-tasking POSIX C code input into

sequential C code by custom scheduling, but is a purely SW

core-specific optimization. Schirner [22] also proposes hard-

ware dependent synthesis from SpecC models but only consid-

ers platforms with single core connected to several peripherals.

In contrast to all the above techniques, ESE provides automatic

HdS synthesis for multi-core and many-core systems, starting

from an abstract C based application model.

ESE
Front-End

Component
Data Models

TLM

Application Platform

ESE
Back-End

SystemC
Simulation

PCAM
Board
Testing

Component
Libraries

Fig. 1. ESE Design Flow.

III. MODEL BASED DESIGN WITH ESE

Our model based design methodology is shown in Figure

1. We start with an application model that consists of C pro-

cesses communicating via synchronized point-to-point hand-

shake channels and shared variables. The platform definition

is a graphical net list of processing elements (PEs), buses and

interface cores called transducers. Processes and variables in
the application model are mapped to the PEs in the platform.

Channels are mapped to routes in the platform. If the route

includes a transducer, then the communicated data may need

to be broken up into smaller packets according to the buffer

size limitations. The above design decisions and data models

of PEs, buses and RTOSes are used by the ESE Front-End to
generate a TLM. The TLM models the PEs as SystemC mod-

ules connected to the communication architecture model con-

sisting of bus channels and transducer modules. The original

application processes are encapsulated as SystemC threads in-

stantiated inside the PE modules. The point-to-point channel

accesses of the application model are mapped into equivalent

packet transactions routed over the communication model.

The step of refining the TLM into a PCAM is performed by

the ESE Back-End. The component data models in TLM are re-
placed with respective implementation libraries in the PCAM.

Synchronization is modeled in the TLM via abstract SystemC

flags and events. The flag and event accesses must be trans-

formed into interrupts or polling in the PCAM. Similarly, the

packet transactions over the bus channels in the TLM must be

transformed into equivalent arbitration and data transfer cycles

on the system buses. The transformations applied to the model

result in various C functions per SW core. These functions

form the HdS library for that core. If there are HW IPs in

the platform, they will require RTL interface blocks for the

same functions, with platform specific timing constraints. In

this section, we will discuss the above models in greater detail

to provide an idea of the input and output of the HdS synthesis

procedure.

A. Hardware Platform Template

In order to automate HdS synthesis, we first need to define

the platform components and connections. The platform is

composed of processing elements (PEs), memories, buses and

transducers. PEs are our generic term for HW and SW cores on

which application processes are mapped. Memories are storage

cores that do not have any active thread of computation. Shared

variables in the application are mapped to memories. Buses

are generic communication units that can act as point-to-point

links or shared buses with arbitration. Buses have well defined

protocols and may connect to compatible ports on a given core.

Transducers are generic interface cores that provide func-

tionality of (1) protocol conversion and (2) store-and-forward

static routing. Transducers consist of internal buffers and may

connect to incompatible buses via different ports. For each bus

connection, they have an IO interface and a Request Buffer.
This request buffer stores all send/receive requests made to the

transducer for storing and forwarding data on a channel. Thus,

they allow sending data from one PE to another if the two PEs

are not connected to a common bus. A route in the platform is

a sequence of buses and transducers with the following regular

expression:

PEsender → Bus0 → [Transduceri → Busi →

] ∗ PEreceiver

Channels in the application are mapped to routes in the plat-

form. As a result, each transducer in the platform may have

several channels routed through it. For each such channel, the

transducer defines (1) a unique buffer partition to be used by

data on that channel, (2) a unique bus address for a send re-

quest, and (3) a unique bus address for a receive request. Since

305

3D-4

transactions on a channel are sequential, the partitioning of

transducer buffers guarantees safety and liveness of implemen-

tation, provided the application model is safe and live.

Fig. 2. Application model.

B. Application Model

Figure 2. shows the application model of an MP3 Decoder.

The decoding algorithm is captured with a set of eight concur-

rent processes, each executing sequential C code. ProcessHuff-
man Decoder inputs MP3 stream organized in frames, performs
Huffman decoding, re-quantization and frame reordering. The

frames are then classified into either left or right stereo stream

and processed separately. Left and Right Alias Reduction pro-
cesses reduce the aliasing effects in frames, while the Left and
Right IMDCTs convert the frequency domain samples to fre-
quency sub-band samples. The two DCT processes transform
the individual frequency sub-bands into PCM samples and send

them to the PCM process for correction verification.
Communication in application model is enabled with calls

to (a) send/recv methods for direct process communication,
and (b) read/write methods for accessing variables shared
between processes. The send/recv methods are encapsulated
in process-to-process channels with no message buffering. In-
stead, process-to-process channels follow handshake synchro-

nization semantics, where the receiver process blocks until the

sender has sent the communicated data. All communication

in MP3 Decoder is modeled using process-to-process channels

Ch1 through Ch9.
On the other hand, the communication with read/write
methods is non-blocking. The shared variables are in the global

scope and are accessed with unsynchronized access channels.
The two communication mechanisms are sufficient to model

more complex communication services such as FIFOs, mu-

texes, mailboxes or events. Therefore, the synthesis of the ba-

sic communication models of handshake channels and shared

variable access channels is necessary and sufficient for imple-

menting any inter-process communication service at this level

of abstraction.

The set of processes, variables and channels are built on top

of the SystemC simulation kernel, as shown on Figure 2. The

processes execute as concurrent threads on the simulation ker-

nel. The process to process channels use the notify-wait se-

mantics of the kernel events to implement handshake synchro-

nization. The shared variables are modeled as passive SystemC

modules that export read and write interfaces, which are used

to connect them to the access channels. Interfaces are also de-

fined for processes to allow connection to channels. A well

defined interface template provides a communication API with

the following functions, where < i > is the name of used in-
terface:

• < i > Send(void *data, int size) Synchronized send

• < i > Recv(void *data, int size) Synchronized receive

• < i > Write(void *data, int size) Non-blocking write

• < i > Read(void *data, int size) Non-blocking read

By separating the communication interface from the rest of

the computation code, we are able to successively refine only

the interface implementation code. The API provided to the

application developer stays the same after HdS synthesis. In

other words, HdS synthesis is the implementation of applica-

tion channel methods, specific to the given core, platform, ap-

plication and mapping.

Fig. 3. TLM resulting from application to platform mapping.

C. Transaction Level Model

The TLM is derived by mapping the application model in

Section B to an embedded platform. The platform compo-

nents are modeled with a well defined SystemC code template.

PEs are modeled as SystemC modules that instantiate appli-

cation processes. The system buses are modeled with a uni-
versal bus channel (UBC), that provides methods for synchro-
nized send/receive, non-blocking read/write and memory ser-

vice. Memories are modeled as SystemC modules with a local

array. Transducers are modeled as SystemCmodules with local

buffer and controller threads for each bus interface.

Figure 3 shows the TLM of the MP3 Decoder. The HdS

model is highlighted inside the CPU core model. Processes Left
and Right DCT are mapped to the HW units (IP1 and IP2),
while all other processes reside in a SW core (CPU) model.
The route between the core and the HW units includes two

UBCs and a Transducer. Access to units from the SW core is
modeled with Channel API that encapsulate routing and pack-
eting methods. These methods in turn are implemented with

the UBC functions. Routing includes programming the Trans-
ducer with encoded route using UBC write method. Pack-
eting divides the message into data packets of selected size.

Since multiple processes are mapped to the SW core, a dy-

namic scheduler model that exports a threading API simulates

processor multitasking.

Channels between processes in the SW core are imple-

mented with an inter-process communication (IPC) model. The

IPC and scheduler model are only core dependent and can be

3D-4

306

included into the TLM from a library. However, the HdS code

is application, platform and core specific. Therefore, its has to

be generated for every design change that impacts communica-

tion parameters in the application, platform or mapping.

Fig. 4. PCAM refined from TLM for board prototyping.

D. Pin-Cycle Accurate Model

The TLM is refined into a PCAM that is used for board im-

plementation. Board design tools such those from Xilinx and

Altera can be used to convert PCAMs into bitstreams for con-

figuring the FPGA to obtain a prototype. Board debugging

tools can then be used to run and debug the prototype in real

time.

Figure 4. shows the PCAM of the MP3 Decoder. The plat-

form consisting of one SW core and two IP units connected

with two buses and a transducer is now modeled in synthesiz-

able RTL. The six MP3 Decoder processes mapped to a SW

core are cross-compiled with the processor’s C compiler (e.g.

Xilinx compiler for Microblaze core) and linked with the gen-

erated HdS and other system SW libraries for download. The

processes mapped to hardware can be either synthesized using

C-to-RTL tools or replaced with the respective RTL IP. The

system SW stack includes the threading and IPC libraries of

the RTOS, and the HdS library generated by our synthesis tool.

The RTOS itself may consist of several other services such as

file handling, memory management, standard C library, net-

working and so on.

The HdS library, generated by ESE, consists of four layers

as shown in Figure 4. The lowest layer consists of a set of

interrupt handlers (IHs) and memory access functions. Each

application level handshake channel requires synchronization

that may be implemented as interrupt or polling. For interrupt

based synchronization an IH is implemented per handshake

channel. For polling implementation, a memory mapped flag

is implemented in the slave device that is periodically checked

by the master SW core. The memory access functions also

provide basic IO to the peripherals. The synchronization and

data transfer layer consists of C methods that use the IHs and

memory access methods to manage packet level synchroniza-

tion and bus word transfers. The higher level layers for routing

and packeting and the channel API are imported directly from

the TLM. In summary, the communication in PCAM is imple-

mented with core specific C methods as opposed to SystemC

kernel methods in TLM.

IV. HDS SYNTHESIS

In this section we describe automatic HdS synthesis and code

generation from a set of design parameters. The design param-

eters are determined from the application and platform deci-

sions as well as core properties and are treated as constants for

HdS code generation. Two layers of communication functions

are generated,namely for routing/packeting and synchroniza-

tion/transfer. These functions are specific to the interface of

the application process. An example shows the typical code

synthesized for a Send interface.

A. Communication Design Parameters

In order to automate HdS code generation, we define a set

of communication specific system parameters. Based on our

platform template, explained in Section A, we define a Global
Static Routing Table (GSRT). The GSRT stores the mapping of
each application level channel to a platform route. For each

channel Ch, routed through a transducer Tx, we define Buffer-
Size(Tx, Ch) to be the buffer partition size in bytes forCh on Tx.
We also define the transducer send and receive request buffer

addresses per channel as SendRB(Tx, Ch) and RecvRB(Tx, Ch),
respectively. The above parameters are required to generate

routing and packeting layers for the SW core.

For each channel Ch, routed over a bus B, we define
SyncType(B,Ch) to be the synchronization method to be
used for ch for the route segment at B. The two possible
synchronization methods are Interrupt and Polling. For di-
rect memory accesses that do not require routing through trans-

ducer, synchronization is not required. A synchronization flag

table is maintained for each core. Each channel Ch gets a
unique entry SyncFlag Ch in this table. For interrupt based
synchronization, we also define a binding from the interrupt

source to the flag and the handler instance. For polling, the

flag is bound to an address in the slave PE. Finally, for the data

transfer implementation, we define the bus word size and the

low to high address range for each channel Ch on bus B as
AR(B,Ch). For each SW core we also defineWordSize as the
number of bytes per word.

B. Routing and Packeting

The communication functions are synthesized for each inter-

face i that is bound to a channel Ch. Since we allow only static
routing, a route object Rt is stored in the GSRT corresponding
to each channel. Note that the GSRT does not need to be part

of the communication library, since the routing per channel is

static. The route for Ch determines the channel packet size as
follows:

PktSz = Min (∀Tx ∈ Rt, BufferSize(Tx,Ch))

Hence, packet size is the largest data size that can fit into any

transducer buffer allocation for Ch. Again, note that PktSz is
a constant per channel, due to static routing.

The code generated for the interface communication method

is a do-while loop, with a temporary variable to keep track of

already sent/received data. A lower level method i SyncTr is
called by the routing/packeting layer to synchronize with the

corresponding process and send or receive each packet.

307

3D-4

C. Synchronization and Transfer

The routing of channel Ch determines the synchronization
code generated inside the i SyncTrmethod. Given the route ob-
ject Rt, as obtained from the GSRT, we determine the first bus
B in Rt. We also determine if Rt contains any transducers. If
so, we assign Tx to be the first transducer in Rt. The first step of
packet synchronization is to make a transducer request for the

transaction. This is done by generating code to write the packet

size (in bytes) into the request buffer at the address given by the

parameter SendRB(Tx,Ch) or RecvRB(Tx,Ch), depend-
ing on the transaction type. Once the request is written, the

transducer initiates lower level synchronization via interrupt or

polling, just like any other slave core.

Lower level synchronization is implemented by generating

code for using flag SyncFlag Ch in the i SyncTr method. In
case of interrupt synchronization, the flag is set by the associ-

ated interrupt handler. If the flag is not available, the processor

is suspended into a power save mode and re-awoken by the next

interrupt. In case of polling synchronization, the flag is period-

ically read directly from the corresponding slave core. The flag

waiting code is followed by resetting the synchronization flag.
Finally, data transfer is performed by generating a call to the

core-specific WrMem or RdMem functions. These functions
write or read data of given bytes using bus transactions of size

WordSize. The starting address of the transfer is obtained from
the address range AR(B,Ch).

i_SyncTr (D,S) {
//B = Rt->FirstBus();
//if (Rt->HasTx()) {
//Tx=Rt->FirstTx();

//} end Tx case
while (!SyncFlag_Ch){
SuspendProc(); }

SyncFlag_Ch=0;
//SA=low(AR(B,Ch));
WrMem(SA, D, S);

} // end Send

i_Send (data, size) {
//Rt = GSRT(Ch);
//PktSz=MinBuf(Rt);
do {len=min

(size,PktSz);

size-=len;
} while (size);
} // end i_Send

Routing and Packeting

WrMem (A,D,S) {
Written=0;
while (Written<S) {
move (D+Written),

(A+Written);
Written+= WordSize;
}

}

Memory Access

IH_Ch () {
SyncFlag_Ch=1;
}

Interrupt Handler

SW Core

Sender
Process
i_Send (D,S);

i_SyncTr
(data[sent], len);

WrMem
(SendRB[Tx][Ch], S, WordSize);

TX

M

S InteruptBus B

Synchronization and Transfer

Fig. 5. Embedded SW code example

Figure 5 shows an example for the embedded SW code gen-

erated for send method of interface i. The sender process
is mapped to a SW core, and its interface i is connected to
bus B. Interface i is bound to channel Ch that is routed over
B and transducer Tx and onto the destination core. Interrupt
signal (Interrupt) from the transducer to the SW core is used
for synchronization, and is bound to handler IH Ch and flag
SyncFlag Ch.

V. EXPERIMENTAL RESULTS

Figure 6 shows a multi-core design with an MP3 decoder

application mapped to a platform consisting of one SW core

(Microblaze) and four HW cores (Left/Right DCT and IMDCT)
used as accelerators. The HW cores use a DoubleHandshake
(DH) Bus interface, while the SW core is connected to theOpen
Peripheral Bus (OPB). Since the two bus protocols are incom-
patible, a transducer is used to interface between the cores. The

Fig. 6. MP3 Decoder Platform: SW + 2 DCT + 2 IMDCT.

block diagram of the stereo MP3 application with left and right

channel decoding blocks is shown inside Microblaze.

We created four mappings of the application, that

we refer to as SW+1DCT, SW+2DCT, SW+2IMDCT and
SW+2DCT+2IMDCT, with parts of the application mapped to
the hardware accelerators, as indicated by the mapping name.

As the DCT and IMDCT processes are moved from SW core to

the HW cores, the inter-core bidirectional channels are routed

over the OPB, DH buses and transducer Tx. The HdS on

Microblaze for PCAMs of the different designs are gener-
ated using ESE. Xilinx EDK [6] is used to convert the gen-

erated PCAMs into bitstream for implementation on the FF896

Virtex-II device. The decoding performance for all the syn-

thesized designs is measured with an OPB timer on the board,

using a common MP3 input file.

Table I shows a comparison between manually implemented

and automatically synthesized PCAMs using quality metrics of

HdS code size and communication delay. It can be seen that the

synthesized SW binary is only marginally larger than manual

implementation (between 1-4%). However, the performance of

the HdS synthesized by ESE, as measured by the on-chip timer,

is 6-9% better than manual implementation. The code qual-

ity difference was because the manual implementation shared

the synchronization function for different application channels,

while the synthesized code had unique synchronization func-

tion for each channel. Therefore, the manual code had fewer

total instructions, but incurred more instruction fetches for each

communication call at run-time.

Table II shows a comparison of lines of code between man-

ual and synthesized HdS. Due to difference in synchronization

implementation, as mentioned above, we can see that synthe-

sized source code is marginally larger than manual code. The

development time includes the 5 hours that it took to define the

application level channels and the design parameters. It took

2-4 hours to implement and test the manual communication

code. In contrast, with the given parameters, ESE synthesized

the HdS code in fraction of a second. This resulted in an over-

all development time savings of 33% on average. These results

show that with automatic HdS synthesis in from ESE, the de-

signer productivity can improve significantly, without loss in

design quality.

3D-4

308

Design Code size(in bytes) Total comm. delay Total comm.

(% diff.) (in cycles) (% diff.) delay (in ms)

SW+1DCT 171,362 957,060 35.45

Manually SW+2DCT 160,640 1,914,120 70.89

implemented SW+2IMDCT 163,492 1,875,588 69.46

PCAM SW+2DCT+2IMDCT 153,420 3,789,708 140.36

SW+1DCT 172,072 (+4.14%) 949,932 (-7.44%) 35.18

Automatically SW+2DCT 161,280 (+3.98%) 1,899,864 (-7.44%) 70.04

generated SW+2IMDCT 164,132 (+3.91%) 1,863,972 (-6.19%) 69.04

PCAM SW+2DCT+2IMDCT 153,624 (+1.33%) 3,763,836 (-6.83%) 139.40

TABLE I

COMPARISON OF MANUAL VS. SYNTHESIZED PCAMS OF THE MP3 DECODER

Design Code size (in lines) Development Time

(% diff.) (% diff.)

SW+1DCT 162 5 h + 2 h

Manual SW+2DCT 192 5 h + 2.5 h

communication SW+2IMDCT 192 5 h + 2.5 h

library SW+2DCT+2IMDCT 252 5 h + 3.5 h

SW+1DCT 168 (+3.70%) 5 h + 0.14 s (-28%)

Synthesized SW+2DCT 208 (+8.33%) 5 h + 0.14 s (-33%)

communication SW+2IMDCT 208 (+8.33%) 5 h + 0.14 s (-33%)

library SW+2DCT+2IMDCT 288 (+13.83%) 5 h + 0.14 s (-37%)

TABLE II

COMPARISON OF MANUAL VS. SYNTHESIZED COMMUNICATION SW

VI. CONCLUSIONS

We presented a model based technique and methodology

for HdS synthesis for heterogeneous multi-core systems. The

novelty of our work lies in defining embedded system models

at different abstraction level with clear synthesis semantics.

Application level models were defined as a set of processes

communicating via message passing channels and shared vari-

ables. A well defined, yet highly flexible, platform template

and associated design parameters were presented. We also

presented a synthesis procedure to generate core, application

and platform specific HdS for the design. Synthesis results

for an MP3 decoder example demonstrated the applicability

of our technique for large industrial size embedded systems.

Our automatic HdS synthesis reduces overall design time,

while consistently providing better performance and negligible

increase in code size over manual implementation. For future

work, we are investigating HdS synthesis from dependability

and security oriented application models. We are also working

extending our model based design framework with application

and platform templates for real-time architectures such as time

triggered network.

ACKNOWLEDGMENTS

This work builds on several years of system level design re-

search in Embedded Systems Methodology Group (ESMG) at

Center for Embedded Computer Systems (CECS), UC Irvine.

We acknowledge the contributions of various generations of

ESMG members over the past 20 years. We would also like to

thank Pramod Chandraiah for providing the C reference model

of the MP3 Decoder.

REFERENCES

[1] Altera SOPC Builder[online]. Available:

http://www.altera.com/.

[2] Automotive Open System Architecture[online]. Avail-

able: http://www.autosar.org/.

[3] Embedded System Environment[online]. Available:

http://www.cecs.uci.edu/˜ese/.

[4] OSEK[online]. Available: http://www.osek-vdx.org/.

[5] SystemC, OSCI[online]. Available:

http://www.systemc.org/.

[6] Xilinx Embedded Development Kit[online]. Available:

http://www.xilinx.com/.

[7] F. Balarin and et al. Hardware-Software Co-Design of
Embedded Systems: The POLIS Approach. Kluwer, 1997.

[8] J. Cortadella and et al. Task generation and compile time

scheduling for mixed data-control embedded software. In

Proceedings of the Design Automation Conference, June
2000.

[9] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and

S. Zhao. SpecC: Specification Language and Methodol-
ogy. Kluwer Academic Publishers, January 2000.

309

3D-4

[10] A. Gerstlauer, D. Shin, J. Peng, R. Domer, and D. D.

Gajski. Automatic, layer-based generation of system-on-

chip bus communication models. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 26(9), Spetember 2007.

[11] L. Guthier, S. Yoo, and A. Jerraya. Automatic genera-

tion and targeting of application specific operating sys-

tems and embedded systems software. In Proceedings of
the Design Automation and Test Conference in Europe,
pages 679–685, 2001.

[12] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. Sys-

tematic embedded software generation from systemc. In

Proceedings of the Design Automation and Test Confer-
ence in Europe, 2003.

[13] H. Kopetz, R. Obermaisser, C. E. Salloum, and B. Hu-

ber. Automotive software development for a multi-core

system-on-a-chip. In SEAS ’07: Proceedings of the 4th
International Workshop on Software Engineering for Au-
tomotive Systems, page 2, Washington, DC, USA, 2007.
IEEE Computer Society.

[14] M. Krause, O. Bringmann, andW. Rosenstiel. Target soft-

ware generation: an approach for automatic mapping of

systemc specifications onto real-time operating systems.

Design Automation for Embedded Systems, 10(4), De-
cember 2005.

[15] T. Makkelainen. Hds from system-house perspective. In

Hardware dependent Software Workshop at DAC, 2007.

[16] A. C. Nacul and T. Givargis. Lightweight multitasking

support for embedded systems using the phantom serial-

izing compiler. In Proceedings of the Design Automation
and Test Conference in Europe, pages 742–747, 2005.

[17] S. Pasricha, Y.-H. Park, F. J. Kurdahi, and N. Dutt.

System-level power-performance trade-offs in bus matrix

communication architecture synthesis. In CODES+ISSS
’06: Proceedings of the 4th international conference on
Hardware/software codesign and system synthesis, pages
300–305, New York, NY, USA, 2006. ACM.

[18] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-

Vincentelli. Constraint-driven communication synthesis.

In Proceedings of the Design Automation Conference,
pages 783–788, 2002.

[19] S. Ritz and et al. High-level software synthesis for the

design of communication systems. IEEE Journal on Se-
lected Areas in Communications, April 1993.

[20] K. K. Ryu and V. Mooney. Automated bus generation for

multiprocessor soc design. In Proceedings of the Design
Automation and Test Conference in Europe, page 10282,
2003.

[21] A. Sangiovanni-Vincentelli and et al. A next-generation

design framework for platform-based design. In Confer-
ence on Using Hardware Design and Verification Lan-
guages (DVCon), February 2007.

[22] G. Schirner, A. Gerstlauer, and R. Dömer. Automatic gen-

eration of hardware dependent software for mpsocs from

abstract system specifications. In Proceedings of the Asia-
Pacific Design Automation Conference, pages 271–276,
2008.

[23] H. Yu, R. Dömer, and D. Gajski. Embedded software gen-

eration from system level design languages. In Proceed-
ings of the Asia-Pacific Design Automation Conference,
pages 463–468, 2004.

3D-4

310

